Lecture 8 - Viscosity and drag

What's important:
• drag force depends on velocity
• terminal velocity under gravity

Demo:
• coin and feather, coffee filters, ball bearings in corn syrup

Velocity-dependent forces

Coin and feather demonstration shows two things:
• in a vacuum, the coin and feather drop at the same rate: the force on both objects from gravity is \(F = ma \), giving them the same acceleration
• in air, the feather falls more slowly, reaching a constant speed; because the speed is constant, the force it experiences MUST DEPEND ON SPEED: if the force were constant (like \(mg \)) then the acceleration would be constant and the feather would continue to accelerate, although at \(a < g \).

Thus, the drag forces in fluids are different than the friction force \(f_{\text{max}} = \mu N \), which is independent of velocity.

The power law for drag force varies with the speed of the object with respect to the medium. Common examples:

Low speeds Stokes' Law (after Irish physicist George Stokes) for the force on a sphere of radius \(R \) moving with speed \(v \) through a medium with viscosity \(\eta \):
\[
F = 6\pi \eta R v
\]
(smooth flow, no turbulence)

Higher speeds the viscous force may become quadratic in \(v \):
\[
F = \frac{1}{2} \rho A C_D v^2
\]
(turbulence, does not depend on \(\eta \))

where \(\rho \) = density of medium, \(A \) is cross sectional area of object, \(C_D \) = drag coefficient:
• \(C_D = 0.43 \) for BMW roadsters
• \(C_D = 0.37 \) for Mazda Miata

Drag + gravity

We look at a falling system subject to drag in order to demonstrate the power law behaviour of the drag force. The free-body diagram of an object subject only to gravity \((F = mg) \) and drag \((F_{\text{drag}} = c_1 v^i \) or \(c_2 v^j \), where the coefficients are expressed above) is
An object released from rest accelerates downwards because mg is greater than F_{drag}, which is initially small because of the small velocity. As the object accelerates, the velocity increases and so does F_{drag}. Ultimately, the drag force may reach mg, but it can never exceed mg or the object would accelerate upwards. Once the two forces are balanced, the object has reached its terminal velocity:

- **linear drag:**
 \[c_1 v^1 = mg \]
 or
 \[v_{\text{term}} = \frac{mg}{c_1} \]

- **quadratic drag:**
 \[c_2 v^2 = mg \]
 or
 \[v_{\text{term}} = \left(\frac{mg}{c_2}\right)^{1/2} \]

Demo: An example of the quadratic dependence on speed is the motion of falling coffee filters. If the mass of a nested set of coffee filters is increased by a factor of 4 (say 1 filter vs 4) the terminal speed increases by a factor of 2. Thus $v_{\text{term}} \sim m^{1/2}$ (4 filters cover twice the distance in the same time).

Demo: use linear drag to find viscosity of glycerine
Consider a steel ball-bearing of 0.5 cm radius in glycerine (this corresponds to a 3/8” diameter ball). Assume $C_0 = 0.5$ and use $\rho = 1260 \text{ kg/m}^3$. When are the linear and quadratic forces comparable for a ball bearing in glycerine?

\[c_1 v = c_2 v^2 \]
\[v = c_1 / c_2 = 5.1 \text{ m/s}. \]

Thus, **for this example**

\[F_{\text{drag}} \]
\[v (\text{m/s}) \]

By observation, v is less than 1 m/s, so we assume we are dealing with linear drag (confirm this after the fact).

To find the mass of the ball bearing, use $\rho = 7700 \text{ kg/m}^3$ and $R = 0.0047 \text{ m}$, so that the
mass is
\[
m = \rho V = 7700 \times (4\pi/3) \times (0.0047)^3
\]
\[
= 0.0033 \text{ kg}
\]

Measurement:
\[
v = 20 \text{ cm} / 1.1 \text{ secs} = 0.18 \text{ m/s}.
\]

Solve for \(c_1\)
\[
c_1 \, v = mg \quad \Rightarrow \quad c_1 = \frac{mg}{v}
\]
\[
c_1 = \frac{0.0033 \times 9.8}{0.18} = 0.18 \text{ kg/s}.
\]

Solve for \(\eta\)
\[
c_1 = 6\pi\eta R \quad \Rightarrow \quad \eta = \frac{c_1}{6\pi R} = \frac{0.18}{(6\pi \times 0.0047)} = 2.0 \text{ kg/m\cdots}.
\]

Thus, \(\eta \sim 2 \text{ kg / m\cdots}\) for glycerine.

Fluid viscosities encompass a huge range, as shown in the table

<table>
<thead>
<tr>
<th>Fluid</th>
<th>(\eta) (kg/m\cdotsec at 20 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.8\times10^{-5}</td>
</tr>
<tr>
<td>Water</td>
<td>1.0\times10^{-3}</td>
</tr>
<tr>
<td>Mercury</td>
<td>1.56\times10^{-3}</td>
</tr>
<tr>
<td>Olive oil</td>
<td>0.084</td>
</tr>
<tr>
<td>Glycerine</td>
<td>1.34</td>
</tr>
<tr>
<td>Glucose</td>
<td>(10^{13})</td>
</tr>
</tbody>
</table>

For cells, the effective viscosity depends on the size of the object – larger objects experience more obstacles and are subject to a higher average viscosity. Typical values would be \(10^{-3}\) to \(10^{-2}\) kg/m\cdots, which is 1 to 10 times water. The apparent viscosity of the cell as a whole is in the range \(10^{+3}\) kg/m\cdots.