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Lecture 19 - Degenerate stars

What's Important:
pressure of a degenerate Fermi gas
equilibrium of degenerate stars

neutron stars
Text: Gasirowicz, Chap. 9; Carroll and Ostlie, Chap. 15

Pressure of a degenerate Fermi gas

From the previous lecture, the total energy of a degenerate Fermi gas of spin 1/2
particles is
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Eror = 10meé p 2 (2)
The pressure of the gas can be obtained from this by differentiation
Pieg = “0Eor/ 9V atfixed N, (2)
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The density p can replace N/V in the last expression.

Equilibrium of degenerate stars

In normal stars, the nuclear fires generate energy which saves the star from
gravitational collapse. But even in the absence of an energy source, the pressure from
degenerate electrons (or neutrons, for dense stars) may balance the gravitational
pressure and maintain mechanical equilibrium. To find this condition, we first must
determine the pressure from gravity. First, recall that the total gravitational potential
energy is given by

Vga = -(3/5) GM?R. 4)

Students may have seen this derived in earlier courses; the calculation involves the
following steps:

1. the mass of a thin shell of material at radius r is 4pr? p dr

2. the gravitational potential of the shell arising from its attraction to the mass within r is
-G (4pr? p dr) (4pr3p 13) /r=3G (4p/3)°p > rdr

3. the integral of this potential over all concentric shells of the star is
-3G (4p/3)°p? Q7 r*dr = -3G (4pR>3p /3)* / 5R = -(3/5) GM?/R.

© 2003 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.



PHYS 390 Lecture 19 - Degenerate stars 19-2

Knowing the potential, one can find the pressure by differentiation
Py = -0V, [0V (sorry for the notation)

grav grav

with the substitution R = (3V / 4p)*3. Thus,
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The equilibrium point is determined by equating Egs. (3) and (5). Let's find it for a
normal star.

In Eq. (3), the mass is that of an electron m,, and the number of electrons is N,,./2,
one electron for every proton. This is the left-hand side of Eq. (6).

In Eq. (5), the mass of the star is the number of nucleons N, times the nucleon
mass m,. This is the right hand side of Eq. (6).
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Multiplying the LHS by (3 / 4p)*? to obtain the radius of the star, we have
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(Gas 9-34 incorrect: 128 -> 512)
(7)

As an example, a one solar mass star has 10°" nucleons, from which the limiting radius
can be calculated to be

Rin = 7620 km disagrees with Gas
In other words, the pressure arising from the electron degeneracy is sufficient to
support a one solar mass star with a radius of 7600 km.

Conversion to neutrons

What happens when a star is sufficiently massive that its gravitational attraction
overwhelms the electron pressure? Let's assume that the star is largely electrons,
protons and neutrons. The Fermi momentum of all particle species with the same
number density will be identical, given that

p-=h (3N /8pV)*° (8)
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where N /V is the particle number density. However, the Fermi energy will vary
according to particle mass, with lighter particles having higher energy:
E-=ps/2m 9)

In the case of protons and electrons, the Fermi energy of the electrons will be 2000

times higher than that of the protons. Thus, the energy levels will look like (we can't do
justice to a factor of 2000!)

P

energy

H

When the difference between the Fermi energies exceeds the difference between the

proton and neutron mass energies Dmc?, an electron near E.° can be captured by a
proton near E” to create a neutron. That is

e

i =
The amount of energy required for electron capture (with the release of a massless
neutrino) is

Dmc?=m.c?-mc?-m.c?

but

m,-m,-m,= (1.6750 - 1.6726 - 0.00091) ° 10 =1.5" 10 kg
SO

Dmc2=15" 10%«(3.0" 10%2=1.34" 10 J.

As E.° ~ 2000E.", let's just equate
E.S=Dmc?=1.34" 10" J.

The density corresponding to this threshold for capture can then be found from
inverting Eqg. (9) which is a non-relativistic expression, although the
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electrons with E. must be relativistic given the magnitude of Amc*:
213
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This number density (of protons or electrons) is much higher than the density of our
Sun, which comes in at around 10* m=. Thus, the conversion point of a one-solar-

mass neutron star would have a radius about 1/ (3~ 10°* = 0.007 that of the Sun, or
Ryrecnoq ~ 0.007 « 77 10° = 5000 km.

Neutron stars

Once the star has converted to neutrons, it continues to collapse. At some point, the
neutron degeneracy may balance the gravitational attraction, just as we calculated
above for the electron gas. Changing the factors of two, and the electron mass, the
limiting radius is
_a3 C')l/SV U3 _ n
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From Eq. (11), a fully collapsed neutron star with a mass of TWO solar masses has:
a nucleon number density in the region of 10%° m*®
a radius of 10.4 km.

This number density is still much less than the number density of nuclear matter at 1.4
x 10* m,
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