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Lecture 13 - Thermal distributions 
 
What's Important: 
• phase space of non-interacting particles 
• Maxwell-Boltzmann distribution 
Text: Reif 
 
Phase space of non-interacting particles 
 
As particles interact with one another, even if only through hard core collisions, they 
exchange energy with each other and their environment.  At any given time, there will 
be a distribution of energies, with few particles having either a very low or very high 
energy with respect to the energy scale kBT set by the temperature.  In this lecture, we 
determine this distribution for a fixed number of particles N occupying an overall volume 
V, in contact with a heat reservoir at a temperature T (called the canonical ensemble).  
We ignore the spin of the particles (i.e. whether they are fermions or bosons) and take 
their speeds to be non-relativistic. 
 
Now, the probability that a particle can be found within a specific range of position d 3r 
and momentum d 3p centered on specific values r and p depends on 
(i) the size of the range d 3r d 3p 
(ii) the energy (both kinetic and potential) at this value of r and p. 
 
As established in statistical physics (see notes for PHYS 445), the likelihood that a 
specific state with a given energy E(r,p) will be occupied is proportional to the 
Boltzmann factor exp(-E /kBT).  In one dimension, for potentials that do NOT depend on 
position, this means 
 
 
 
 
 
 
 
 
 
 
 
 
Let's apply this idea to the translational motion of an ensemble of point-like particles of 
equal mass m in the absence of a potential energy bias V(r).  Rotational or vibrational 
motion is ignored.  Including the Boltzmann factor, the distribution would look like 
 [probability of r,p] d 3r d 3p  ∝  exp(-ßE) d 3r d 3p,   (13.1) 
 
where ß = 1/kBT. 
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Because p = mv for non-relativistic particles, the distribution in velocity is proportional to 
the distribution in momentum, so that 
 [probability of r,v] d 3r d 3v  ∝  exp(-ßE) d 3r d 3v,    (13.2) 
 
To go from a probability density to a number density, one just multiplies by the total 
number of particles in the ensemble.  Let's start our formal development by introducing 
the number density f(r,v) as 
 
 f(r,v) d 3r d 3v = [mean number of particles in the range r to r+dr and v to v+dv], 
 
where f(r,v) is a number density in both position and velocity space - it has units of 
[length]-3 • [velocity]-3.  From Eq. (13.2), f(r,v) must be proportional to exp(-ßmv 2/2), so 
we expect 
 
 f(r,v) d 3r d 3v = C exp(-ßmv 2/2) d 3r d 3v.     (13.3) 
 
The normalizing constant C can be obtained by integrating out d 3r d 3v  
 N = ∫∫..∫ f(r,v) d 3r d 3v . 
 
Replacing f(r,v) by Eq. (13.3), the normalization condition reads 
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(proof uses the square of the integral and changes variables to 2D polar coordinates) so 
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where the particle number density n is 
 n = N/V. 
 
Substituting back into Eq. (13.3) we finally obtain 
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exp(&ßmv 2 /2)d3r d3v    (13.5) 

Note that ßm has units of [velocity]-2 as required.  There is no spatial dependence in the 
exponential on the right-hand side, so it is appropriate to divide out d 3r from the 
equation, leaving 
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which is the Maxwell-Boltzmann distribution of velocities: 
 f(v) d 3v = [mean number of particles per unit volume between v and v+dv] 
 
where f(v) still has units of [length]-3 • [velocity]-3. 
 
For a given component, the Gaussian function implies 
 
 
 
 
 
 
This tells us that the most likely value of v = (vx, vy, vz) is (0,0,0).  However, just because 
a given component is peaked at vi = 0 does not mean that the distribution in speeds |v| 
is peaked at v = 0.  In a picture 
 
 
 
 
 
 
To obtain the speed distribution, the volume element d 3v in velocity space must be 
transformed to polar coordinates: 
 dvx dvy dvz = sinθ dθ dφ v2dv. 
 
As exp(-ßmv2/2) has no angular dependence, we can obtain the distribution in speeds 
F(v) by integrating over the angular components of the velocity: 
 F(v) dv = ∫∫ f(v) sinθ dθ dφ v2dv 
   = f(v) v2 dv ∫∫sinθ dθ dφ 
 
Now, the angular variables just yield 4π, as expected for the area of a sphere: 
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Thus 
 F(v) dv = 4πf(v) v2 dv. 
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The presence of the v2 term indicates that the distribution in v is NOT centered at the 
origin, but rather looks like: 
 
 
 
 
 
 
 
 
 
Mean speeds 
 
Several quantities can be used to characterize this distribution, such as the mean,  
mean square, or most likely speed.  We just work through the mean kinetic energy as 
an example of the mean square speed: 
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Substituting for F(v) 
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The integral is given by 
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so the mean kinetic energy is 
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This last result is an example of the equipartition theorem, which states that each mode 
of motion has an average energy of kBT /2. 
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