
CHAPTER 10 - NEURAL NETWORKS

It has been known for more than a century that the nervous system is made of
individual nerve cells or neurons.  There are an immense number of neurons - on the
order of 1011 - in the human nervous system.  Neurons do not exist in isolation from
one another, but rather are linked to form a network in which each neuron has multiple
connections to other neurons.  While all neurons are structurally similar, an individual
neuron has one of three principal tasks within this network:
•to collect information from sensory cells
•to relay information from one neuron to another
•to deliver information (e.g., stimulate a muscle cell).
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Fig. 10.1  Schematic drawing of a neuron.  The soma is typically 10 to 80 µm in
diameter, while the axon and dendrites have much smaller diameters of a few µm (the
largest axon being about 15 µm in diameter).  The length of an axon can range from a
few mm in the brain, up to a meter for large motor neurons.  Information travels from
the dendrites through the soma, to the axon.
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In Sec. 10.1, we provide a short overview of the physical characteristics of a
single neuron.  Although neurons are the elementary building blocks of the nervous
system, they work collectively in networks, which are discussed in Sec. 10.2.  Finally, a
computer representation of a neural network is presented in Sec. 10.3.

 10.1  A single neuron

As illustrated in Fig. 10.1, neurons are string-like in appearance, and there is a
preferred direction in which they transmit information electrically.  At one end of the cell
is a region called the soma which contains the cell's nucleus and from which radiates
a branched structure containing dendrites.  The dendrites receive information from
other neurons or sensory cells, a function enhanced by the branched geometry of the
dendrites that allows them to have up to 105 inputs from other cells.  The information is
directed towards the soma, and from there proceeds away from the nuclear region
along a single axon.  The far end of the axon is also branched, and allows a signal to
be passed on to many other cells.
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Fig. 10.2  An electrical pulse reaches the end of an axon from one neuron, where it
causes the release of neurotransmitters.  These chemicals traverse the synaptic gap to
a dendrite of a second neuron, providing a stimulus for the neuron to generate a pulse
of its own.
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Within a single nerve call, information travels in the form of an electrical pulse
along a continuous plasma membrane that forms the cell boundary.  The speed of the
pulse ranges from 0.5 to 2 m/s within the brain, but reaches 100 m/s along the motor
neurons connecting the brain to muscle cells, as it must if the muscles are to have
reasonable response times.  The branched structure at the far end of the axon
terminates in regions called synapses, where the axon is in close proximity with other
cells, but is separated by a distance of 0.1 to 0.2 µm at the synaptic cleft.  When the
electrical pulse reaches the synapse, it causes the release of chemical
neurotransmitters that travel across the synaptic cleft to a neighboring cell.  The
geometry of a synapse is illustrated in Fig. 10.2

Although the neurotransmitters from one neuron provide a stimulus for the
dendrite of a second neuron, the stimulus may not be strong enough to trigger an
electrical pulse to the axon of the second neuron.  The second neuron contains many
dendrites, whose collective action determines whether the second neuron emerges
from its rest state of no electrical activity and becomes electrically active.  The details of
how, and under what conditions, a neuron creates a pulse are fairly complex and take
us away from our principal aim of finding simple ways to describe the flow of
information in a network.  The reader interested in the biochemistry of neurons is
directed to the references at the end of Sec. 10.5 for further reading.

10.2  A network of neurons

The neuron shows a preferred direction for the flow of information.  We will
represent a neuron diagramatically in Fig. 10.3, where the soma and associated
dendrites are indicated by a circle, and a synapse at the end of an axon is represented
by a triangle.  The information flow is given by the red arrow.  Although Fig. 10.3 shows
only one synapse, in the following diagrams we will use multiple branches to
represent the many synapses of a more conventional neuron.

dendrites                      axon                   synapse

Fig. 10.3  Schematic representation of a neuron.  The dendrites and soma are
indicated by a circle, while a synapse at the end of the axon is shown as a triangle.
The red arrow displays the direction of information flow.
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Fig. 10.4  Circuit diagram of a network with multiple connections.  Dendrites are
represented by circles, axons by straight lines, and synapses by triangles.  Each
neuron is color-coded.  The information flow is from left to right.

The connectivity of a network of neurons is much more complex.  In Fig. 10.4,
we show a simple "circuit diagram" that might be present with several neurons, each of
which has a number of synapses.  As stressed in Sec. 10.1, a real neuron may have
several orders of magnitude more synapses than are present in the figure.  The figure
illustrates the intricacy of the connectivity of the network: potentially, many neurons can
affect many other neurons.  While it might be tempting to suppose that one neuron (say
the black one in the top center of the figure) may "fire" more frequently, since it has
many more synapses than the other neurons, this is not necessarily the case.  Some
neurons provide an inhibitory signal at a synapse, that may affect the excitatory activity
of the other neurons.  Further, some synapses may have more influence than others: a
signal travelling along a dendrite may decay with distance, so that signals from remote
dendrites may have little effect on the activity of the neuron.
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The summed signal from the synapses is obviously a complex function of the
synapses, their geometry and chemistry.  But even if the synapses provide a clear
stimulus to the neuron through its dendrites, a threshold signal may be required before
the neuron will fire.  That is, there may be a threshold that the integrated signal from
the synapses must overcome before the neuron becomes active.  This is a
mathematically rich problem indeed, and we turn now to a simple representation of
neural networks that can be programmed on a computer.

10.3  Computer representation of networks

Let us introduce some symbols to both quantify, and perhaps exaggerate, our
knowledge of the network.  At time t1, the neurons on the left side of Fig. 10.4 may be

active or inactive.  To represent their activity, we assign a quantity i to each neuron i,

where i need have only two values.  While the numbers 0 and 1 are appropriate

values for i, in fact a more convenient choice that allows simpler functional forms for
network algorithm is

i = ± 1. (10.1)

After a short time, the signals have travelled along the axons and arrived at another set
of neurons, whose state at time t2 we denote by j.  The synapses may provide an

excitatory signal to some neurons, but not to others, depending on the values of i and
their coupling strength to each neuron j.  We could write the influence (but not the
outcome, we'll get to that in a moment!) of the set of neurons i on the set j by as the
linear combination

hj = Σi wij i, (10.2)

where hj is the called the synaptic potential of neuron j, and wij are the coupling
strengths or connection weights (frequently shortened to just weights) between
neurons i and j.  Note that both hj and i are evaluated at time t1.

Whether neuron j will actually become active at t2 depends upon the magnitude
of hj at time t1.  One model for the criterion of whether neuron j fires, given that it has

been raised to a synaptic potential hj, is to compare hj against a fixed threshold j: if hj

exceeds j then neuron j will fire.  The dependence of the values of j at time step t2 on
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the synaptic potential hj at time step t1 can then be summarized by

j(t2) = 2 • (hj (t1) - j) - 1, (10.3)

where (x) is the step-function potential

(x) = 0  if x < 0 and (x) = 1  if x > 0. (10.4)

The form of Eq. (10.3) is such that j = ± 1.  The -function is not the only model

function used to obtain j(t2) given hj (t1); one could use probabilistic functions as an
alternative.  The mapping of the network onto the model systems is demonstrated in
Fig. 10.5.
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Fig. 10.5  Mapping of the network in Fig. 10.4 onto the model network represented by
Eqs. (10.1) to (10.3).
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Eqs. (10.2) and (10.3) give us a mathematical means of describing and
propagating a neural network.  There are many assumptions in this simple model -
linear dependence for coupling, no backward flow of information - that may not be
valid for real networks.  Indeed, there are logical operations that this model network is
incapable of performing if there is no intermediate layer of neurons between the input
and output layers.  Nevertheless, it provides an appealing starting point for attacking
the problem of pattern association, which is the project of Sec. 10.6.

10.4  The task of pattern association

Pattern association is an important and growing area of computing.
Applications include automated letter-sorting at the post office, optical character
reading for digital conversion of documents, landscape recognition for aviation etc.
Pattern association is also an important function of the brain: we frequently reconstruct
past events having only limited clues to guide us.  Our brain selects information from
its immense memory by associating fragmentary clues with different aspects of the
information that we are trying to recall.  In this section, we describe an algorithm for
recognizing which pattern of a specific known set is closest to an "unknown" pattern
that may have wrong or incomplete data.  In Sec. 10.6, the algorithm is used to
compare patterns with the letters X, Y and Z.

This section deals with only one application of neural networks, namely the
associative recall of information.  In Chap. 11, we look at the classification of patterns
(e.g., recognizing which alphanumeric patterns are letters and which are numbers)
and the use of networks to execute logical operations.  Our strategy in discussing
neural networks is:

A:
identify
patterns

B:
classify
patterns

C:
logically manipulate
"classified" patterns

In terms of the number of numerical steps in a given network algorithm, operation A
generally involves the most steps, and operation C the least.  However, we choose to
present the material in the order A to C because of its intuitive basis in problem-
solving.  We emphasize that the number of computational steps in a neural network
may be much less than what is required to solve a problem using if statements.

Pattern recognition involves matching an "unknown" pattern with one of several
known patterns.  In some sense, the process is like a "best fit" for a parameter: one
tries to find which known pattern has the minimum mismatch with the unknown pattern.
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A B C U

Fig. 10.6  Patterns A - C are "known" patterns: pixelized versions of straight lines, while
U is a pattern purportedly based on A - C, but whose identity has been slightly altered.
Our task is to find from which pattern U was generated.

To put the question on a more quantitative footing, consider the three known patterns
A, B and C in Fig. 10.6.  The patterns are pixelized lines, one vertical line and two
diagonal lines.  The unknown pattern is U, which obviously is not an exact match with
any of the patterns A - C.  Suppose we are told that U originally looked like one of A -
C, but the version in our hands went through a xerox machine too many times and has
become distorted.  How do we determine which pattern is closest to U?

First, let us change the form of the patterns from a 2-index array to a vector.
While this procedure is not necessary mathematically, it makes the notation somewhat
less confusing.  The result is shown in Fig. 10.7.  The convention that we adopt for
generating the vector is to read off the pattern from left to right, row-by-row, starting
with the top row.  This convention is obviously not unique, and other conventions could

A

B

C

U

Fig. 10.7  Patterns A, B, C and U displayed as vectors.  The convention for generating
the vector in this figure is to read off the pattern from left to right, row-by-row, starting
with the top row.
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just as easily have been employed.  Next we assign a +1 or -1 to each pixel according
to whether the pixel is black or white.  Again, one could just as easily assign 1 or 0 and
then do a translation, but the +1 / -1 notation lends itself to compact algorithms.  In
other words, each pattern is a 9-component vector whose elements have the value ±1.
In general, one must be very cautious in using representations that have zeroes for
elements.  As described in Chap. 11, zeroes may make the functional form of the
learning rules cumbersome, or may wipe them out entirely.

We denote the 9-component vector of the known pattern A by iA (i = 1 ... 9), and
similarly with the other known patterns.  For the sake of notational clarity, a slightly
different symbol will be used for the unknown pattern, namely Li.  The statistic that we
use to measure the similarity of the patterns is nothing more than a normalized chi-
square, but now is called the Hamming distance H.  Just to make sure that there is no
ambiguity in which Hamming distance applies to which pattern, we add a subscript,
HA.  The Hamming distance from pattern A to the unknown pattern is then

HA = (1/4) Σi ( iA - Li)2, (10.5)

where the normalization factor of 1/4 is added so that each mismatch adds 1 to the
Hamming distance.  Thus, we have

HA = 5 HB = 1 HC = 5. (10.6)

In Chap. 8, we introduced a best-fit procedure that minimizes the chi-square statistic;
here, the best fit minimizes the Hamming distance.

When we ourselves look at the patterns, and ask which one is U closest to, we
try to find ways in which the unknown pattern can be made to look like one of the
known patterns.  We tend to think that the fewer changes needed to make U look like
one of the other patterns, the more closely U resembles that pattern.  For example, if
we change the central square of U from white to black, then we have pattern B.  In
comparison, to change U to either of patterns A or C requires 5 changes to the pixels.
We conclude that U is closest to pattern B.

Is there a computational equivalent to this process of changing a trial pattern to
make it evolve dynamically towards one of the known patterns?  In Chap. 8, we saw
how to evolve a trial set of variables towards a solution set that minimizes chi-square.
Here, neural networks provide the basis for an algorithm that evolves a pattern
towards a solution.  This approach is different from what might be called the "logical"
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determination of a pattern:
•"logical": step-by-step identification; lots of if statements and comparisons
•neural network: one or two step application of the network to the pattern; implicit
parallel processing.

10.5  Hebb's rule

In Sec. 10.3, we described a simple model for the temporal evolution of a set of
neurons with activation i from time t1 to t2:

j(t2) = 2 • (hj (t1) - j) - 1, (10.7)

where the thresholds are denoted by j, and the synaptic potentials hj are generated
by the weights wij:

hj = Σi wij i. (10.8)

While this is a useful propagation formalism, it does not of itself give expressions for wij

and j.  To find these quantities, we must specify how we expect the network to
behave.  For example, the network must leave exact matches untouched.  That is, if the
unknown pattern is identical to a known pattern, say Li = iB, then the network must

propagate Li as iB without change.

An algorithm that correctly propagates these patterns is called Hebb's rule (after
Donald Hebb, a psychologist at McGill, who proposed a set of learning rules in 1949).
A generalized version of Hebb's rule is used in Chap. 11 for pattern classification;
here, we present a more restricted version appropriate to pattern association.  First of
all, the thresholds vanish:

j = 0 for all j. (10.9)

Since there are no thresholds at the synapses, then Eq. (10.7) becomes

j(t2) = sgn(hj (t1) ), (10.10)

which obviously yields ±1 for the values of j.  In addition, the form for the connection
weights is taken to be
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wij  = N-1 Σp ip jp, (10.11)

where N is the number of elements in the pattern vector (9 in the example) and the
summation is over all of the known patterns ip.

To show how this algorithm works, consider the case where there is only one
known pattern, i.  Then Eq. (10.11) is simply

wij  = N-1 i j. (10.12)

It is easy to show that this form leaves the known pattern unchanged during
propagation:

hj = Σi wij i

 = N-1  Σi i j i

 = N-1N j = j, (10.13)

where the last line follows from ( i)2 = 1.  Substituting Eq. (10.13) into Eq. (10.10)
yields

j(t2) = sgn(hj (t1) ) = sgn( j(t1)) = j(t1). (10.14)

Thus, a known solution is propagated without change.

To find the effect of propagating the unknown pattern L i, we continue to work
with the situation in which there is only one unknown pattern.  The synaptic potentials
are

hj = Σi wij Li = N-1  Σi i jLi

 = N-1 j [ Σi, like iLi  +  Σi, unlike iLi ]. (10.15)

The sum over i has been broken into 2 parts, one in which the elements i and Li are
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the same ("like" iLi = 1) and one in which they are different ("unlike" iLi = -1).
Suppose that n elements are different.  Then

hj = N-1 j [ Σi, like (1)  +  Σi, unlike (-1) ] = N-1 j [ (N - n) - n]

or

hj = (1 - 2n/N ) j. (10.16)

As long as n < N/2 (i.e., as long as half of the elements agree), then

j(t2) = sgn(hj (t1) ) = sgn( j(t1)) = j(t1). (10.17)

Thus, Hebb's rule maps the unknown pattern onto the (one) correct pattern in a single
step, if there is less than 50% initial disagreement.

One short comment before we go on to apply Hebb's rule to a specific project.
The summations for the weights are unrestricted, and i = j is allowed in Eq. (10.11).  If
wii ≠ 0, then the network contains self-coupling, and neuron i may fire at time t2 in part
because it fired at t1.  If one wishes to avoid this attribute, then one can force wii = 0,

and change the normalization of Eq. (10.11) from N-1 to (N - 1)-1.
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10.5 Project 10 - Three pattern choice

As an introductory project in neural networks, we use Hebb's rule to distinguish
among three patterns: the capital letters X, Y and Z.  The actual computational part of
the project is trivial, although some effort should be spent on I/O to make the code
user-friendly.  The interested student can easily become absorbed in designing
graphical interfaces for this project, although we will content ourselves with typing 0's
and 1's to enter the pattern to be identified.

Simulation parameters

The patterns of the code are pixelized versions of the capital letters X, Y and Z.
To provide a sufficient number of neurons for the network, each letter is represented by
a 5x5 array of bits.

Admittedly, the letters are a little grainy, but they will do for a first attempt.  Since we
are using 25 neurons to describe three patterns, Hebb's rule should be both simple to
implement and rapid to execute.

To avoid becoming lost in indices, it may be easiest to describe each pattern by
a vector with 25 elements.  For example, writing the letter X as a string of 0's and 1's:

1 0 0 0 1   0 1 0 1 0   0 0 1 0 0   0 1 0 1 0   1 0 0 0 1

Of course, one does not need to type out this vector as data.  In fact, for larger patterns,
it may be more efficient to use a few lines of code instead.  For example, the letter X in
0 / 1 notation is:
// empty the array
for(i=0; i<5; i++) {for(j=0; j<5; j++) a[i][j]=0;}

// add the diagonals
for(i=0; i<5; i++) {a[i][i] =  a[i][4-i] = 1;}
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It is then straightforward to convert the array to a vector.  Finally, shift the values from
0 / 1 notation to -1 / 1 notation by

v[i] = 2*v[i] - 1;

In considering your I/O routines, it is probably easiest for the user of the code to enter 5
lines of numbers, rather than a single vector.  Your code could read the entry as a
2-index array (and then convert it to a vector) or as a vector (by placing a scanf
statement in a loop).  Also, it is probably easiest for the user to enter the trial pattern in
0 / 1 convention than in the -1 / 1 convention.

Code

This is a very simple code to write, since the expression for the weights is
known a priori.  Make sure that i and Li are in the -1 / 1 convention when performing
steps 2 and 4, since the learning rule will not work in the 0 / 1 convention.

1.  Set up the known values for the neurons ip (p different vectors, each with N
components) for the three unknown patterns (p = 3).

2.  Use ip to determine the weights

wij = N-1 Σp ip jp .

3.  Read in the unknown pattern L i (N-component vector after translation) from the
screen.

4.  Evaluate the synaptic potentials hi using the weights wij:

hi = Σj wijLj.

5.  Determine the updated value of Li'  from

Li'  = sgn(hi).

Analysis

First, enter a few trial configurations through the keyboard to gain some intuition
as to how your code identifies patterns with errors.  For example, a distorted Z might be
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(i) few errors
1 1 1 1 1
0 0 0 1 1
0 0 1 1 0
0 1 0 0 0
1 1 1 0 1

(ii) many errors
1 0 0 0 1
0 0 1 1 1
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0

Evaluate the Hamming distance Hp of your unknown pattern for each of the three
letters.

Next, as a numerical test of the network, try the following:
•start with a known pattern
•introduce E errors, beginning with E = 1, at random locations
•evaluate the accuracy of each E, by choosing sufficiently many configurations 

with the same E to generate a good ensemble average
•repeat the above procedure for each pattern

Report

Your report should contain the following elements:
•a statement of the pattern-association problem, and the solution (Hebb's rule) that you

have used to solve it
•an outline of your code
•report the analysis of the network's accuracy as a function of the number of errors; are

all three patterns equally robust, or can one tolerate more errors?
•a copy of your code.

Demo code

The demonstration code allows you to interactively adjust the trial pattern and
see immediately the response of the network.  The initial pattern has been set to X, but
it can be changed by clicking on the desired neuron in the central configuration.
Although the demo code does not display the Hamming distance, you can use it to
verify patterns that you use to test your own code.
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