Lecture 24 - Density of states

What's Important:

- density of states in phase space

Text. Reif

Counting quantum states

Some time back, we said that we needed to introduce a "density of states" factor in order to convert a sum over discrete states into an integral over continuum states:

$$
\Sigma_{\mathrm{r}} \exp \left(-\beta \varepsilon_{\mathrm{r}}\right) \rightarrow \int d^{3} q d^{3} p \exp (-\beta \varepsilon)
$$

Similarly, we have now evaluated the number distributions for photons, BE and FD systems, as a function of ε_{r} and N. But what is N for a box of photons?

We now address these issues with a digression into quantum mechanics. The "old" quantum theory will be used, based upon de Broglie's idea that a particle has wave characteristics by virtue of its momentum:

$$
\lambda=h / p
$$

(verified by neutron scattering)
Suppose that we place a number of particles with their associated waves in a cubic box with perfectly reflecting walls. If there are interactions among the particles, then we have to solve for a coupled set of dynamical equations for all N particles at once. If the particles are non-interacting, then we just need to find the behavior of a single as it samples phase space. The behavior of the whole system is just a sum over the single particle properties.

The motion of the particle in each direction is independent. Consider what happens with the de Broglie wavelength in a given direction under the usual quantization condition

The general relation between the wavelength λ and the box size L is

$$
\lambda=2 L / n \quad n=1,2,3, \ldots
$$

where n is called the quantum number of the state. This means that the allowed values of the particle's momentum p are:

$$
p=h / \lambda=h /[2 L / n]=n h / 2 L .
$$

Because the directions are orthogonal, the solutions add independently in three dimensions. The corresponding kinetic energy is then

$$
E=p^{2} / 2 m=\left(h^{2} / 8 m L^{2}\right)\left(n_{\mathrm{x}}^{2}+n_{\mathrm{y}}^{2}+n_{\mathrm{z}}^{2}\right) \quad n_{\mathrm{i}}=1,2,3, \ldots
$$

Now, as we have set up this problem, each n runs from 1 to ∞ : clearly, $n=0$ is not a wave $(\lambda=\infty)$ and $n<0$ makes no sense in our context.

To find the number of states within a given phase space volume, we examine the behavior of E. Let's fix the energy to have a maximal value $E_{\max }$ (like the Fermi energy, for example). Corresponding to $E_{\max }$ there is a maximal momentum $p_{\max }$ given by

$$
E_{\max }=p_{\max }^{2} / 2 m
$$

The maximal value of n is then

$$
n_{\max }=2 L p_{\max } / h
$$

The allowed states of the system correspond to any combination of n_{x}, n_{y}, or n_{z} which satisfies

$$
n_{\mathrm{x}}^{2}+n_{\mathrm{y}}^{2}+n_{\mathrm{z}}^{2} \leq n_{\max }^{2} \quad\left(\text { so } E \leq E_{\max }\right)
$$

as a consequence of which no individual n_{x}, n_{y}, or n_{z} is greater than $n_{\max }$.

Each value of $\left(n_{x}, n_{y}, n_{z}\right)$ inside the box corresponds to one unique state. Thus, the number of states N with $E \leq E_{\max }$ is just the volume of the octant with positive n_{i}, or

$$
N\left(E \leq E_{\max }\right)=\frac{1}{8} \bullet \frac{4 \pi}{3} n_{\max }^{3}
$$

where the factor of $1 / 8$ arises from the volume of the octant. We can work backwards from n 's to physical quantities as follows

$$
\begin{aligned}
& N=\frac{1}{8} \cdot \frac{4 \pi}{3} n_{\max }^{3}=\frac{1}{8} \cdot \frac{4 \pi}{3}\left(\frac{2 L p_{\max }}{h}\right)^{3} \\
& =\left(\frac{2^{3} L^{3}}{8}\right)\left(\frac{4 \pi}{3} p_{\max }^{3}\right) \frac{1}{h^{3}}
\end{aligned}
$$

The first piece on the right-hand side is the volume of physical space, and the second is the volume of momentum space. Thus, the density of states must be

$$
\text { density }=\frac{N}{L^{3}\left(4 \pi p_{\max }^{3} / 3\right)}=\frac{1}{h^{3}}
$$

Knowing the density of states in phase space, we can replace the sum over discrete states by an integral over continuum states

$$
\sum_{q} \sum_{p} \rightarrow \frac{1}{h^{3}} \int d^{3} q d^{3} p
$$

Now, if the particles are non-interacting, then $\int d^{3} q=V$, the volume, and we can write

$$
d^{3} n \rightarrow \frac{V}{h^{3}} d^{3} p
$$

Note: Reif performs this calculation differently by imposing periodic boundary conditions on the wavefunctions for plane waves. The final result is the same, although the intermediate steps are different.

