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Lecture 24 - Density of states

What's Important:

• density of states in phase space
Text: Reif

Counting quantum states

Some time back, we said that we needed to introduce a "density of states" factor in
order to convert a sum over discrete states into an integral over continuum states:

Σ r exp(- r) → ∫ d 3q d 3p exp(- ).

Similarly, we have now evaluated the number distributions for photons, BE and FD
systems, as a function of r and N.  But what is N for a box of photons?

We now address these issues with a digression into quantum mechanics.  The "old"
quantum theory will be used, based upon de Broglie's idea that a particle has wave
characteristics by virtue of its momentum:

 = h / p (verified by neutron scattering)

Suppose that we place a number of particles with their associated waves in a cubic
box with perfectly reflecting walls.  If there are interactions among the particles, then
we have to solve for a coupled set of dynamical equations for all N particles at once.  If
the particles are non-interacting, then we just need to find the behavior of a single as it
samples phase space.  The behavior of the whole system is just a sum over the single
particle properties.

The motion of the particle in each direction is independent.  Consider what happens
with the de Broglie wavelength in a given direction under the usual quantization
condition

The general relation between the wavelength  and the box size L is
 = 2L /n n = 1, 2, 3, ...

where n is called the quantum number of the state.  This means that the allowed
values of the particle's momentum p are:

p = h /  = h / [2L /n] = nh / 2L.

L = box length

L =  / 2 L = 
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Because the directions are orthogonal, the solutions add independently in three
dimensions.  The corresponding kinetic energy is then

E = p 2 / 2m = (h 2 / 8mL2) (nx
2 + ny

2 + nz
2) ni = 1, 2, 3, ...

Now, as we have set up this problem, each n runs from 1 to ∞: clearly, n = 0 is not a
wave (  = ∞) and n < 0 makes no sense in our context.

To find the number of states within a given phase space volume, we examine the
behavior of E.  Let's fix the energy to have a maximal value Emax (like the Fermi energy,
for example).  Corresponding to Emax there is a maximal momentum pmax given by

Emax = pmax
2 / 2m.

The maximal value of n is then
nmax = 2Lpmax / h.

The allowed states of the system correspond to any combination of nx, ny, or nz which
satisfies

nx
2 + ny

2 + nz
2 ≤ nmax

2 (so E ≤ Emax),

as a consequence of which no individual nx, ny, or nz is greater than nmax.

Each value of (nx, ny, nz) inside the box corresponds to one unique state.  Thus, the
number of states N with E ≤ Emax is just the volume of the octant with positive ni, or

N(E ≤ Emax ) =
1
8

•
4π
3

nmax
3

where the factor of 1/8 arises from the volume of the octant.  We can work backwards
from n's to physical quantities as follows

N = 1
8

• 4π
3

nmax
3 = 1

8
• 4π

3
2Lpmax

h
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The first piece on the right-hand side is the volume of physical space, and the second
is the volume of momentum space.  Thus, the density of states must be

density =
N

L3(4πpmax
3 /3)

=
1

h 3

Knowing the density of states in phase space, we can replace the sum over discrete
states by an integral over continuum states

p∑ →
1

h 3q∑ d 3q∫ d 3p

Now, if the particles are non-interacting, then ∫d 3q = V, the volume, and we can write

d 3n →
V

h 3 d 3p

Note: Reif performs this calculation differently by imposing periodic boundary
conditions on the wavefunctions for plane waves.  The final result is the same,
although the intermediate steps are different.


