PHYS 4xx Poly 2 - Sizes of polymer chains

Ideal chains and filaments

A flexible filament or polymer has an end-to-end displacement vector \(\mathbf{r}_{ee} \) that is less than the contour length \(L_c \) of the polymer.

\[\mathbf{r}(s) = \text{position at arc length } s, \text{ so that} \]
\[\langle r_{ee}^2 \rangle = \langle [\mathbf{r}(L_c) - \mathbf{r}(0)]^2 \rangle \]
\[\langle > = \text{ensemble average} \]

(1)

• cast (1) into an integral using the unit tangent vector \(\mathbf{t}(s) = \frac{\partial \mathbf{r}}{\partial s} \),

\[\mathbf{r}(s) = \mathbf{r}(0) + \int_0^s du \mathbf{t}(u), \]
then

\[\langle r_{ee}^2 \rangle = \int_0^{L_c} du \int_0^{L_c} dv \langle \mathbf{t}(s) \cdot \mathbf{t}(0) \rangle. \]

(2)

• replace the correlation function \(\langle \mathbf{t}(s) \cdot \mathbf{t}(0) \rangle \) by \(\exp(-s/\xi_p) \)

\[\langle r_{ee}^2 \rangle = \int_0^{L_c} du \int_0^{L_c} dv \exp(-|u-v|/\xi_p). \]

(3)

• the argument of the exponential must be negative: break the integral into two pieces where one integration variable is kept less than the other:

\[\langle r_{ee}^2 \rangle = 2 \int_0^{L_c} du \int_0^u dv \exp(-|u-v|/\xi_p), \]

(4)

• solve this integral using a few changes of variables

\[2 \int_0^{L_c} du \exp(-u/\xi_p) \int_0^{L_c} dv \exp(v/\xi_p) = 2 \int_0^{L_c} du \exp(-u/\xi_p) \cdot \xi_p \cdot [\exp(u/\xi_p) - 1] \]

\[= 2 \xi_p^2 \int_0^{L_c/\xi_p} dw \ [1 - \exp(-w)]. \]

(5)

• evaluating the last integral gives

\[\langle r_{ee}^2 \rangle = 2 \xi_p^2 \{ (L_c/\xi_p - 0) + [\exp(-L_c/\xi_p) - 1] \}. \]

or

\[\langle r_{ee}^2 \rangle = 2 \xi_p L_c - 2 \xi_p^2 [1 - \exp(-L_c/\xi_p)]. \]

(6)
• rod-like limit $\xi_p >> L_c$:

$$<r_{ee}^2> = 2\xi_p L_c - 2\xi_p^2 \left\{ 1 - \left[1 + (-L_c/\xi_p) + (-L_c/\xi_p)^2/2 \right] \right\}$$

$$= 2\xi_p L_c - 2\xi_p^2 L_c + 2L_c^2/2$$

or $<r_{ee}^2>^{1/2} = L_c$

• spaghetti-like limit $\xi_p << L_c$: the exponential in (7) vanishes and

$$<r_{ee}^2> = 2\xi_p L_c - 2\xi_p^2 \approx 2\xi_p L_c$$

(8)

CONCLUSION: the size of the polymer grows like $L_c^{1/2}$.

Discrete representation: polymer is a set of bond vectors b_i with the same magnitude and direction as the monomers

```
  \begin{align*}
    b_2 & \quad b_3 \\
    b_1 & \quad b_4 \\
    \text{ree} & \\
  \end{align*}
```

• construct r_{ee} from all N vectors along the chain

$$r_{ee} = \sum_{i=1,N} b_i,$$

(9)

• take the ensemble average over all chains with the same N

$$<r_{ee}^2> = \sum_i \sum_j <b_i \cdot b_j>.$$

(10)

• now assume that all b_i have the same length b. Break the sum up into 2 parts

$$<r_{ee}^2> = \sum_{i,j} <b_i \cdot b_j> + \sum_i \sum_{j \neq i} <b_i \cdot b_j>$$

(11)

the first summation has N terms, all of the form $b_i \cdot b_i = b^2$.

the second term is a sum over randomly oriented vectors, with any b_i being uncorrelated with respect to any other b_j. Thus

$$\sum_i \sum_{j \neq i} <b_i \cdot b_j> = 0$$

• add two contributions in (11) to give

$$<r_{ee}^2> = Nb^2$$

(random chain)

(12)

or, since $L_c = Nb$

$$<r_{ee}^2> = L_c b$$

(13)

• the form of Eq. (13) is the same as Eq. (8), and we can identify

$$\xi_p = b/2$$

(random chain)

(14)

• in Eqs. (8) and (13), the power law behavior
Other chain geometries

- physical systems have an excluded volume that enforces self-avoidance of the chain

- example: a self-avoiding chain in one dimension cannot reverse on itself from one step to the next, so that $r_{ee} \sim L_c^1$ (vs. $<r_{ee}^2>^{1/2} \sim L_c^{1/2}$ for all ideal chains)

- Flory developed a model for self-avoiding chains which gave the scaling behavior

$$<r_{ee}^2>^{1/2} \sim N^{1/2}$$

Diffusion

The trajectory of an individual molecule diffusing through a medium has the form of a random walk. If the diffusing molecule travels a distance ℓ before it collides with some other component of the system, then the end-to-end displacement r_{ee} of the trajectory of a specific diffusing particle obeys

$$<r_{ee}^2> = \ell^2 N,$$ \hspace{1cm} (16)

where N is the number of steps. If there is one step per unit time, then $N = t$ and

$$<r_{ee}^2> = \ell^2 t.$$ \hspace{1cm} (17)

Now, the units of Eq. (17) aren't quite correct, in that the left-hand-side has units of [length2] while the right hand side has [length2]\cdot[time]. We accommodate this by writing the displacement as

$$<r_{ee}^2> = 6Dt,$$ \hspace{1cm} diffusion in three dimensions

where D is the diffusion coefficient.

The factor of 6 in Eq. (18) is dimension-dependent: for each Cartesian axis, the mean squared displacement is equal to $2Dt$. That is, if an object diffuses in one dimension
only (for example, a molecule moves randomly along a track) then

\[\langle r_{ee}^2 \rangle = 2Dt \] \hspace{1cm} \text{diffusion in one dimension} \hspace{1cm} (19)

and if it is confined to a plane, such as a protein moving in the lipid bilayer of the cell's plasma membrane, then

\[\langle r_{ee}^2 \rangle = \langle r_{ee,x}^2 \rangle + \langle r_{ee,y}^2 \rangle = 2Dt + 2Dt = 4Dt. \] \hspace{1cm} \text{diffusion in two dimensions} \hspace{1cm} (20)

A molecule diffusing in a liquid of like objects has a diffusion coefficient \(D \) in the range \(10^{-14} \) to \(10^{-10} \) m\(^2\)/s, depending on the size of the molecule. Some examples:

<table>
<thead>
<tr>
<th>System</th>
<th>(D) (m(^2)/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xenon</td>
<td>(5760 \times 10^{-9})</td>
</tr>
<tr>
<td>Water</td>
<td>(2.1 \times 10^{-9})</td>
</tr>
<tr>
<td>Sucrose in water</td>
<td>(0.52 \times 10^{-9})</td>
</tr>
<tr>
<td>Serum albumin in water</td>
<td>(0.059 \times 10^{-9})</td>
</tr>
</tbody>
</table>

(All measurements are at 25 °C, except xenon gas at 20 °C)

The diffusion coefficient can be determined analytically for a few specific situations. One case is the random motion of a sphere of radius \(R \) subject to Stokes' Law for drag: \(F = 6\pi \eta R v \) where \(v \) is the speed of the sphere and \(\eta \) is the viscosity of the fluid.

\[D = \frac{k_B T}{6\pi \eta R}. \] \hspace{1cm} \text{Einstein relation} \hspace{1cm} (21)

A molecule like a protein can rotate around its axis at the same time as it travels. A random "walk" in angle \(\theta \) as an object rotates around its axis can be written as

\[\langle \theta^2 \rangle = 2D_t t, \] \hspace{1cm} (22)

where \(D_t \) is the rotational diffusion coefficient.

For a sphere rotating in a viscous medium, there is an expression for \(D_t \) just like the translational diffusion of Eq. (21), namely

\[D_t = \frac{k_B T}{8\pi \eta R^3}. \] \hspace{1cm} \text{rotational diffusion} \hspace{1cm} (23)

Note, the units of \(D_t \) are [time\(^{-1}\)], whereas \(D \) is [length\(^2\)/time]; hence, there is an extra factor of \(R^2 \) in the denominator of Eq. (23) compared to Eq. (21).