Motility and transport

- cells can actively change shape; e.g. cell division
- cells can locomote in search of prey or to escape from predators
- cells need a mechanism for directed transport of materials from production to consumption site. NOT diffusion via $\langle x^2 \rangle = 2Dt$

 for 10 nm proteins, $D = 10^{-10}$ m2/s in water and 10^{-14} m2/s in lipids

 if $\langle x^2 \rangle = 1 \mu$m and $D = 10^{-12}$ m2/s \quad ----> $t \sim 1$ second (OK for local transport)

 if $\langle x^2 \rangle = 1$ m and $D = 10^{-12}$ m2/s \quad ----> $t \sim 10^{12}$ secs = 30,000 years (hopeless for long transport along neurons)

- mechanisms for movement include dynamic filaments and protein molecular motors

Polymerization

- characteristics of actin and tubulin monomers

 asymmetric --> filaments are oriented chemically inequivalent at each end because of ATP, GTP hydrolysis

- growth through polymerization occurs more rapidly at one end of filament than the other (called the plus and minus ends, respectively)

 α-tubulin subunit faces towards the plus end of the filament (Oakley; 1994)

- the plus end of an actin filament resembles the feathered end of an arrow ("barbed" end), the minus end looks like the arrowhead ("pointed" end)

- actin monomer contains ATP, tubulin dimer contains two GTPs, although only GTP on β-tubulin is reactive

- both triphosphates hydrolyze after polymerization, WEAKENING the polymeric bonds and making depolymerization easier

- when tubulin heterodimers are added to a microtubule faster than the rate of GTP hydrolysis, the filament acquires a GTP-rich cap

Microtubules

- hundreds of microtubules (MTs) radiate from the centrosome of most animal cells

- by probing the cell surface, the microtubules can push the nucleation region towards the center of the cell
• MTs are involved in separating chromosomes during cell division
• because they are relatively stiff, MTs provide highways for transport in the cell

Actin

• fibroblasts move along a substrate, adhering by the sheet-like lamellipodium

• leading edge is actin-rich, with plus ends at the cell boundary
• in keratocytes, actin filaments move back through the cell body at roughly the speed of the cell (up to 0.1 µm/s), such that a given position on a filament remains roughly stationary with respect to the substrate (Theriot and Mitchison, 1991)

Linked filaments

• actin-binding proteins (ABPs) and microtubule-associated proteins (MAPs) link filaments together
• motor proteins move along the filaments
 • myosins move on actin (to plus end)
 • kinesins and dyneins move on MTs (usually plus and minus, respectively)
• e.g., at speeds up to 2-5 microns per second, a chemical cargo can be transported in 2-6 days from a production site in the brain to the end of a neuron a meter away

• actin and myosin may be organized into highly cooperative structures in our muscles

• thick filaments are bundles of more than 100 myosins

• walking towards the plus end of the actin, myosin pulls the minus ends of the filament towards one another, contracting the muscle along the horizontal direction

• example of speeds: contraction of an arm muscle 30 cm long
 say myosin takes a step of 5 nm at a rate of 50 steps per second = 250 nm/sec
 the Z-discs move towards each other at 2 x 0.25 µm/s = 0.5 µm/s
 in a 30 cm segment of muscle there are 0.3 m / 2.5 µm ~ 10^5 actin bundles
 thus, the muscle contracts at 10^5 x 0.5 µm/s = 0.05 m/s or 5 cm/s
 (right order of magnitude)

• cilia and flagella are other mechanical structures, to be discussed later