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2.2               Flexible       rods    

The various polymers and filaments in the cell display bending resistances
whose numerical values span six orders of magnitude, from highly flexible alkanes
through somewhat stiffer protein polymers such as F-actin, to moderately rigid
microtubules.  Viewed on micron length scales, these filaments may appear to be
erratic, rambunctious chains or gently curved rods, and their elastic properties may be
dominated by entropic or energetic effects.  In selecting a formalism for interpreting the
characteristics of cellular filaments, one can choose among several simple pictures of
linear polymers, each picture emphasizing different aspects of the polymer.  In this
section, we view the filament as a smoothly curving rod, while in Sec. 2.3, our picture
is that of a wiggly segmented chain.  These two pictures of linear polymers overlap, of
course, and there are links between their parametrizations.

Arc length and curvature

We first describe a rod as a continuous curve with no kinks or discontinuities,
and ignore, for the time being, its cross-sectional shape and material composition.  As
displayed in Fig. 2.8(a), each point on the curve corresponds to a position vector r,
represented by the familiar Cartesian triplet (x, y, z).  It is often convenient to write r
and other characteristics of the curve in a parametric representation as a function of
the arc length s, say r(s) or [x(s), y(s), z(s)], where s follows along the contour of the
curve, running from 0 at one end to the full contour length Lc at the other.  As an
illustration, the equation x 2 + y 2 = R 2 of a circle of radius R lying in the xy plane is
represented in the parametric approach by x(s) = R cos(s/R) and y(s) = R sin(s/R),
where the arc length s is zero at (x,y) = (R,0).

The unit tangent vector t characterizes the direction of the curve as it winds its
way through space, as shown in Fig. 2.8.  For example, in two dimensions, t has (x,y)
components (cos , sin ), where  is the angle between t and the x-axis.  For a short
section of arc ∆s, over which the curve appears straight, the pair (cos , sin ) can be
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Fig. 2.8.  (a) A point on the curve at arc length s is described by a position vector r(s)
and a unit tangent vector t(s) = ∂r/∂s.  (b) Two locations are separated by an arc length
∆s subtending an angle ∆   at a vertex formed by extensions of the unit normals n1

and n2.  Extensions of n1 and n2 intersect at a distance Rc  from the curve.
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replaced by (∆rx/∆s, ∆ry/∆s), which becomes (∂rx/∂s, ∂ry/∂s) in the infinitesimal limit, or

t(s) = ∂r/∂s, (2.4)

a result valid in any number of dimensions.  How does t change along the curve?
Consider two nearby positions 1 and 2 on the curve illustrated in Fig. 2.8(b).  If the
curve were straight, the unit tangent vectors t1 and t2 at points 1 and 2 would be
parallel; in other words, unit tangent vectors to a straight line are independent of
position.  However, such is not the case with curved lines, and the rate of change of t
with s provides a measure of the curvature at any given position.  As we recall from
introductory mechanics, the vector ∆t = t2 - t1 is perpendicular to the curve in the limit
where positions 1 and 2 are infinitesimally close.  Thus, the rate of change of t with s is
proportional to the unit normal to the curve n, and we define the proportionality
constant to be the curvature C

∂t/∂s = Cn, (2.5)

where C has units of inverse length.  We can substitute Eq. (2.4) into (2.5) to obtain

Cn = ∂2r/∂s2. (2.6)

The reciprocal of C is the local radius of curvature of the arc, which is displayed
in Fig. 2.8(b) by extrapolating the unit normals n1 and n2 to their point of intersection.  If
positions 1 and 2 are close by on the contour, then the arc is approximately a segment
of a circle with radius Rc and defines an angle ∆  = ∆s /Rc, where ∆s is the segment
length.  However, ∆  is also the angle between t1 and t2; that is, ∆  = |∆t| /t = |∆t|, the
second equality following from |t| = t = 1. Equating these two expressions for ∆  yields
|∆t| /∆s = 1/Rc, which can be compared with Eq. (2.5) to give

C = 1/Rc. (2.7)

Lastly, the unit normal vector n, which is ∆t /|∆t|, can be rewritten by using  |∆t| = ∆

n = ∂t/∂ . (2.8)

Bending energy of a thin rod

Suppose that we take a straight rod of length Lc with uniform density and cross
section, and bend it into an arc with radius Rc, as in Fig. 2.6.  The problem of finding
the energy Earc associated with this deformation is solved in many texts on continuum
mechanics, and has the form (Landau and Lifshitz, 1986)

Earc /Lc = f / 2Rc
2 = Y  / 2Rc

2, (2.9)

where f is called the flexural rigidity (units of [energy]•[length]), Y is the Young's
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modulus of the rod, and  is the moment of inertia of the cross section (see Fig. 2.9).
The Young's modulus appears in expressions of the form [stress] = Y [strain], and has
the same units as stress, since strain is dimensionless (see Appendix D for a review of
elasticity theory).  For three-dimensional materials, Y has units of energy density, and
typically ranges from 109 J/m3 for plastics to 1011 J/m3 for metals.

The moment of inertia of the cross section is defined somewhat similarly to the
moment of inertia of the mass: it is an area-weighted integral of the squared distance
from an axis

y = ∫x2 dA, (2.10)

where the xy plane defined by the integration axes is perpendicular to the length of the
rod, and dA is an element of surface area in that plane.  For example, if the rod is a
cylinder of radius R, the cross section has the shape of a solid disk with an area
element dA at position x given by dA = 2(R2 - x2)1/2dx, as shown in Fig. 2.9.  Hence,

y = 4 ∫0
R x2 (R2 - x2 )1/2 dx = πR2/4 (solid cylinder). (2.11)

Should the rod have a hollow core of radius Ri, like a microtubule, then the moment of
inertia in Eq. (2.11) would be reduced by the moment of inertia πRi

2/4 of the core:

y = π(R4 – Ri
4)/4 (hollow cylinder). (2.12)

Other rods of varying cross sectional shape are treated in the problem set.

The deformation energy per unit length of the arc in Eq. (2.9) is inversely
proportional to the square of the radius of curvature, or, equivalently, is proportional to
the square of the curvature C from Eq. (2.7).  In fact, one would expect on general
grounds that the leading order contribution to the energy per unit length must be C2,
just as the potential energy of an ideal spring is proportional to the square of the
displacement from equilibrium.  Alternatively, then, the energy per unit length could be
written as Earc/L = f (∂t/∂s)2/2 by using Eq. (2.5).  Further, there is no need for the
curvature to be constant along the length of the filament, and the general expression

Fig. 2.9.  Section through a cylindrical rod showing the xy axes used to evaluate the
moment of inertia of the cross section y in Eq. (2.10).
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for the total energy of deformation Ebend is, to lowest order,

Ebend = ( f/2) ∫0
Lc (∂t/∂s)2 ds, (2.13)

where the integral runs along the length of the filament.  This form for Ebend is called the
Kratky-Porod model; it can be trivially modified to represent a rod with an unstressed
configuration that is intrinsically curved.

Fluctuations and persistence length

At zero temperature, a filament adopts a shape that minimizes its energy, which
corresponds to a straight rod if the energy is governed by Eq. (2.13).  At non-zero
temperature, the filament exchanges energy with its environment, permitting the shape
to fluctuate, as illustrated in Fig. 2.10(a).  According to Eq. (2.13), the bending energy
of a filament rises as its shape becomes more contorted and the local curvature along
the filament grows; hence, the bending energy of the configurations increases from left
to right in Fig. 2.10(a).  Now, the probability (E) of the filament being found in a

specific configuration with energy E is proportional to the Boltzmann factor exp(- E),
where  is the inverse temperature  = 1/ kBT (see Appendix C for a review).  The
Boltzmann factor tells us that the larger is the energy required to deform the filament
into a specific shape, the lower is the probability that the filament will have that shape,
all other things being equal.  Thus, a filament will adopt configurations with small
average curvature if their flexural rigidity is high or the temperature is low; their shape
will resemble sections of circles, becoming contorted only at high temperatures.

Let us assume that our filament can sustain only gentle curves and has constant
curvature; neither is our filament so long that it closes upon itself.  The shape can then
be uniquely parametrized by the angle  between the unit tangent vectors t(0) and t(s)
at the two ends of the filament [see Fig. 2.10(b)] and has a specific energy Ebend given
by Eq. (2.9).  For an arc of a circle with radius Rc, the angle  is the same as that
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Fig. 2.10.  (a) Sample of configurations available to a filament; for a given f the
bending energy of the filament rises as its shape becomes more contorted.  (b) If the
filament is a section of a circle, the angle subtended by the arc length s is the same as
the change in the direction of the unit tangent vector t along the arc.
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subtended by the arc of length s (that is,  = s / Rc) such that Eq. (2.9) can be written as

Earc = fs / 2R 2 = f
 2 / 2s. (2.14)

For now, we use s to denote the length of filament, rather than Lc, since the result that
we are about to obtain also applies to short segments of more sinuous filaments, just
as long as the segment has constant curvature.

The angle  changes as the filament waves back and forth: at higher
temperatures, the oscillations have a larger amplitude and the filament samples larger
values of  than at lower temperatures.  To characterize the magnitude of the
oscillations, we evaluate the mean value of  2, denoted by the conventional <  2>.  If
the filament has a constant length, <  2> involves a weighted average of the three-
dimensional position sampled by the end of the filament.  That is, with one end of the
filament defining the direction of a coordinate axis (say the z-axis), the other end is
described by the polar angle  and the azimuthal angle .  Assuming that the shapes
in the ensemble are arcs of circles, the probability of each configuration is equal to

(Earc), so that

<  2> = ∫  2 (Earc)d  /  ∫ (Earc)d , (2.15)

where the integral must be performed over the solid angle d  = sin  d  d .  The
bending energy Earc is independent of , allowing the azimuthal angle to be integrated
out, leaving

<  2> = ∫  2 exp(- Earc) sin  d  /  ∫ exp(- Earc) sin  d , (2.16)

where the minimum value of  in the integrals is 0, and (Earc) has been replaced by
the Boltzmann factor.

By assumption, our filaments are sufficiently stiff that Earc increases rapidly with
; that is, we consider only small oscillations in the filament shape.  As a consequence,

the Boltzmann factor decays rapidly with , meaning that sin  is sampled only at small
, and can be replaced by the small angle approximation sin  ~ .  Hence, Eq. (2.16)

becomes

<  2> = (2s / f) ∫ x
 3 exp(-x 2) dx / ∫ x exp(-x 2) dx, (2.17)

after substituting Eq. (2.14) for Earc and changing variables to x = ( f / 2s)1/2 .  In the
small oscillation approximation, the upper limits of the integrals in Eq. (2.17) can be
extended to infinity with little error, whence both integrals are equal to 1/2 and cancel.  
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Thus, the expression for the mean square value of   is

<  2> ≅ 2s / f (small oscillations). (2.18)

The combination f has the units of length, and is defined as the persistence length p

of the filament:

p ≡ f. (2.19)

Note that the persistence length decreases with increasing temperature.

The variation in the direction of the tangent vectors provides a geometrical
interpretation of the persistence length.  Consider the scalar product of the unit tangent
vectors t(0)•t(s), which has its maximum value of unity only if the tangent vectors are
parallel at the ends of the filament.  At non-zero temperature, the filament samples a
variety of orientations such that the ensemble average <t(0)•t(s)> = <cos > has a
maximum absolute value of unity.  The quantity <t(0)•t(s)> is referred to as the
correlation function of the tangent vector: it describes the correlation between the
direction of the tangent vectors at different positions along the curve.  At low
temperatures where  is usually small, cos   can be approximated by cos  ~ 1 -  2/2,
permitting the correlation function to be written as

<t(0)•t(s)> ~ 1 - <  2>/2. (2.20)

The dispersion in   in this small oscillation limit is given by Eq. (2.18), so that

<t(0)•t(s)> ~ 1 - s/ p (s/ p << 1), (2.21)

which can be used to obtain the mean squared difference in the tangent vectors

< [t(s) - t(0)]2 > = 2 - 2<t(0)•t(s)> ~ 2s/ p (s/ p << 1). (2.22)

Thus, the persistence length measures the distance along the filament over which the
orientation of the curve becomes decorrelated.

For a rigid rod, meaning a rod whose contour length Lc is short compared to p,
Eq. (2.21) correctly predicts that <t(0)•t(Lc)> ~ 1, and also correctly predicts that the
correlations initially die off linearly as contour length grows.  However, if Lc >> p, the
filament appears floppy and <t(0)•t(Lc)> should vanish as the tangent vectors at the
extreme ends of the filament become uncorrelated, a behavior not seen in Eq. (2.21)
because it was derived in the limit of small oscillations.  Rather, the correct expression
for the tangent correlation function applicable at short and long distances is

<t(0)•t(s)> = exp(-s / p), (2.23)
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from which we see that Eq. (2.21) is the leading order approximation via exp(-x) ~ 1-x
at small x.  Intuitively, one would expect to obtain an expression like Eq. (2.23) by
applying Eq. (2.21) repeatedly to successive sections of the filament; a more detailed
derivation can be found in Doi and Edwards (1986).


