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The physical consequences and possible tests of our solution of the nonsymmetric unified field theory
of gravitation and electromagnetism are discussed. It is found in general that a universal constant k
introduced in the unification of the theory shows itself as a fourth-order effect in the propagation of
light near a charged body. Further, it is shown that magnetic monopoles are not an allowed solution

of the theory.

I. INTRODUCTION

The unification of Einstein’s theory of general
relativity and Maxwell’s theory of electromag-
netism has been an outstanding problem in physics
for some time. Previous attempts at unification
either resulted in the incorrect equations of motion
of charged particles, or led to self-contradictory
solutions. Recently,® we found that a modification
of Einstein’s nonsymmetric unified field theory
led to a solvable and consistent set of equations.

Starting from the real nonsymmetric tensor
£yuv one can obtain the affine connection and the’
contracted curvature tensor from the definitions®

oluv—Zuolav—8&uTig=0 (1.1)
and
Ryy =805 ~ 300 T ) + 00T )
_ TR+ T (1.2)
where ‘
&umy =5 &y + &)
' (1.3)

g[uu:{:%(guu "guu) .

The contravariant tensor g is obtained by the
relation

e AL (1.4)
Our modified fiéld equations are then

T8 =0, (1.5)

By, =0, (1.6)

roBfivy =0 . 1.m
The tensor Ri, is defined by

Ry =Rpyp+1yy , {1.8)

where
1
Lyy=— 2K (gncg[op]gpu"‘%g#v gupg{op] +gf*‘”])
(1.9}
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and % is a universal constant,
It can be shown that Eq. (1.5) is equivalent to

3;3[““]:0 , (1,10)
where
§ =g g (1.11)

and g is the determinant of g"¥.

If the antisymmetric part of g, vanishes, then
so does [,y and the field equations simply reduce
to those of general relativity. We also define a
tensor iyw) by

g[ﬂu]:kg[,pu} (1,12)
and make the identification
gEuu];F;w ’ (1.13)

where Fy, 18 the electromagnetic field tensor. In
the limit that 2- 0, R,, “decouples” from the
antisymmetric tensor g{,yy, and we find that Eqgs.
(1.7) and (1.10) become Maxwell’s covariant equa-
tions of electromagnetism

(1.14)
(1.15)

F“u;l}:O:
(aF o 20 F py +0uFy 5 +8uF gy =0,

Here, the subscripted semicolon denotes abso-
lute differentiation with respect to the Christoffel
symbols {,*,}. In this same limit, Eq, {1.6) be-
comes :

GpU:—STfT;JU » (1,16)

where G, is the confracted Riemann-Christoffel
tensor and Ty, is the energy-density tensor of the
electromagnetic field.” This could be regarded as
a correspondence prineiple, such that gur theory
reduces to the Einstein-Maxwell theory of gravita-
tion and electromagnetism as a special case, when
the universal constant 2— 0, The obvious guestion
which we must now answer is: What is the value
of the universal constant 2?

1i. ELECTRIC FIELD SOLUTIONS

To answer the above question, we must find out
how k appears in the metric generated by our field
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equations. Let us first look at the simplest ex-
ample, that of a spherically symrnetric electric
field, In this case, the only nonzero element of
Zpuw 18 &147, Which we identify with the electric
field E by

Srvay =KE - _ (2.1)

The solution of the tensor gy, leads to the met-
rict

. k2 2 2m 2
dsz=(1+ ﬁ‘ ) (1—7+ %—z)dtz

(1_% +.9_:.!_) ‘dyz_'rE

¥ 2y2

(d6® + sin®0 do?) |

(2.2

where m and @ are the mass and charge of the
particle in the units G=c=1. In restored units,
they have the values '

m=GM/c® ' (2.3)
@*=8rGe?/c* (2.4)

where M and ¢ are the real mass and charge of
the object. We note that when 2~ 0, the metric
(2.2) simply becomes the Reissner-Nordstrom?®
solution. Further, it displays the usual coordinate
singularity at

- 3@V (2.5)

Examination of the metrie shows that the con-
stant % enters with the electric charge, so that it
will make itself felt only in the presence of
charged objects. For example, suppose we con-
sider the bending of light about a massive charged
body, Following the usual approach to the prob-
lem,* we attempt to find the solution to the varia-
tional equation

¥ =pme + (1>

dx dx

We specialize to the case where the light ray is
restricted to the equatorial plane, so that 8 =37
and 8 =0 (where the dot refers to differentiation
with respect to ¢). Our variational equation then
leads to the conditions

=0 2
and

%[(“k;g)(l__%y&,g;)f]:o. 2.8)
Thus,

r2%p=constant=# (2.9)
and

2 .
(1+ kzﬁl )(1 7 :?:Q—) { =constant=1 .
(2.10)

Since light follows a null geodesic, that is,

B

—Tzq52:

then Eqs. (2.9} and (2.10) imply that

12-(1+ E:?i) w2 (1+ iQ—)( _2”‘ + Q—Z)=0 .
¥ ¥ 27

(2.11)

(2.12)
We define a function #(¢) by
u(g)= y@) : (2.13)
so that
F=—hu' (2.14)

where the prime denctes differentiation with re-
spect to ¢. Equation (2.12) becomes

b

—12+ (1 + BPQPu*Pu’

+ 7R + RRQPu) (1 ~ 2mu+ 3Q%u2)=0 . (2.15)
Differentiating with respect to ¢ yields
w'[282Q% U +u (1 + BPQ%u) + 1 = 3mut + @4

+ 3RS — T FPQRut 282 QW7|=0 . {2.16)

In the limit k—~ 0, this becomes the differential
equation obtained from the Reissner-Nordstrém
golution

w'[u” +u— 3mi? + Q%3] =0 . (2.17)

Comparing Egs. (2.16) and (2.17), we see that &
enters as a “correction” term smaller by 1/7°
than the mass correction term. Hence, it would
be expected that the effect of % upon light bending
would be extremely difficult to measure.

Let us pursue another example, the gravitational
frequency shift of spectral lines emitted by a
charged object. Let us denofe by a subscript s
the mass, charge, and radius of the source (as-
suming it is spherical), and similarly use a sub-
seript d for those characteristics of the detector.
Then, the proper time between wave fronts, as
measured by the source, is

drs=[(1+ @_)(1_21{;+9,£2_)] a..
7/3

yS 275
{2.18)

Si_milarly, for the detector it is
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. ] 1/
de=l:(1+ L/ 2) (1- Zmg | 91——)] “at .

7, 2%,
(2.19)

If the frequency of emission of the signal is v,
then the measured frequency shift Av is given by

Av_ v AT AT, v,

= Us BT/ ATy~ Vs
vy v, _
3 2 \ /2
(1"'@5_ 1 2mg _QLZ
VS r&' 23"5
-1
5 .
R
d Ya 27,
(2.20}

To see the effects of &, let us, for simplicity,
assume that the masses of the emitter and de-
tector, as well as the charge of the detector, are
negligible. Then, Eq. (2.20) becomes

G [0 5 )

where @ and R are now the charge and radius of
the source. Expanding the square root and retain-
ing terms up to R4, we find

(2.21}

any @ g ¢
” )Q“ aR: ™ 9RT T R2ET -

(2.22)
8
Agguming that @ <R, then this relation shows that
the frequency will be blue-shifted, with the con-
tribution from % being O(1/R?) in comparison to
the shift obtained from the simple Reissner-
Nordstrom solution.

1I. MAGNETIC FIELD SOLUTIONS

In our previous paper, we also examined the
equations of motion generated by our field equa-
tions, using the methods of Einstein, Infeld, and
Hoffmann.® We found that Eqs. (1.5)=-(1.7) re-
sulted in the equation of motion

. 4% ‘mPmT  lefer
3

MAETT Ty Ty

(3.1)

Here, the superscripts 1 and 2 are particle labels,
and #'is the distance between the particles. Now
e is conventionally taken io be the electronic -
charge, and we see that Eq. (3.1) then predicts
repulsion between like charges, However, e could
also be the field strength of a magnetic monopole,
Eq. (3.1) then being an expression of the repulsion
between magnetic sources of like sign. We must
now find cut - whether our field equations allow these
monopoles, and, if they do, what it implies about
the value of %.

We write our metric for the pure magnetic case
in the form

- 0 0 0

0 -f fsind O
Suv = . (3.2)

0 -~fsind -Bsin®d 0.

0 0 0 y

Equation (1.4) leads to the contravariant tensor

- -
T
0 -8 _f
. (F2+8) {(F®+ #)sind
g =
0 L 6 0
(f2+p%)sind. (2 + F)sin®d
- 1
0 0 el
L , 0 5

(3.3)

We find the affine connection from Eq. (1.1), This
hag been done by previous authors,® and we simply
quote their results here:

’

Iy = ;_oe ’
Tl =cac?d T, = f—Bz;ﬁA .
rt, =14 =25 ging
Ti= Zlé )

Piz :1—‘51 =34,
(3.4)
rf,=-I% =;Bsinf ,

I, =-siné cosd ,
=T} =34,
[, =~T% =—$Bescd,
i, =T3, =coté,
) :
i
I‘ii =r=411 = g )
where

- ff} “}‘,B,B'
SR

_f8 -5
B= i
Here, the primes denote differentiation with re-

spect to ». From the expression (1.2) for Ry, we
find : )

(3.5)
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r_Llrae o 4 a 4
R11=~A "E(A +Bz)+A'2-a +I‘14(ﬁ - I‘M)

_P:Q.]. * (3'6)
Ry, =csc?O R,
=[(fB - BA)/ 2a) +(fB - pA)In(ay)}/4a

+B(fA+8B)/2a+1, 3.7
1 L fa . :
R, =TI}, +T4, (ﬁ-& —I‘L+A) . {3.8)

csed Ryy=—cscf R,
=l(fA+BB)/2a] -B(fB - pA)/ 2

+(fA + BB)a’ + 20T, )/40? | (3.9)
Simitarly, we find from Eqg. (1.9) that
U SO S
I, = bYd a Fz+ ) (3.10)
1 2

Izz=cscze_lﬂs=" 5}3}7-29‘:‘_-—.&-5 B . (3.11)
1 2

'144=-2—kg?’f"2“‘€_“@' , . (3.12)

csed L, = —cscb Iy = — %f(f-gf':%g—z+1) . (3.13).

Combining Eqs: (3.6), {3.8), and (3.4) with Eq.
(1.6), we obtain the relations

t ' ! + 7 ’
AT LA B A L (i Y )_*(”)'

20~ 2y \2a 2 ) T\2y
=-I]_:|_ 3 (3-14)
RN AR A SN\
(2&) + 2a(2a 2y +A) =~y - . (3.15)
Solving Eq. (3.15) for v, we find
yray (YN vl e
57 " day +(2’)’) o Y tae (3.18)

Substituting Eq. (3.16} into (3.14) and simplifying
somewhat, we find

A’ - 1(A? 4+ B7) + BA)In(ay)] = — (Iu+ 31“) ,

(3.17)

But Egs. (3.10) and (3.12) show that the right-
hand side of the above equation vanishes. Further,
since there are no 1, 4 cross terms, then we ex-
pect oy =1, Hence we find

—A’ - LA 4+ BD)=0 . (3.18)
We now substitute a monopole field of the form
=L (3.19)
72 4 .

where [ is a measure of the magnetic charge.

Similarly to the electric field case, Eqgs. (1.12)
and (1.13) show that

f sin9=krzsin8%§ (3.20)

Equation {3.18) then becomes
RI2AE" + B8 - 3887 + SFF 1782 =0, (3.21)
We substitute a solution for 8 of the form

B= (a+' % + }%) ¥2 (3.22)
where odd powers of ¥ vanish, and obtain from
Eq. (3.21) a polynomial in powers of ¥ from #*
to 7%, The condition that this equation holds for
all » leads to eight equations for the coefficients,
four of which are

ab=0,

2K1*+3ac +6%=0,

be=0,
and

c=0.

(3.23)

The only nontrivial solution for 8 is then f=arZ
We see that this implies that the product & van-
ishes. As stated above, our field equations yield
Maxwell’'s equations in the £ -0 limit, and these
equations do not admit magnefic monopoles. For
k#0, ! must vanish, and so too the magnetic
monopoles. The set of electromagnetic equations

and (3.24}
*FHU'U =J$ k)

where the asterisk denotes the tensor dual to F*¥
andJ%, JY are the electric and magnetic current
densities, respectively, are incompatible with
our solufions.

IV. CONCLUSION

We have applied our solution for a stati¢ spheri-
cally symmetric electric field in the nonsymmetric
unified field theory to two physical problems: the
bending of light about a charged object and the
gravitational blue-shift of light emitted by a
charged object. In both cases the universal con-
stant enters as an O(1/7%) correction to the pre-
dictions of the Reissner-Nordstrim solution.
Thus, it will be of importance for large charge-
to-distance ratios.

We have also investigated the predictions of the
theory as they affect magnetic monopoles. Al-
though these monopoles are allowed by certain
theories, we find here that no value of k¥ admits
their existence,
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