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Barrier-Free Paths of Dlrected Protein Motion in the Erythrocyte
Plasma Membrane

David H. Boal and Seng K. Boey
Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 156, Canada

ABSTRACT A model is presented for the steric interaction between a plasma membrane protein and the membrane
cytoskeleton in the human erythrocyte. The cytoskeleton is treated as a network of polymer chains attached to a flat bilayer,
and the membrane protein is a hemisphere of effective radius A, with center on the bilayer edge. The simulation is used 1o
investigate the barrier-free path L for linear guided motion of a protein in the bilayer plane. It is shown that the barrier-free
paths of small proteins can be used to extract the effective in-plane diameter of cytoskeletal components. For example, the
in-plane diameter of an ankyrin attachment site is found to be approximately 12 nm in the simulation, or twice the
computational spectrin diameter. The barrier-free paths of large proteins (R, > 23 nmy} vanish when the proteins are corralled

by the cytoskeleton. For intermediate size proteins, L decreases approximately as L « S~

sum of the protein and cytoskeleton chain radii.

INTRODUCTION

The laieral diffusion of proteins in a fluid membrane is an
important protein transport mechanism, However, the lat-
eral motion of integral membrane proteins is constrained
compared with the movement of the constituent lipids of the
membrane (Axelrod, 1983; Jacobson et al, 1987). Re-
stricted protein motion is manifested in several different
types of experiment. For example, many measurements of
the lateral diffusion constant are based upon fluorescence
recovery after photobleaching (FRAP). Such measurements
yield diffusion comstants for integral membrane proteins
that may be close to two orders of magnitude smaller than
the diffusion constants of membrane lipids or rhodopsin,
depending on the protein and cell under investigation (Poo
and Cone, 1974; Saffman and Delbriick, 1975; Sheetz et al,,
1980; Jacobson et al., 1982; Webb et al,, 1982; for a review,
see Zhang et al., 1993). For example, Sheetz et al. (1980)
find that membrane proteins diffuse approximately 50 times
slower in normal mouse erythrocytes than in spherocytic
erythrocytes, which lack the major components of the nor-
mal erythrocyte membrane matrix. FRAP measurements
also show that lateral diffusion constants of proteins are
larger when the protein is reconstituted into a pure lipid
bilayer than when the same protein is in a membrane with
an associated cytoskeleton.

Evidence for restricted motion is also found in single
particle tracking (SPT) experiments. Whereas the FRAP
technique averages over the motion of many protein mole-
cules, SPT follows the motion of individually labeled pro-
teins (Gross and Webb, 1986; de Brabander et al., 1991; Lec
et al., 1991; Tsuda ¢t al., 1992; Kusumi et al., 1993; Ghosh
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where S is proporticnal to the

and Webb, 1994; Sako and Kusumi, 1994). Several differ-
ent modes of protein movement are observed in SPT, rang-
ing from diffusion to highly constrained motion within a
corral. The corrals presumably arise from steric interactions
with the membrane cytoskeleton.

Recently, the linear guided motion of individually labeled
proteins has been used to probe the effects of the cytoskel-
eton on lateral movement. In the experiments, a latex or
gold particle attached to a membrane protein is moved
across the plasma membrane in a straight line by optical
tweezers (Edidin et al., 1991; Sako and Kusumi, 1995). At
some point, the tagged protein encounters a barrier and
cannot be held by the force of the tweezers. A barrier-free
path (BFP) can be obtained from the mean path length, or
from the path length distributions, of the protein motion
guided by the optical trap. The BFPs found for two different
proteins in the plasma membrane of murine HEPA-OVA
cells are in the micron range (Edidin et al., 1991), whereas
those of tagged transferrin receptors in rat kidney fibroblas-
tic cells are hundreds of nanometers in length (Sako and
Kusumi, 1995).

There are many factors that may affect the diffusion of
proteins in the plasma membrane including the steric inter-
action with the cytoskeleton and in-plane proteins as well as
the attraction to other membrane components. Because of
viscous and hydrodynamic effects, quantitative theoretical
analysis of the FRAP and SPT results is a challenge. Thus
far, theoretical models have examined the general properties
of particle diffusion through barriers, rather than predicted a
diffusion constant for a specific cell/protein system (Saxton,
1982, 1994a,b; Pink, 1985). From a theoretician’s point of
view, BFPs are unaffected by many dynamical attributes of
the cytoskeleton, and so are easier to investigate than dif-
fusion constants.

In this paper, we use a model for the erythrocyte cytoskel-
eton to predict the BFP as a function of protein size. The
choice of the human erythrocyte for our simulations is
motivated by the availability of experimentai studies on its
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elastic and geometrical characteristics that can be used to
test the simulation. Here, we concentrate on the constraining
effects of the cytoskeleton, as opposed to the excluded
volume effects of unconstrained in-plane obstacles for two
reasons: (i) Some proteins show a much smaller diffosion
constant when measured in a cell with a membrane-associ-
ated cytoskeleton than when measured in an artificial ves-
icle without a cytoskeleton (see Sheetz et al., 1980, as well
as Zhang et al., 1993). (ii) Studies of model membranes
show that the diffusion constant is reduced by only a factor
of five as the protein concentrations in the model bilayer is
increased from 0% to 50% (Pink, 1985). However, experi-
mental measurements show that the reduction in the pres-
ence of a cytoskeleton may be close to two orders of
magnitude.

In other words, although the presence of proteins in the
bilayer undoubtedly reduces the diffusion constant, the re-
duction caused by the cyioskeleton may be just as large, if
not larger.

The purpose of this paper is twofold. First, we investigate
the interpretation of observables that can be extracted from
the BFP measurements by using a computational cytoskel-
eton with known geometry. Second, we make specific pre-
dictions for the human erythrocyte by setting the length
scale of the simulation wsing a nuvmber of independent
measurements.

The simulation of directed protein motion in the human
erythrocyte is described in the following section. We then
outline the methodology for extracting the BFP in the sim-
ulation. Two regimes of BFP are investigated in some
detail. It is demonstrated that the effective in-plane sizes of
some cytoskeletal components can be determined from the
BFPs of small proteins. This method is probably of more
general utility than the task to which it is placed here. It is
also shown that large proteins are corralled by the cytoskel-
eton. The corral size observed in the simulation is in-the
range expected from the cytoskeleton geometry. Finally, the
Appendix summarizes the elastic properties predicted by the
simulation for the human erythrocyte cytoskeleton, and
these are used as a check on the descriptive accuracy of the
model cytoskeleton.

SIMULATION

The computational model that we use for the erythrocyte
cytoskeleton is based on one that has been used to predict
the cytoskeleton elastic and geometrical properties (Boal,
1994). In the model, each spectrin tetramer is represented by
a single polymer chain with n_,, segments and the chains are
linked together at sixfold coordinate junction vertices. Thus,
the vertices that make up the chain are twofold coordinate,
except at the junction complexes where they are sixfold
coordinate. The chain midpoints are forced to lie in the
computational xy plane representing the bilayer, although
they are free to move throughout the xy plane. With the
exception of the midpoints, all chain elements are restricted
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to lie in the positive z direction that represents the cytoplas-
mic side of the bilayer, The junction vertices represent the
actin junctions of the cytoskeletal network, whereas the
binding of the chain midpoints to the xy plane mimics the
ankyrin aftachment of the cytoskeleton fo the lipid bilayer,

Experiment may ultimately show that both the tetramer
midpoints and the junction complexes are attached to pro-
teins resident in the bilayer plane. Only the tetramer mid-
points are attached to the bilayer in the current model,
However, the junction vertices in the simulation are not far
removed from the bilayer plane: the network has a thickness
of 16 nm (see below).

In our original investigation of the cytoskeleton elastic
properties (Boal, 1994), the polymer chains were modeled
by bead-and-tether interactions, which is efficient for Monte
Carlo simulation. Because we are ultimately interested in
studying dynamical quantities such as diffusion coeffi-
cients, the simulation of this paper is based on molecular
dynamics, which requires a smoother interparticle potential
than the square-well interaction of hard beads and tethers.
We use a potential developed by Bishop, Kalos, and Frisch
(BKF hezreafter; Bishop et al., 1979) for polymer studies, in
which any two vertices are subject to a short-range repulsive
interaction

Vip(r) = del{oiry? — (a/r)t + 14} 0<r< 2%

€0

=) r > 2,

where € and o are the fundamental energy and length scales
of the simulation and r is the distance between the vertices.
A nearest neighbor potential V,_, provides the interaction
that holds the network together; each vertex is connected to
either two (along the chain) or six (at chain junctions)
neighboring vertices through

Velr) = —0.5kR? In[1 — (/R.Y], @

where k and R, are parameters. We use the dimensionless
parameter set Rj/o = 1.5 and ko’fe = 30 (Grest and
Kremer, 1986). The positions of the vertices are evolved by
molecular dynamics using a simple leapfrog algorithm to
integrate the equations of motion with time step Ar = 0.005
(mo?/e)'”, where m is the vertex mass. The observables of
interest in this paper, such as the BFPs, elastic constants,
and membrane areas, depend only on the temperature and o,
Fixing values for ¢ and the temperature allows us to convert
the results of the simulation to physical units, and this is
done later in the paper. The investigation of time-dependent
quantities such as diffusion constants would require a more
detailed simulation of the spectrin tetramers, including vis-
cous effects, to determine the parameters m and e,

The simulation is performed at constant temperature and
pressure with periodic boundary conditions in the x and y
directions. In an isobaric ensemble, the lengths L, and L, of
the rectangular boundary are allowed to fluctuate. The fluc-
tuations in L, and L, are obtained from a Monte Carlo
algorithm developed by Wood (1968; see also Hansen and
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McDonald, 1986). The implementation of the technique in
this cytoskeleton model can be found elsewhere (Boal,
1994). In essence, attempts are made to change the box
lengths L, and L, by random amounts, and the changes are
accepted according to a Boltzmann weight. The simulations
reported here are performed at zero pressure.

The number of segments n,, is a parameter of the sim-
vlation, fixed by the properties of the human erythrocyte
cytoskeleton. Physically, it is equal to.the effective number
of segments in a spectrin tetramer. The combined potential
of Egs. 1 and 2 has a minimal energy at a segment length of
0.970. Hence, at low temperature the contour length along
a single chain with n,, segmenis is approximately
0.97n,.,0. However, the average end-to-end displacement is
much shorter than the contour length, as one knows from the
behavior of random walks. Thus, the average area of the
network in the xy plane, (4), is smaller than what its
“stretched” size A, ‘would be if all the chains were straight
and of length 0.97n.,0. Computationally, the equilibrium

area as a function of n, is found to be

AJA) = 0.43a25, )

The experimentally observed ratio of the stretched to equi-
Iibrium area, seven (see Steck, 1989), allows us to fix n,,,
at 32 according to Eq. 3. The physical value for o is not
determined by this area ratio, but rather by the contour
Iength of the spectrin tetramers.

In the simulation, the chains are only attached to the
bilayer plane at the chain midpoints, which results in the
network having a finite thickness. For a single configura-
tion, the thickness ¢ is defined as the average value of the
vertex heights above the computational xy plane represent-
ing the bilayer. The ensemble average value of ¢ is found
to be

(o= 0.11ng;. &)

For n,, = 32 and ¢ = 6.4 nm, the erythrocyte cytoskeleton
is predicted to have a thickness {#) of 16 nm. The scaling
behavior of both (4) and {#) as a function of n, is similar
to what was found in our previous study of the erythrocyte
cytoskeleton using square-well potentials (Boal, 1994).

The model cytoskeleton is allowed to relax for several
million Monte Carlo steps before an attempt is made to
choose a sample network configuration (called a realization)
for investigation. Once the network has relaxed, its in-plane
area fluctuates around an equilibrium value of A /(A) = 6.9
for ng, = 32. To fix o at the physical length scale, one
particular realization is chosen with A/A within 1% of the
equilibrium value. An alternate, but more memory-inten-
sive, procedure would be to average over many realizations.
However, we feel that a single realization with 64 junction
vertices is sufficiently large that it properly represents the
geometrical properties of the networtk.

To evaluate the BFP, a computational protein is intro-
duced in the model cytoskeleton prepared as described
above. Of the many possible shapes that could be used for
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the protein, we choose a sphere whose center is on the xy
plane. Because the xy plane represents the bilayer edge, then
our choice of geometry corresponds to the protein having a
spherical shape in the cytoplasm. The interaction between
the protein and the cytoskeleton elements is taken to be of
similar form to Eq. 1,

Viol#) = 4e{(S/r) — (S/r)° + 1/4} 0= <258

G)

=0 r > 21,

where § is a variable reflecting the length scale of the
protein-spectrin interaction. Although this potential does
not have a hard-core radius, it does increase rapidly for » not
much less than S. We define an effective protein radius later
in this paper by subtracting out the contribution of the
spectrin radius to S.

The computational protein is introduced into the bilayer
plane at a random point and is moved in a straight line
through the network i a randomly chosen direction. This
aspect of the simulation is similar to the guided protein
motion in the optical trap experiments (Edidin et al., 1991;
Sako and Kusumi, 1995). In the simulation, the protein
trajectory is advanced in small steps (0.001¢), and at each
step the force on the protein arising from the cytoskeleton
via Eq. 5 is evaluated. Once the force from the cytoskeleton
exceeds a predetermined threshold value F,, the protein is
deemed to have escaped from the trap and the displacement
of the protein from the start of its trajectory is stored. A total
of 160,000 trajectories is generated for each value of §
and F.

Fig. 1 shows a view of the network from the +z direction
(cytoplasmic side). The shaded lines indicate the position of
the cytoskeleton, with elements nearer the viewer indicated
by lighter shading. The stopping points of proteins with 5/
= (.89 are shown as white disks, of diameter 0.890. One
can see that a large number of the stopping points occur at
the chain midpoints, where the chains are attached to the
computational bilayer. The choice S/ = 0.89 corresponds
to the protein having the same effective radius as the effec-
tive radius of the spectrin.

BARRIER-FREE PATH

We use the following method to extract the BFP in the
simulation. For each combination of the protein radius pa-
rameter S and the trapping force F,, a total of 100,000
protein frajectories are collected. Each straight-line trajec-
tory has an end-to-end path length d. From the distribution
of these path lengths P(d), we extract a mean path A. Even
at fixed protein radius, the mean path depends upon the
trapping force. We define the BFP L as the value of A
obtained in the zero-force limit.

Because we exiract the BFP in the limit where F,, van-
ishes, we do not expect that it is necessary to include the
dynamical evolution of the cytoskeleton as each protein
trajectory is generated. Thus, the computational cytoskele-
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FIGURE 1 Computational network with 64 junction
vertices (8 rows of 8 vertices) and ng, = 32. In this
figure, S/o = 0.89 and F,o/e = 0.05. Chain elements
nearer the viewer are drawn with lighter shading. The
stopping points of the proteins are indicated by white
disks of diameter 0.89¢. A total of 10,000 endpoints are
shown.

[

ton is held fixed while the protein is moved along the
bilayer. The dependence of A on the trapping force in the
simulation is weaker than what may be observed experi-
mentally, as the simulation does not allow the protein
dragged by the optical trap to move elements of the cy-
toskeleton out of its way. Of course, the computational
protein may force its way through the static cytoskeleton if
F, is large enough. It would be computationally prohibitive
for us to generate a large sample of protein trajectories if it
were necessary to evolve the cytoskeleton at the same time
as the trajectories are constructed.

Each straight line trajectory of the computational protein
has a path length d. The distribution of path lengths for
100,000 trials at §/o = 0.89 and F_o/e = 0.05 is shown in
Fig, 2, The figure is a log-linear plot and clearly shows that
the distribution is exponential over much of its range. We fit
the distribution P(d) over the exponential range with

P(d) = exp(—d/A), (6)

where A is the mean path for the combination of § and F,
chosen. We expect the distribution to be exponential if, in
analogy with scattering theory (Segre, 1965), the protein
passes through a region of random scattering centers. Later
in this paper, A for small proteins is related to the cross
section of the objects that terminate the trajectories.
Because the repulsive potential in Eq. 5 does not have a
sharp cutoff radius (as an infinite step-function potential
does), then the mean path can increase with F,. At large F,
the protein simply is forced through the metwork. This
behavior can be seen in Fig. 3, where A is given as a
function of F, for three values of S. The mean path mono-
tonically increases with cutoff force for F o/e > 0.1 at all
values of § investigated. However, the mean path A depends
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only weakly on F, as the guided protein cannot move the
cytoskeleton out of its way in the simulation.

If the cutoff force is very small, then a guided protein is
stopped as soon as it encounters the cytoskeleton. Thus, we
expect that A should be independent of F,, for smalt F,. This
behavior is also visible in Fig. 3. In the simulaticn, we find

10 T ] 1 1
® S/6=0.89 F o/e=0.05
[
'
o1k " *, i
c *s
S .
g ®e
2 e,
B .
[ .. .
0.01 | *e,]
[ ]
0.001 1 : i 1
0 4 8 12 16 20
dic

FIGURE 2 Distribution of path lengths J for fixed values of 5§/ = 0.89
and Fo/e = 0.05. The distribution is constructed from 100,000 paths. The
form of the distribution is approximately exponential over much of the
range in d.
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FIGURE 3 Mean path length A shown as a function of the cutoff force
F,. The transition between force-dependent and force-independent behav-
ior of A occurs at approximately F,o/e = 0.1. Three data sets are shown:
S/o = 1.0, 1.5, and 2.0, The line segments are drawn to guide the eye.

that the change from force-dependent to force-independent
A occurs at approximately F,o/e = 0.1. Thus, we define the
BFP as the asymptotic value of A which is found for F o/e
— 0. This procedure for extracting L is repeated for several
values of protein interaction length parameter S. A summary
of the BFPs so determined is given as a function of § in
Fig. 4.

We expect that small proteins can move more easily
through the cytoskeleton than large proteins can, and this
behavior is observed in Fig. 4. The figure illustrates that the
decrease in BFP js approximately of power law form:

Lio = 5.0(8/o) 14 7

for the range of protein sizes investigated. Eq. 7 shows that
the BFP vanishes as the protein size parameter S approaches
the geometrical length scale of an average spectrin chain.
However, the functional form of Eq. 7 will not apply at
large § as the cytoskeleton puts a bound on the largest
protein that can fit into the specirin network. That is, the
cytoskeleton “corral” forces L to vanish at finite S, and not
exclusively in the large § limit implied by Eq. 7.

Before applying the simulation results to the erythrocyte,
we change both units and variables. First, the resulfs are
translated to nanometers using the spectrin tetramer contour
length. Because each spectrin tetramer has a contour length
of 200 nm, then the corresponding value of o must be 6.4
nm it 7., = 32. Second, the potential parameter 5, which is
the sum of both the protein size and cytoskeleton chain
thickness, is replaced by a variable with a more transparent
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FIGURE 4 Logarithmic plot of BFP L shown as a function of protein
size paramcter S. The straight line through the data is the fit Lig = 5.0
(S/oy~t4.

geometrical interpretation. The repulsive interaction be-
tween different vertices on the cytoskeleton chain vanishes
at 218, meaning that individual chain elements have a
cutoff radius of /2% for their interaction with each other.
The cutoff distance for the protein-spectrin interaction is
2V6§. We therefore subiract the spectrin radius from § and
define an effective protein radius R, of

R.ja=2%(Sio — 1/2) (8

for the interaction between the membrane protein and the
cytoskeleton.

Large proteins measure the corral size

Large proteins have a small BFP, as their motion is highly
restricted by steric interactions with the cytoskeleton; that
is, the protein cannot pass out of the corral defined by three
spectrin tetramers attached in triangular form. For suffi-
ciently large protein radius R,, each protein trajectory is
confined to lie within a single corral. Thus, whereas L
should be large for small R, it should steadily decrease with
increasing R,. The sum L + R, should approach a constant
value as R, approaches the largest value allowed by the
corral geometry. This behavior is observed in Fig. 5, where
L + R, is plotted against R,. In Fig. 5, the limiting value of
L + R, is 23 nm.

As a technical note, the figure shows that L + R, is
slightly more than 23 nm for the largest protein sizes (small-
est L) investigated. This effect arises because very large
proteins cannot fit into some of the corrals, so the config-
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FIGURE 5 L + R, shown as a function of the effective protein radius R,.
The conversion of simulation units to physical units uses ¢ = 6.4 nn. In
the Jarge R, Hmit, L + R, has a value of 23 nm, The linc segments are
drawn to guide the eye.

urations sampled become more heavily weighted by large
corrals. In other words, the BFPs of large proteins (R, >
2.5¢) are not evaluated with the full configuration space
available to small and medium sized proteins.

Is this value for the corral size approximately what we
expect from the geometry of the computational cytoskele-
ton? Consider an equilateral triangle with side length b
equal to the average separation between the sixfold junction
vertices. The maximal radius of a circle that can be in-
scribed inside this triangle is 5/(24/3). If we treat a cy-
toskeleton corral as an equilateral triangle with b = 70 nm
(the average separation between junction complexes in the
human erythrocyte), then the radius of the inscribed circle is
20 pm. This is close to the upper bound of 23 nm found for
the protein effective radius in Fig. 5. In other words, the
effective corral radius obtained in the limit of large protein
size is a reasonable reflection of the corral geometry.

Small proteins measure the cytoskeleton
attachment points

In the simulation, small proteins have large BFPs as their
trajectories encounter few obstacles associated with the
cytoskeleton. The main component of the computational
cytoskeleton that can affect such proteins is the set of
attachment points representing the ankyrin junctions. The
remainder of the chain network is away from the bilayer
plane. The chain midpoints then act as a sequence of bar-
riers that scaiter the guided protein as it moves along the
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computational xy plane representing the bilayer. The expo-
nential distribution of path lengths shown in Fig. 2 supports
the interpretation of guided motion of small proteins in
terms of two-dimensional scattering.

In classical two-dimensional scattering, the mean free
path of a point particle fraversing a target of disks (edge-on)
is equal to (pD) %, where p is the area density of scattering
centers and I} is the disk diameter (see, for example, Segre,
1965}, If we treat the BFP of small proteins as a scattering
problem, then p is the area density of ankyrin attachment
points and D is the effective diameter of ankyrin in the
bilayer plane. For non-zero R, both the protein and ankyrin
sizes are included in D. In the simulation, the BFP can be
used to extract the size of the ankyrin attachment sites by
determining the value of L as R, — 0. The limiting value of
L™ can be obtained graphically, as shown in Fig. 6. The
behaviot of L™ " is seen to be linear in R, at small radii, and
the zero radius limit of L™ ' is 8.5 X 102 nm™" by extrap-
olation.

The area density p must be known to extract the effective
ankyrin diameter from L™" via pD = L™". The area density
of the ankyrin junctions is {2+/3)/h°, where b is the average
distance between the sixfold junction vertices of the cy-
toskeleton. Taking b to be 70 nm, then p is 7.1 X 107¢
nm~2. This yields D = 12amif L1 =85 % 10" % om ",
For comparison, the cutoff radius for interaction between
chain elements is ¢/2°® = 7.2 nm. Thus, the effective
in-plane diameter of the attachment sites is approximately
twice the diameter of the chains themselves. Of course, one
should not expect these numbers to be identical as D is a

0.10 : T
0.08 |- -
~ 006} i
£
£
|
= 004} .
0.02} 4
0.0 1 1
0 5 10 15

R, (nm)

FIGURE 6 Behavior of L™ at small protein effective radius R,. The
same unit conversion is used as in Fig. 5. In the R, — 0 limit, Z™" has a
value of 8.5 X 107* nm ™", The line segments are drawn to guide the eye.
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TABLE 1 Comparison of the reduced elastic moduli of two
model representations of the cytoskeleton

Model BELP Bul BEP BY, P
BKF 192020 8132 2800n730 91700
Bead and tether 4317 2507 193m, 2% 875"

One model is the BKF potential used in this paper, and the other model is
the bead-and-fether interaction used in previous work (Boal, 1994). The
length scale / is equal to & in the BKF interaction and a (the bead diameter)
in the bead-and-tether interaction. The moduli are shown as a function of
Tge- The uncertainty in the exponents is approximately 10%.

quantity that averages over thermal fluctuations of the chain
configurations. In conclusion, we see that the BFP of small
proteins can be used to extract the effective in-plane diam-
eter of scattering centers such as ankyrin.

SUMMARY

Through computer simulation, we investigate the directed
motion of a membrane protein in the plasma membrane of
the human erythrocyte. The simulation is used to mimic the
motion of proteins dragged by optical tweezers, For each
combination of trapping force and protein radius, the dis-
tribution of path lengths for this motion is found to be
exponential, from which a2 mean path A can be extracted.
This exponential behavior is expected on general grounds
for the scattering of small probes by randomly distributed
target objects. For a fixed protein size, the mean path
increases with the force of the optical trap. However, A is
relatively constant for weak trapping force, and the BFP L
is obtained in the simulation by extrapolating A fo zero
trapping force.

For intermediate size proteins, the simulation predicts
that L decreases with increasing protein size as Lo = 5.0
(S/a) 1%, where o and § are length scales associated with
the repulsive potentials within the network chains, and
between the protein and the chains, respectively. Of more
importance biologically is the relationship between L and
R,, the protein effective radius. At large R_, the BFP van-
ishes, corresponding to the protein being corralled by the
cytoskeleton. The largest proteins allowed by the average
corral are found to have an effective radius of 23 nm, a
result consistent with a value of 20 nm expected from
network geometry.

Small proteins can be used to determine the effective
in-plane diameter of the ankyrin proteins that attach the
cytoskeleton to the membrane. The BFP as R, — 0 is
interpreted in terms of two-dimensional scattering as being
equal to (pD)~", where p is the area density of ankyrin
junctions and D is the average diameter of the junction.
Both the geometrical size of ankyrin and the effects of
thermal fluctuations in the chain geometry are included in
D. In the simulation, D is found to be approximately 12 nm,
or roughly twice the computational spectrin tetramer diam-
eter. Interpreted in terms of scattering theory, the BFPs of
small objects that could be guided through the plasma
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TABLE 2 Comparison of the elastic moduli predicted for the
human erythrocyte cytoskeleton by the two model
interactions in Table 1

Model EA(J/m?) p(I/m?) E(Im* ¥, (ImY
BKF 1.8X107°  7.7x107% 09x10° 6.1 x10°
Bead and tether 1.7x 1075  96x107% 12x10° 20X 10*

The parameters for the cytoskeleton are n,,, = 32 and [ = ¢ = 6.4 nm in
the BKF model and #,,, = 26 and / = a = 6.4 nm in the bead-and-tether
model. The predicted moduli have uncertainties of approximately 10%.

membrane can provide an in situ measurement of the effec-
tive in-plane sizes of some, but not all, cytoskeletal and
other elements of the membrane.

APPENDIX

The simulation used in . this paper is based on the BKF potential for
polymer chains (Bishop et al., 1979) and is different from the bead-and-
tether potential used in an earlier study of the erythrocyte cytoskeleton
(Boal, 1994). It is important to verify that the elastic properties of both
computational networks agree, as the moduli should depend mainly on
entropy and network geometry. The elastic moduli of the two models can
be extracted by using standard methods (Boal, 1994). The dependence of
the network elastic properties on the number of chain segments n, is
summarized in Table 1 for both networks. There are four elastic constants
shown: two in-plane constants {the area compression modulus K, and the
in-plane shear modulus w) and two moduli involving transverse properties
of the network (the volume compression modulus K, and the transverse
Young’s modulus ¥ ). The power law dependence of the moduli on n,.,
agrees within statistical uncertainty for both networks, except for the
transverse Young’s modulus.

According to Table 1, networks using the BKF potential are stiffer in
the transverse direction than those using the bead-and-tether potential. This
arises from the limited ability of a BKF chain to 1everse direction at a
vertex, Bead-and-tether chains can reverse direction more easily, as the
maximal tether length is significantly larger than the bead diameter.
‘Whereas individual chains in the two models have similar stiffness, the
sixfold coordinate junction vertices are significantly more rigid for the
BKF potential.

To mimic the geometrical properties of the erythrocyte cytoskeleton, the
bead-and-tether network requires the number of segments ng,, to be 26,
which is smaller than the value of 32 found for the BKF potential.
However, this difference is expected as the chain persistence length with
the BKF potential is roughly 10% larger than that of the bead-and-tether
chains (Boal, 1994). Because the BKF chains are stiffer than the bead-
and-tether chains, more segments are needed to effect a given reduction in
network arca with the BKF potential,

The elastic moduli predicted for the human erythrocyte cytoskeleton are
shown in Table 2. With the exception of the transverse Young’s modulus,
the predicted moduli for the two model networks agree to within 10-20%,
which is the statistical uncertainty of the predictions owing to finite sample
size. The fact that the predictions of the two models agree is a check on the
accuracy of the simulations. A comparison. of the predicted elastic moduli
with the available experimental measurements is given by Boal (1994).
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