47. LOW-TEMPERATURE HEAT CAPACITY OF SOLIDS 369

Experiment 47. Low-temperature Heat Capacity
of Solids

} The heat capacity of solids has played a lively role in many theoretical devel-
b opments of the past and continues to present chajjenging problems even today. As
_early as 1818 Dulong and Petif stated as an emirical law that the heat capacity
" of a chemical element in the solid state waggappiximately 6 cal deg™! g-atom L.
ation of atomic weights from

opment of statistical mechanics,

ed on classical mechanics. How-

2fftion of the fact that C, approaches zero as T
of quantum theory.
of aluminum will b
to 300°K, and the

THEORY

We shall W concerned with developing a theory of t M heat capacity at
constant volume for macrocrystalline solids. Spgaial phenorgha such as transition
points will not be considered; the contribution offctronic specific heats in the case
of metals will be mentioned only brieflg? sl

; ructure (one atom per primitive unit
cell), but the results will be appliVg fo.t 1o temperatures to any crystalline solid.

Let us consider a largag ' )

at is, the atoms are assumed to obey
Hooke’s law, on an atom is directly proportional to the
displacemenfffrony ili sition. It can be shown that such a crystal is
equivalent a s pendent, one-dimensional harmonic oscillators.t
Therefore, wiga 1 ibrational energy of the crystal as

N
B= 2 @ M)
in
where (€); is the average energy of the ith oscillator. The classical theory of the
equipartition of energy! (see Exp. 4) states that the average energy in each vibra-
tional degree of freedom (each normal mode) is kT. Thus, on the basis of classical
statistical mechanics

E = 3NkT

G, = (a_"f) ~ 3R = 5.96 cal deg™! g-atom™? )

which confirms the law of Dulong and Petit. As one might expect of 2 classical

#To be exact there are {3N-6) vibrational degrees of freedom and there should be (3N-6) oscil-
lators corresponding to the normal modes of vibration (see Exp. 41).
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treatment of vibration, Eq. (2) is not adequate at low temperatures. Indeed, this
equation is not always valid even at room temperature (see Fig. 1).

The variation of C, with temperature is a conscquence of the existence of dis-
crete, quantized energy levels for each of the one-dimensional oscillators, as
required by quantum mechanics. For a harmonic oscillator with vibrational fre-
quency 7, the allowed energy states are '

€& = (n + Y)hv n=0,1,2,3 ... (3)

In order to find  for this oscillator at a temperature 7'one must use the Boltzmann
distribution law? for the population of the various energy states. The probability
of finding a harmonic oscillator in the state with energy €, is

e en/kT £~ nhv/ kT
‘&zi == (%)
g—Ea/kT g nhv/ET
=0 rrz:ﬂ
The average energy € is obviously
ne—nhv/kT
- S 1
= P =—h -n___ .
¢ ,ZO nen 2 v+ by 2 g nhe/kT ()
Since 2 = (1 — x) ! and 2 nx® = x(1 — x)7%, we find that{
n=10 n=0
| hy
€= _2'}”’ T ot — 1 (6)
Combining Egs. (1) and (6), we obtain for the entire crystal
an hv;
E— Eﬂ = ‘ ehvi/kT —1 (7)

i
—

13

where Ej is the zero-point encrgy of the crystal. For the sake of completeness one
can include the lattice energy U (see Exp. 46) in Eq and write
3N

Eo = Eo(vib) + U =D Vehw; + U (8)

i=1

In both Egs. (7} and (8) »; is the frequency of the ith oscillator (ith normal mode
of vibration of the lattice). Since Eo depends only on the volume (both U and all
»; are functions of the volume per atom) and is independent of temperature, we
can obtain immediately a general expression for the lattice heat capacity of any

harmonic solid;
oF 3N/ by \2 ghri /KT
=1-=) =k i T Y
C (aT)v ; ( kT) (ehri 76T — 1)2 €)]

Einstein used Eq. (9) to calculate heat capacities in semiquantitative agreement
with experiment by making the simplifying assumption that the atoms oscillate

t This result could also have been obtained directly from & = £T%3 In z/8T) where £, the
vibrational partition function, is givend by
wt g he/2kT
= Z COURT = T
n=0
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C (diam}

T, degrees K

FIG. 1. Low-temperature molar heat capacities of lead, copper, and diamond.

independently and all the oscillators have the same frequency »p (i.e., all »; = ).
This model explains in a crude way the great difference in C, for lead and diamond
(see Fig. 1). In a lead crystal the atoms are heavy and the forces between atoms
are weak (Pb has a high compressibility); thus g for lead should be very low and
the classical limit will be achieved well below room temperature. In diamond the
atoms are light and the forces between atoms are strong (diamond has a low com-
pressibility); thus #p for diamond will be much higher and the classical limit is not
achieved even at room temperature. The Einstein model is, however, inadequate
at very low temperatures, where it predicts that C, will approach zero exponen-
tially as 7 approaches 0°K. The actual dependence of the (lattice only) heat
capacity on T at low temperatures has been found experimentally to be 7°3.

The failure of the Einstein theory to predict correctly the low-temperature
behavior of C, is due to the crudeness of the simplifying assumption that all
v; = vp. Actually, of course, atomic motions are strongly coupled through inter-
atomic forces, and the 3V normal modes have many different frequencies, as would
be expected from our knowledge of molecular vibrations (see Exp. 41). The fre-
quencies of the 3N normal modes range from very near zero (sonic vibrations;
wavelengths comparable to the dimensions of the crystal) to some highest value
(wavelength comparable to the interatomic spacing).

For a large crystal there are about 10%2* normal modes which are so closely
spaced in frequency that it is possible to treat the distribution as continuous and
define a distribution _function g(v) such that g(¥) dv is the number of normal modes in
the interval # to » + dv. Using this distribution function, Eqgs. (7) and (9) can be
rewritten as

E—Ey=kT [™ ) (10)

Co=k [™ 1)2g(v) dv (11)
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where u = Av/kT and Vmax is the highest frequency. Thus the problem of the
lattice thermodynamic properties of a solid becomes a question of evaluating g(»).

Debye Theory. The theory of specific heats was greatly improved by Debye,
who assumed that a monatomic solid could be treated as a continuous elastic
medium with no dispersion. That is, the mass of the crystal is considered as
smeared out uniformly over the entire volume instead of being localized at discrete
lattice sites, and the velocity of waves traveling through the solid is taken as inde-
pendent of their frequency. Such a model provides a reasonable description of the
low-frequency modes, since their wavelengths are much longer than the unit cell
dimensions of the lattice. Thus the Debye theory should be valid at very low tem-
peratures where only low frequencies contribute significantly to the Cyintegral. The
brave step taken by Debye was to propose this model for describing a solid over
the entire temperature range.

For the Debye model, g(¥) can be shown? to be proportional to v2:

120V
g) = 122852 (12)

where V is the volume of the solid and ¢ is an “average” elastic wave velocity.{
For a lattice of N atoms there are 3N normal modes and the dynamics of the motion
gives a highest frequency ¥max, just as in the case of a polyatomic gas molecule. But
the Debye theory is based on a continuum meodel, and one must introduce an arti-
ficial cutoff frequency #p to restrict the total number of vibrations to 3N, This cutoff
frequency is obtained from

3N=ﬂﬂg(y)dvzf””%’s”’-vzdu%mf* (13)

0

Therefore, we can rewrite Eq. (12} as

=R o<r<w
~ (14)
=0 » > vp

With this Debye distribution function Egs. (10) and (11) can be written as

\ 3 o
E— B, = INKT [r? v dv = ONKT AT [ ¥ g (15)
vp? o et — 1

hvy 0 et — 1

wp) Jo (v — 1)2

Cy = 9Nk(ﬂ)3 [ronr e g (16)

At this point it is appropriate to introduce a new variable ©, called the “Debye
characteristic temperature” and defined by

fl]’D
=2 1
k (i7)

t This is defined by

3 1 1 1
2= — 4+ —
3 <U13 Ufa Ut’?’ av

In general, the three ultrasonic velocities (one longitudinal and two transverse) depend on the
direction of propagation. Many derivations of the Debye theory assume an isotropic medium for
which U; = Uy and all velocities are independent of direction, but this is not basic to the Debye
model,
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We can now give expressions for the energy and heat capacity per gram atom in terms
of this single parameter which characterizes the solid:

E—Ey (TN por 48
3RT ”3(@)ﬁ a1 (18)

3R_3( )feﬂ “i‘f‘“l)zd (19)

For a “Debye crystal” the zero-point vibrational energy £o(vib) is equal to %RO;
this can be derived from Eq. (8) in a manner exactly parallel to the treatment given
above.

The integrals in Egs. (18) and (19) cannot be evaluated analytically as a
function of ®/7, but numerical values have been tabulated. However, at very
low temperatures (7" < ©/16) the values of the integrals are substantially equal to
the definite integrals from 0 to oo {which are known). Thus, one obtains the

famous Debye T3 law:
c, 4t (T3
3R 5 (6) (20)

As a demonstration of the Debye theory we shall replot the data in Fig. 1 as
Cy/3R vs. T/©); these are shown in Fig. 2 along with the curve predicted by Eq.
(19). The ® values used in Fig. 2 were chosen empirically to give the best possible
fit to the theoretical curve, but ® values could be calculated from experimental
low-temperature ultrasonic velocities using the expression

h 3N \1/3

which is derived from Egs. (13) and (17). In general the agreement between
Debye theory and experiment is quite good but not perfect; in particular, there is
often a disagreement between the empirical value of ® chosen to fit the heat capac-
ity and the ultrasonic value given by Eq. (21). Such difficulties are not surprising,

FIG. 2. A plot of /3R vs. T/© for lead, copper, and diamond. The solid line is the theo-
retical curve given by the Debye theory.
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since the Debye theory is based on a quite simplified model for a solid. More
recently, considerable progress has been made using the theory of lattice dynamicst: 6
which is based on a more realistic model but is much more complicated mathemati-
cally. Itshould be emphasized that the Debye theory is still perhaps the best one-
parameter theory available and is very useful in many problems because of its
simplicity.
C, — C, Correction. The theory presented above has been concerned with
Cy, the heat capacity at constant volume, but the values measured experimentally
for solids are almost always Cp, the heat capacity at constant pressure. The differ-
ence between €, and C; is given by thermodynamics? as
C, — ¢, = 3Va? (22)
B
where 3a is the volume coefficient of expansion and B is the isothermal volume
compressibility. Both 3a and B are functions of temperature, and they are often
not known at low temperatures. It is common practice to replace this exact ex-
pression by an empirical approximation’—the so-called Nernst-Lindemann
equation:

Gy — Cp = ATC,2 (23)

where 4 is a constant evaluated from the room-temperature properties of the solid.

Electronic Specific Heats. In a metal there are a large number of conduction
electrons which are relatively free to move throughout the crystal. The heat
capacity of this “free-electron gas” must be considered in addition to the heat
capacity due to lattice vibrations discussed previously. Because of the very small
mass of the electron, this electron gas does not behave like a classical gas of atoms
or molecules, and it is necessary to use quantum statistics to predict its properties.
It has been shown® that the heat capacity of such a free-electron gas is

Colel) = yT (24)

where v i1s a constant for a given metal and is usually of the order of 1074
cal deg™2 g-atom™!. Thus the electronic specific heat at room temperature is only
about 3 X 1072 cal deg™ g-atom™1, and it is almost negligible compared with the
lattice heat capacity of about 6 cal deg™! g-atom™1. It becomes important, how-
ever, at very low temperatures, since C, (lattice} goes to zero more rapidly than

Cy (el).

METHOD

The method of determining ), in this experiment is identical in principle with
that used in Exp. 10: electrical work is degraded to “Joule heat” by a heating coil,
and the resulting temperature rise AT is measured. The only difference is that now
we wish to use Eq. (V-134a)

— Wei

C =37

(23)

to obtain , for the sample alone without any contribution due to the calorimeter
itself. To achieve this we must isolate the sample as well as possible from its sur-
roundings (including the walls of the calorimeter) and must reduce siray heat leaks
to a minimum (see the discussion in Principles of Calorimetry, Chap. V).
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To heater current
Glass plate cemented supply
on with glyptal

Wires cemented
into notches

To high vacuum
line, trap, and
e gauge

Thermocouple leads to
microvolt potentiometer

To regulated
Removable ——~ helium supply
Dewar flask

3 Nylon threads —

120° apart

Refrigerant

3 Thin metal radiation —=
shields, each with 3

holes for supporting
threads and' 2 holes

for leads
E’X i Drop of silicone oil at

each hole to heat-
station leads

Manganin or constantan

heater winding
{R,;~200%) g ]
cemented in place
with glyptal s

Manganin wire
» heater leads

o

Thermocouple junction et
at center of specimen —

Specimen
(% in. diam, 5in. Iung)

Glass wool {to prevent
accidental breakage )

FIG. 3. A simple low-temperature calorimeter.

Calorimeter Design. A simple design for a low-temperature calorimeter is
shown in Fig. 3. A large Pyrex tube containing the sample is immersed in a tall
Dewar flask filled with the refrigerant. Suitable refrigerants for this experiment
are liquid nitrogen and Dry Ice-acetone. The sample (preferably in the form of a
cylinder) hangs by three nylon threads from three thin aluminum radiation shields,
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which are hung from the top of a large, standard-taper joint. Heater and thermo-
couple leads are sealed tightly in tiny notches in the top edge by attaching a flat
glass top plate with glyptal; they are also heat-stationed at the metal shields.
Helium gas can be admitted to the system as a heat-transfer gas to bring the sam-
ple initially to the bath temperature; then the entire tube can be evacuated to
eliminate gas conduction between the sample and the walls of the tube.

Heat leaks due to radiation, residual gas conduction, and conduction along
the leads and threads are small but not negligible. This design is satisfactory only
if the temperature of the sample is close to that of the bath; the procedure must be
planned with this in mind.{

Note that the heat capacity which is measured is that of the sample alone except
for a very small contribution due to the “addenda” (heater wire and cement). One
may either neglect Cp(addenda) or calculate a value for it and subtract this correc-
tion term from the total C,. \

Heating Circuit. "The heater should consist of many turns of fine constantan
wire wound around the sample cylinder. If a metal sample is used, varnish the
surface, and while it is still sticky, coat the sides of the sample with cigarette paper
to provide electrical insulation. A convenient heating tape made of constantan
wire and silk fibers interwoven (called “Silko ribbon™) is available from De Bary
and Co. Ltd., Basel, Switzerland. The heater wire must be attached to the sample
with an adhesive that provides a reliable thermal contact between the two.

The electrical work in joules is given to a good approximation by

— e = ffHEH dt = EHEH At (26)

where 7y and £y are the average heater current in amperes and the average poten-
tial drop across the heater in volts during a heating period of duration At sec.
Figure 4 shows an electrical circuit designed to operate a heater of about 200 ohms
using a 110-v dc source; this circuit can be easily modified to utilize lower voltage
dc sources. Since iy is about 0.06 to 0.08 amp in this circuit, Ey is approximately
14 v and a potential divider is necessary in order to use a potentiometer for meas-
uring voltages. The potential divider is two high-resistance resistors in parallel with
the heater (from a to b in Fig. 4). Use of the dummy heater enables one to achieve a
steady current flow through the circuit before switching on the heater; thus iy and
Eg will vary only slightly during a heating period, and only a few values of each
are required for each heating.
Combining Egs. (25) and (26} we obtain for Cj, in calories per degree

EHE_H At _ EH(E — IHRL) At
4184 AT 4184 AT

C, = 7)
where £ is the average potential drop across the heater and its leads (from a to b
in Fig. 4) and Ry, is the resistance of these leads {(a to ¢ and & to & in Fig. 4). The
value of Ry, is measured at room temperature and is assumed to be independent of
temperature. The correction term Igfly, takes account of the heat dissipated in the

T More complex designs® are possible in which the sample is completely surrounded by an
adiabatic shield (i.e., a shield isolated from the sample but maintained at the same temperature as
the sample at all times). Such designs will reduce heat leaks and permit operation at temperatures
considerably above bath temperature, but they require a more complicated procedure and are diffi-
cult to construct.
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0-2,0000
1/4-amp
fuse

To potentiometer

b

[— Use short
heavy wires

dummy heater
preset to Ry

knife switch

FIG. 4. A heater power-supply circuit designed to operate from a 110-v de source. Typical
values are Ry = 1,500 ohms, £2 = 25,000 ohms, Rg = 10 cohms, Ry = 200 ohms, and R;, =
15 ohms; Ry, is the resistance of the leads from a to ¢ and from & to 4,

leads and is based on the assumption that none of this heat is delivered to the sample.
(In the present design most of this heat flows to the radiation shield.} Now the
directly measured quantities are Ey, the potential drop across the standard resistor
Ry, and Ey, the drop across Ry. From iy + 12 = i = Eg/Rg, where { is the total
current and 712 is the current through the potential divider (R; + Rg), and the fact
that ig(Ry + Ry) = t1a(Ry + Ry3), one can easily derive an expression for Tg:

_ Eg

Ty =

“ 7 Rl + (Ru + Ri)/(Bs + Ro)]
The term in brackets is very close to unity (1.008 for the values given in Fig. 4)

and will be assumed independent of temperature; use the room-temperature value
of Ry in calculating it. Also it is clear that £ is given by

(28)

E= Elm (29)
Ry

Both Eg and E; can be measured with a Student Potentiometer circuit; see Chap,
XV for details. Accurate room-temperature values of Ry, and Ry must be deter-
mined before assembling the calorimeter and should be given. Values of R; and
Ry may be determined by the student or given by the instructor.

Temperature. The sample temperature is measured with a thermocouple
which should be affixed in a small-diameter hole down the axis of the sample cyl-
inder with an adhesive to ensure good thermal contact. Use either a copper-
constantan or a chromel-alumel thermocouple (see Chap. XVI). Since the sensi-
tivity of these thermocouples is ~15 pv deg=! at 80°K and ~40 pv deg 1 at
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300°K, it is necessary to use a precision potentiometer which will measure potentials
in the 1- to 10-mv range to within =1 pv. One should also use heating periods
which give AT between 5 and 10° to reduce the uncertainty in AT, Very large
AT values should be avoided because heat leaks may introduce a serious error
(radiation heat loss is especially serious at higher temperatures).

EXPERIMENTAL

It is assumed in the discussion below that an aluminum sample (with heater
and calibrated thermocouple attached) has been mounted and that the calorimeter
has been assembled. It is also assumed that values of Ry, Ry, Rs, R, and Ry as
well as the mass of the sample and of the addenda are known.

Make all necessary connections to set up both a Student Potentiometer (for
measurement of Eg and E;) and a high-precision potentiometer (for thermocouple
measurements); see Chap. XV. Standardize both potentiometers against a stand-
ard cell. At the same time, prepare an ice-water mixture in a 1-qt Dewar flask as
the 0°C bath for the reference junction of the thermocouple. Fill the Dewar com-
pletely full of crushed ice, rinse the ice with a smali amount of cold distilled water,
and then add enough cold distilled water to fill the Dewar half full of liquid.
Insert the junction well into the liquid.

With the sample at room temperature record the thermocouple emf and check
the temperature corresponding to this reading with the reading of a mercury ther-
mometer mounted close to the calorimeter.

With stopcock € closed, open stopcocks 4 and B. After pumping for 5 min,
check the pressure. Continue to pump out the calorimeter until the pressure is less
than 1074 mm Hg. During this pumping period, close knife switch DPDT-1 so0 as
to insert the dummy heater into the circuit and turn on the heater power supply.
To facilitate later measurements, obtain approximate values of Eg and E; with
current flowing through the dummy. The knife switch DPDT-2 permits the Stu-
dent Potentiometer to be connected rapidly to either Rg or Ry, By adjusting
the 0- to 2000-ohm variable resistor, obtain a current of between 0.06 and 0.08 amp
and record the observed values of Eg and E;.

When the vacuum is satisfactory, make a heat-capacity measurement at room
temperature. Follow the procedure given below.

e After this initial measurement is completed, make one or two measurements

at liquid-nitrogen temperature. First close stopcock B and then open C slowly to
fill the calorimeter with helium? gas at about 1 atm. Now close stopcock A and
slowly raise the Dewar flask, partially filled with liquid nitrogen, up over the
calorimeter. Make sure that the top of the Dewar is above the uppermost radia-
tion shield. After the Dewar is clamped in place, fill it to the top with liquid
nitrogen. Check the temperature of the sample; it is necessary to reverse the
thermocouple leads at the potentiometer in order to measure temperatures below
0°C. It may require about 40 to 50 min for the sample temperature to achieve a
steady value. When the rate of drift is zero or very small, pump out the helium
as before and check the pressure. After the pressure has dropped to 107¢ mm or
less, make a C, measurement as described in the procedure below. If possible,
make a second measurement immediately after completing the first one.

Next make measurements at Dry Ice temperature. Tirst remove the Dewar
and empty out the liquid nitrogen. Partly fill the Dewar with a Dry Ice-acetone

mix
the
acel
har
risii
ma1

to k

min
che
exp|

the
per!
reac
of a
off 1

rea
hea

ITHD

ma
ing

CAl

(28
the
cha
ma’
hea
the
the
is a

sk
mol

whe
cap.
alul

Cy |




47. LOW-TEMPERATURE HEAT CAPACITY OF SOLIDS 378

mixture prepared in advance. Fill the calorimeter with helium gas as before, and
then slowly raise the Dewar into place and fill it to the top. Caution: Dry Ice-
acetone baths tend to foam badly; see Chap. XVI for the details of preparing and
handling this refrigerant. When the temperature is almost steady but still slowly
rising, pump out the helium and carry out one or two (; measurements in the same
manner as at liquid-nitrogen temperature.

At the end of the experiment, Jeave the calorimeter at room temperature.

Procedure for a Run. We shall assume that the sample temperature is close
to bath temperature and that the calorimeter is already evacuated.

Record the thermocouple emf and the clock time every 30 sec for at least 5
min; the rate of change should be small and constant, if not zero. During this time
check the standardization of the Student Potentiometer and then set it at the
expected value of Eg. :

Start a stopwatch and simultaneously turn on the heater by rapidly throwing
the knife switch DPDT-1. Record the values of Eg and E; during the heating
period. First read Eg and then throw switch DPDT-2 and read Ej; alternate the
readings until several values of each have been recorded. After a temperature rise
of about 7° {the desired thermocouple emf should be determined in advance), turn
off the heater and simultaneously stop the stopwatch, Record the elapsed time At

During the heating period it is only necessary to make occasional thermocouple
readings in order to decide when to turn off the heater. However, as soon as the
heater is turned off, the thermocouple emf must be recorded every 30 sec for 10
min or until the temperature is constant.

If dT/dt (that is, d6/dt) is not too large, another measurement of Cp can be
made immediately by using the postheating temperature drift rate as the preheat-
ing rate for a second heating period.

CALCULATIONS

For each heating period, calculate the average values Eg and E,, and use Eqgs.
(28) and (29) to obtain 7y and £. Then determine the initial temperature 71 and
the final temperature 73. Before electrical heating, the temperature should have
changed only very slowly, if at all. However, after the heating period, the sample
may have slowly cooled toward the bath temperature. If either the pre- or post-
heating temperatures show a steady drift, plot the thermocouple emf vs. time for
the entire run and extrapolate to the mid-point of the heating period to determine
the emf corresponding to 71 and 7. Now calculate €, frem Eq. (27); this value
is an average over the temperature interval and can be taken as corresponding to
a mean temperature I = (T + Tz)/2. If the heat capacity of the addenda
is known at 7, it should be subtracted from the total Cp given by Eq. (27). The
molar heat capacity of aluminum is given by

Co(Al) = 26];37 [C, — Cy(addenda)] (30)

where W is the mass of the aluminum sample in grams. The constant-volume heat
capacity can now be calculated from Eq. (23); the value of the constant A for
aluminum!® is 2.23 X 1075 g-atom cal™. Tabulate the values of 7, AT, Cp, Gy,
&, for each run. ’
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DISCUSSION

The coefficient ¥ which determines the electronic heat capacity of a metal is
3.5 % 1074 cal deg~2 g-atom * for aluminum.’* One can then calculate Colel)
from Eq. (24) and, if necessary, correct €, to obtain C,(lattice). The Debye char-
acteristic temperature ® which best fits the lattice heat capacity of aluminum10
over the range 77 to 300°K is 391°K. Plot your values of €, vs. T, and for com-
parison, draw a smooth curve based on the predictions of the Debye theory.
Comment on the agreement between your points and the theoretical curve; in par-
ticular state whether any deviations can be explained by systematic errors in the

method used hére.

APPARATUS

Low-temperature calorimeter, assembled containing an aluminum sample with heater
attached and thermocouple installed; vacuum line; tall Dewar flask and clamp; 1-gqt Dewar
for ice; complete potentiometer setup for measuring current and voltage; high-precision poten-
tiometer setup for thermocouple readings; heater power supply; two good-quality knife switches;
clock and stopwatch; 0 to 30°C thermometer. '

Supply of helium gas; refrigerants (liquid nitrogen and Dry Ice-acetone); distilled-water ice.
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