Assessing the Impact of Central Bank Digital Currency on Private Banks

David Andolfatto

Federal Reserve Bank of St. Louis

CEU Budapest
October 2018
Disclaimer

The views expressed here are my own and should not be attributed to the Federal Reserve Bank of St. Louis or the U.S. Federal Reserve System
Introduction

- Growing interest in cryptocurrencies has resurrected an old debate concerning merit of a public utility banking service.

- Central Bank Digital Currency (CBDC) modern-day equivalent to Postal Savings.
Mixed Feelings

- Ricks, Crawford and Menand (2018) emphasize benefits.
 - Increased financial inclusion, enhanced financial stability, improved monetary transmission mechanism.

- Cecchetti and Schoenholtz (2017) emphasize costs.
 - Inefficient service, reduced financial stability, expanded role for state banking.

- Theoretical/empirical support?
Theoretical literature

- Barrdear and Kumhof (2016) a rich (complicated) DSGE model.
 - Introducing CBDC via open-market operation stimulates economic activity, banks benefit.

- Keister and Sanches (2018) use tractable DGE model with financially constrained “banks.”
 - Interest-bearing CBDC improves efficiency via “Friedman rule” logic.
 - Potentially harms financially constrained banks by raising funding costs.
Environment

- Version of Diamond (1965) OLG model.

- Constant population, so equal mass of young and old.

- Individuals are born either as workers or firms (equal mass of each type).

- Young workers endowed with $y \geq 0$ distributed according to c.d.f. $G(y)$.

- Young firms endowed with project, k_t invested at t yields $F(k_t)$ at $t + 1$.
Environment

- Young have linear preferences defined over future consumption (wealth maximizers).

- Aggregate real saving = young worker income \(y \equiv \int ydG(y) \).

- Welfare-improving trading pattern entails young workers saving \(y \) to finance young firm capital expenditure \(k \) and (potentially) old worker consumption.
Government Policy

- Government makes money transfers Z_t and collects taxes T_t (lump-sum); makes no purchases ($G_t = 0$).

- Primary deficit $Z_t - T_t$ financed entirely with one-period, risk-free, nominal debt D_t.

- Debt consists of currency, CBDC, and bonds: $D_t = C_t + M_t + B_t$.

- Let R^C_t, R^M_t, R^B_t denote gross nominal yields on C, M, B, respectively (Assume $R^C_t = 1$).
Government Policy

- Flow budget constraint

\[Z_t + (R_{t-1}^B - 1)B_{t-1} + (R_{t-1}^M - 1)M_{t-1} = T_t + (D_t - D_{t-1}) \]

- Assume

\[T_t = (R_{t-1}^B - 1)B_{t-1} + (R_{t-1}^M - 1)M_{t-1} \]
\[Z_t = D_t - D_{t-1} \]

- Assume \(D_t = \mu D_{t-1} \) with \(D_0 > 0 \) endowed to initial old generation.

- \(Z_t \) transferred to workers, \(T_t \) applied to firms (not important).

- Assume \(T_t = (R_{t-1}^B - 1)B_{t-1} + (R_{t-1}^M - 1)M_{t-1} \)
Market Structure and Timing

- All debt, apart from cash, is intermediated by banks (central and private).

- Central and private banks share same RTGS payment system.

- Young firms + workers pay fixed utility cost ϕ to access banking system.

- Unbanked individuals must resort to cash; banked individuals can borrow and use debit cards.

- Bank deposits made redeemable for cash on demand at par.
Market Structure and Timing

- Old workers enter t with money (cash + deposits) they worked for in $t - 1$.

- Old workers with deposits earn interest R_{t-1}^D.

- All old workers receive transfer Z_t (check or direct deposit).

- Old workers spend all their money on goods and services, price-level p_t.

- Old firms enter t with bank debt, which they repay with interest R_{t-1}^L.
Market Structure and Timing

- Young firms enter t w/ investment, financed w/ bank loan at interest R^L_t.

- Banks create money (deposits) in the act of lending.

- Young workers enter t and choose to access banking system, cost ϕ.

- Young firms spend their deposits on young labor (cash + debit).

- Deposits earn interest R^D_t (or R^M_t if CBDC); Carrying real cash balance c entails utility cost $(1 - \theta)c$.
Decision Making: Firms

- Young firm chooses k to maximize future profit
 \[
 \max_k F(k) - (R^L / \Pi)k - \tau
 \]

- Solution is investment demand function $k(r^L)$, where $r^L \equiv R^L / \Pi$.

- Firm wants to borrow $p_t k(r^L)$ dollars, which bank creates and deposits in their bank accounts.

- Firm uses money to purchase labor $k(r^L)$ from workers (banked workers paid via electronic transfer, unbanked workers paid with cash).
Decision Making: Workers

- Type y worker sells y units for $p_t y$ dollars at t.

- Let $R \equiv \max\{R^D, R^M\}$.

- Banked workers pay bank-access cost $p_t \phi$ dollars at t, earn $R p_t y$ at $t + 1$.

- Unbanked workers earn $p_t \theta y$ at $t + 1$.

- So cost-benefit compares θy to $R y - \phi$.
Decision Making: Workers

- Solution is for all workers with $y \geq \hat{y}(R)$ to access banking system and all workers with $y < \hat{y}(R)$ to remain unbanked, where

\[
\hat{y}(R) = \left(\frac{\phi}{R - \theta}\right)
\]

with $\hat{y}(R)$ decreasing in R.

- Fraction of unbanked $G(\hat{y}(R))$ decreasing in R.

- Demand for real currency balances $c(R) = \int_0^{\hat{y}(R)} ydG(y)$.

- Demand for real deposits $q(R) = y - c(R)$, increasing in R.
Decision Making: Banks

- Choose reserves B_t and loans $p_t k(R^L / \Pi)$ financed via deposits $p_t \hat{q}(R^D)$ subject to balance sheet constraint,

\[B_t + p_t k(R^L / \Pi) = p_t \hat{q}(R^D, R^M) \]

to maximize future value

\[V_{t+1} = R^B B_t + R^L p_t k(R^L / \Pi) - R^D p_t \hat{q}(R^D, R^M) \]

where $\hat{q}(R^D, R^M) = q(R^D)$ if $R^D \leq R^M$ and $\hat{q}(R^D, R^M) = 0$ otherwise.

- Combining terms...

\[V_{t+1}/p_t = \left[R^L - R^B \right] k(R^L / \Pi) + \left[R^B - R^D \right] \hat{q}(R^D, R^M) \]
Decision Making: Banks

\[V_{t+1}/p_t = \left[R^L - R^B \right] k(R^L/\Pi) + \left[R^B - R^D \right] \hat{q}(R^D, R^M) \]

- Profit-maximizing \(R^D \) depends on \(R^B \) (mark-down) and possibly \(R^M \).

- Profit-maximizing \(R^L \) depends only on \(R^B \) (mark-up).

Proposition 1 If banks can borrow reserves at IOR rate \(R^B \), then CBDC will have no effect on bank lending activity (unless \(R^M \) is tied to \(R^B \) via policy).

Proposition 2 Banks will match CBDC rate for any \(R^D = R^M \leq R^B \).
Stationary Equilibrium

- I’ve already imposed a lot of stationarity.

- To close model, need to describe price-level determination.
 \[D_t/p_t + k(R^L/\Pi) = y \]
 (Price-Level)

- FODE in price-level with stationary solution \(\Pi = \mu \).
 \[M_{1t} = C_t + p_t k(R^L/\mu) \]
 (M1)

 where \(C_t = p_t c(R) \) currency-in-circulation.

- Note \(R \equiv \max\{R^D, R^M\} \) affects CIC and M1, but not price-level.
Stationary Equilibrium

• Financing the interest expense of the debt

\[\tau = \frac{1}{\mu} \left[(R^B - 1)b + (R^M - 1)(q - \hat{q}) \right] \]

• If \(R^M \leq R^B \), then \(b > 0 \) and \(\hat{q} = q \).

• If \(R^M > R^B \), then \(b < 0 \) and \(\hat{q} = 0 \).

• Financing transfer payments

\[z = \left[1 - \frac{1}{\mu} \right] \left(\frac{D_t}{p_t} \right) \]
Central Bank Digital Currency

- Both critics and proponents suggest CBDC would require “large” central bank intervention. But would it?

- I assume that all banks (central and private) utilize the same RTGS payments infrastructure (e.g., TARGET2 in Europe).

- If CBDC option compels banks to compete for deposits, actual CBDC take-up rate could remain small (possibly non-existent).

- But suppose, hypothetically, that CBDC option is so attractive as to drain banks of all deposits...
Central Bank Digital Currency

- Is this a serious problem?

- No, banks can still create deposits (via lending) with opportunity cost determined by IOR (not CBDC).

- As deposits flow to CB, banks can borrow reserves to cover the outflows. (If CB does not lend reserves, interbank rate would likely rise in reality.)

- Bank profits would decline as they no longer make the spread on deposit rate vs. IOR rate.

- There may be some fiscal consequences, but nothing major.
CBDC: Financial Stability or Instability?

- My model does not speak directly to this issue.

- However, I find instability claims implausible—the consolidated banking sector (central and private banks) can easily ward off Diamond and Dybvig (1983) instability.

- Moral hazard? State banking?
 - System must already deal with these issues (regulatory design problem).

- Shadow banking? A problem with or without CBDC.
Things My Model Leaves Out

- Uncertainty (bank assets, macroeconomic); bank capital; moral hazard; bank regulation; social role for bank franchise value; shadow banks, non-bank financial arrangements; international considerations, etc., etc.

- Question: how any of these factors may serve to overturn/modify conclusions reached here?

- Only one way to find out.

- Also, would be of some interest to explore potential merits of NIRP in this environment.
Summary and Conclusions

- CBDC need not entail a large intervention, is likely to increase financial inclusion, reduce bank profits, and leave bank lending operations unaffected.

- If political-economy requires banks to sign off on CBDC, carrots might include
 - Operate CBDC-like program via banking system (100% reserve backed interest-bearing segregated accounts).
 - Tax breaks, regulatory relief (where appropriate).

- These thoughts are preliminary: comments/criticisms welcome!
Contact Information

Email: david.andolfatto@stls.frb.org

Twitter: @dandolfa

Blog: http://andolfatto.blogspot.com/