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1 INTRODUCTION 
           A distributed computing system designed to perform a particular global task accomplishes 

its objectives by partitioning that task into subtasks and assigning these to its agents (processors). 

Generically, some of these subtasks interact; that is, they cannot be carried out by the 

corresponding agents in isolation. This introduces the need for communication between certain 

pairs of agents. This paper focuses on such communication aspects of a distributed system. In 

particular, we describe the system’s organization by specifying “who talks to whom” −that is, by 

means of an undirected graph GO = (VO, AO). The set of nodes  { }1 2, , ,O nV a a a=  represents the 

set of agents, and the presence of an arc ( ),i ja a ∈ AO signifies that agents ia  and ja  can 

communicate with each other. In this paper, we will always assume that ( ),i ia a  ∈ AO for all ia  

∈ VO, which simply expresses the fact that any agent can communicate with itself.  We will refer 

to graph GO as the distributed system’s organizational graph. GO specifies the communication 

capabilities available to the system. Note that ( ),i ka a  ∉ AO indicates that agents ia  and ka  

cannot communicate, even if ( ),i ja a ∈ AO and ( ),j ka a ∈ AO for some ja . Two agents’ inability 

to communicate with each other may model the distributed system’s security constraint.  In some 

groups, in order to prevent the leakage of secret information, the information is 

compartmentalized and kept separately by different agents that are prevented from 

communicating with each other. Such compartmentalization is common in the intelligence 

community as a protective measure against counterintelligence. Alternatively, such an inability 

to communicate may model the case in which maintaining reliable communication between two 

agents is prohibitively expensive.  

          Certain tasks might require communication among all agents of the distributed system, in 

which case the most suitable system organization would correspond to a complete graph. On the 

other hand, there are numerous situations in which the task to be executed has a special structure, 

in which case fewer communication links suffice. Thus, the task assignment in the distributed 

system is closely related to the organizational structure.  For the case of fixed organizational 

structure (that is, the task assigner cannot control which agent can communicate with which), the 

subtasks must be assigned in such a way that the organizational structure can accommodate the 

communication requirements. In this case, the major performance measure of the assignment 
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may be the balance of loads among agents.  For the case in which the task assigner also has 

authority over the organizational structure, the task assignment is not constrained by the fixed 

organizational structure.  However, each assignment requires a specific structure of inter-agent 

communications (i.e., organizational structure).  The cost of retaining the communication 

structure may be an additional performance criterion in this case. 

        To clearly define our problem, we need to mathematically represent the communication 

requirements of the task to be executed. This can be done in terms of another undirected graph, 

GT = (VT,AT), called the task graph. The nodes of GT correspond to subtasks while the presence 

of an arc (i, j) ∈ AT signifies that subtasks i and j are interdependent. Each subtask i ∈ VT is to be 

assigned to an agent in VO, the agent primarily responsible for that task. We denote by iσ  the 

agent to which subtask i is assigned. In our model, the interdependence between two subtasks i 

and j is handled by assigning to a particular agent in VO the responsibility of keeping track of this 

interdependence. (For practical illustration, the interdependence necessitates communication 

between two processes handling the two compartmentalized subtasks, and some agent should 

handle the responsibility of supervising that communication between the two processes.)  We 

denote by σij the agent to which this responsibility is assigned. (For example, agent σij oversees  

cooperative activities between σi and σj  for security purposes.) It is then natural to require that 

σij should be able to communicate with both σi  and  σj .  In this paper we assume that GT  is a 

connected graph.  (If GT  is not connected, then it can be regarded as a collection of maximal 

connected subgraphs  1
TG , 2

TG , …, TGν −that is, each of 1
TG , 2

TG , …, and TGν  is a connected 

graph and no path exists from a node in i
TG  to a node in j

TG  if i j≠ . Each subgraph can be 

considered an independent project task and can be regarded as a separate task. 

            Formally, we have the following definition.  

Definition 1: Given a task graph GT, a valid organizational structure is defined as a graph GO, 

together with a mapping σ : VT ∪AT → VO with properties: (σij,σi) ∈ AO and (σij,σj) ∈ AO for 

every (i,j) ∈ AT.  

 (We will mostly use the notation σij and σi instead of the more standard functional notations σ(i) 

or σ(i,j). Also, recall that in accordance with our definition of GO, ( ),i ia a  ∈ AO for all ia  ∈ VO.)  

The task assignment problems to be considered will be of the following form: given the task 

graph GT, find a valid organizational structure (the mapping σ and graph GO per Definition 1) so 
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as to optimize a given performance measure, subject to some additional constraints that remain 

to be specified.  The following are some additional constraints: 

• We can impose a constraint on the cardinality of VO — that is, on the number of available 

agents. 

• We could assume that the graph GO is given, which would correspond to the case in which 

we are dealing with a pre-existing system organization. In this case, all that remains to be 

done is to design the mapping σ in some desirable way. An implicit assumption here is that 

all agents of the pre-existing organization are equally capable and versatile, so that any 

subtask can be assigned to any agent. 

• Going one step further, we could assume that the graph GO is given and that the agent σi, 

which is in charge of subtask i, is also pre-specified for each task i. In this case, we only have 

to choose which agent will be responsible for the handling of each subtask interaction. That 

is, we only need to choose the values of σij, for every (i,j) ∈ AT. Such a problem would 

correspond to a situation in which each subtask is of a specific nature, intimately linked to a 

particular agent that is the only agent capable of handling it. On the other hand, the implicit 

assumptions are that the handling of the interactions between subtasks i and j does not 

involve any particular expertise and that it can be handled by any agent, as long as the 

necessary communication links are in place. 

 

          Next, we have to specify some relevant performance criteria. Our first criterion pertains to 

load balancing. The agents of any distributed system have limited resources, and there is a limit 

to the number of their responsibilities.  We assume that handling the interaction between each 

pair of subtasks imposes a unit processing load. We denote by ( )p i for each Ti V∈ the load of 

executing subtask i. Formally, we define the load k  of agent ka  ∈ VO  to be: 

{ } { }|
 ( ) ( , ) |

T i k
k T ij ki V a

p i i j A a
σ

σ
∈ =

≡ + ∈ =∑    .     (1) 

This is the agent ka ’s burden of executing subtasks plus the interactions for which this agent is 

responsible. In this paper, we will assume that ( )p i  is an integer for each Ti V∈ . (This 

assumption of integer p(i) and that of the unit load for the interaction between each pair are 

crucial to the arguments used in the following sections. Problems with more relaxed assumptions 
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are left for future research.) The maximum load L is defined by L = { }max k k Oa V∈  . L is a 

performance criterion to be considered and smaller L is favored. 

         Another performance criterion relates to the amount of communication resources employed 

by the distributed system. This is a natural measure, given that communication is often a 

constrained resource. In fact, we will be considering two alternative ways of measuring 

communication resources, as follows. 

• Given a system organization GO, let C1 be the number of arcs ( ),i ja a ∈ AO for which 

i ja a≠ . Thus, C1 measures the number of communication links that have to be in place when 

setting up the system. 

• In an alternative method of measuring communication, we can measure the total amount of 

communication cost in the system. We model the fact that interactions between different 

pairs may need different intensities of communication.  Also, the required amount of 

communication for subtask interactions may depend upon the task assignment.  By way of 

illustration, for every (i, j) ∈ AT, agent σij has to exchange messages with both agents σi and 

σj if σij coincides with neither.  In this case, communication cost will be incurred in both 

links. However, if σij coincides with σi, then we should not “charge” for communication 

between σij and σi. Furthermore, we can imagine a system in which different links have 

different communication costs.   Thus, we represent the communication cost for the 

interaction ( , ) Ti j A∈  between subtasks by function value ( )( , ), , ,i j iji jµ σ σ σ .  The total 

communication cost for all pairs of (distinct) agents, to be denoted by C2, can be defined as 

( )( , )
2 ( , ), , ,

T
i j iji j A

C i jµ σ σ σ
∈

= ∑ . For illustration, let us consider a special case of equal 

communication intensity for all pairs of subtasks and equal communication cost for all links. 

We can model this case by defining ( )( , ), , , 2i j iji jµ σ σ σ =  if i jσ σ≠ and { },ij i jσ σ σ∉ , 

( )( , ), , , 1i j iji jµ σ σ σ =  if i jσ σ≠ and { },ij i jσ σ σ∈ , ( )( , ), , , 1i j iji jµ σ σ σ =  if i j ijσ σ σ= ≠ , 

and ( )( , ), , , 0i j iji jµ σ σ σ =  if i j ijσ σ σ= = .  Let us specialize further to the case that i jσ σ≠  

as long as i j≠ .  That is, no two subtasks are assigned to the same agent. Then C2 can be 

regarded as 2|AT| minus the number of elements (i,j) of AT for which σij ∈{σi,σj} − that is,  
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one unit of communication cost for (i,j) because one link is used if σij ∈{σi,σj} and two units 

of communication cost for (i,j) because two links are used if { },ij i jσ σ σ∉ . 

 

          It should be clear that the objectives of load balancing and low communication 

requirements compete with each other. For example, in the special case of equal communication 

intensity for all pairs of subtasks and equal communication cost for all links, communication 

requirements are lowest if all subtasks are assigned to a single agent, which results in a very 

unbalanced load. In our problem formulations, we will often deal with this trade-off by 

attempting to optimize one of the performance measures while constraining the other.  For 

example, we might wish to minimize C1 subject to a constraint that L be bounded above by some 

given Lup. 

            The results presented by this paper are organized as follows. In sections 3, 4, and 5, we 

assume that each agent can be assigned at most one subtask−i.e., a feasible mapping σ  is 

constrained to have property i jσ σ≠  if i j≠ . As one example of a physical meaning of this 

constraint, an organization might prevent an individual agent from having excessive information 

or authority for the purpose of security (i.e., adequate compartmentalization of information and 

power). Each of sections 3, 4, and 5 then considers the task assignment problem under different 

assumptions about “how much” of GO and of mapping σ are to be predetermined. For each 

choice of assumptions, we consider a few different problems, depending upon the particular 

choice of performance measure (L, C1 or C2). Section 6 relaxes the assumption that each agent 

can be assigned at most one subtask, and discusses the task assignment problems. 

 

2  MOTIVATION AND RELATED WORKS 

           The mapping, σ : VT ∪AT → VO , which is part of a valid organizational structure that this 

paper is seeking, is reminiscent of the well defined graph embedding problem [Röm96, 

Mon95,Diek93].  The main difference is that the graph embedding problem would seek a 

mapping  f : VT → VO [Röm96].  In the present paper, we place a relatively high emphasis on 

information security among the purposes of distributed processing. (Compartmentalization of 

information is a very common practice for information security in an organization – especially an 

intelligence organization.) As mentioned in section 1, the present paper views the responsibility 
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of supervising communication between two subtasks as a computational burden, which is 

separate from the communication cost. Indeed, when compartmentalization is employed as a 

method of information security, the information exchange between parties must be carefully 

guarded.  The content of exchanged information should be examined to make sure that the 

content really needs to be exchanged.  Also, the confidentiality and integrity of the exchanged 

information should be protected. The present paper regards the responsibility of supervising the 

communication, which is represented by an edge in AT, between a pair of subtasks as an activity 

separate from that of performing a subtask, which is represented by a node in VT.  The present 

paper intends to model the task assignment of a distributed organization with high emphasis on 

information security. 

    In fact, an idea of modeling organizational behavior by parallel and distributed computation 

was presented earlier [Lee87].   Section 2.1 will show how the problem of finding mapping, σ : 

VT ∪AT → VO, originated historically — namely, from the study of organizational behavior 

modeled by distributed optimization and the study of decomposing the cost function 

[BerTsi89,Lee87].   Section 2.2 mentions previously studied problems similar to the problem 

introduced in Section 1. 

 

2.1 Task Assignment in Distributed Organization Modeled by Decomposition of 
Cost Function  

           We will now describe, in some detail, an example that historically motivated the mapping 

problem introduced in Section 1.  (However, it should be noted that the mapping problem 

introduced in Section 1 has more a general framework than this sample problem.)  In this 

example, the behavior of an organization is modeled by a distributed optimization algorithm 

[Lee87].  Consider an organization comprising agents whose objective is to come up with an 

n-dimensional decision vector x = (x1, ..., xn).  Each component is decided by only one agent of 

the organization; i.e., only one agent has the authority and responsibility over each component of 

the vector. Let iσ denote the agent of the organization that will be responsible for the decision xi. 

We assume that the performance of a decision vector x is judged according to a cost function J: 

Rn→R and that the organization's aim is to choose a decision vector x that minimizes J. Let us 

further assume that the organization strives toward this objective by mimicking a gradient 
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algorithm. That is, a preliminary decision vector x is chosen, which is then updated by making a 

correction along a direction of cost improvement, as in the gradient algorithm 

 x : = x − γ∇J(x). 

            Let us now assume that the cost function J has the structure 

1 ( , )
( ) ( ) ( , )

T

n i ij
i i ji i j A

J x J x J x x
= ∈

= +∑ ∑                           (2) 

(e.g., a quadratic cost function). Here, iJ  captures the immediate cost to agent iσ  due to its own 

decision, whereas  ijJ  reflects the interactive effect of the decisions of agents σi and σj on the 

cost.  The set AT indicates the set of all pairs of interacting agents. We assume that for every pair 

of interacting agents ,i jσ σ , with (i,j) ∈ AT, there is some agent, denoted by σij, that will have the 

responsibility of measuring and suitably communicating the effects of these interactions. We 

assume that the cost function iJ  is known only to agent σi for each i, and that ijJ  is known only 

to agent σij for each (i,j) TA∈ . (This models the organization whose agents do not know the 

global objective, possibly for reasons of protecting the secrecy of the organization.)  In such a 

case, the organizational behavior can be modeled by an asynchronous or synchronous version of 

a distributed gradient algorithm [Tsi84]. Note that agent σi, in order to perform its variable 

update for the gradient algorithm 

           ( ) ( ) ( )
( , )

: ,
T

i ij

i i i i i j
i j Ai i i

J J Jx x x x x x x
x x x

γ γ γ
∈

∂ ∂ ∂
= − = − −

∂ ∂ ∂∑ , 

needs the value of ( ),
ij

i j
i

J x x
x

∂
∂

 for all j such that ( , ) Ti j A∈ . Also, agent σij needs values of ix  

and jx . Clearly, the communication requirements of this algorithm are that σij should be able to 

communicate with agents σi and σj, in conformance with our general model. Note that C1 

measures the number of pairs of agents that need to communicate with each other. On the other 

hand, C2 can represent the communication overhead for exchanging partial derivatives and 

variables that would have to be communicated between agents; both are meaningful measures of 

communication. Furthermore, according to our general definition, the load  i  of agent σi can 

reflect the computational burden of updating its variable xi and computing the partial derivatives 

that have to be evaluated by that agent during a typical iteration.  
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2.2 Module Allocation, Mapping, Graph embedding, and Scheduling Problems 
            Numerous papers have been written on task matching and scheduling. (For examples, see 

[Braun98, ShHK95, CasKu88, Grid99, ArmHK98, AlPrRa99, MaSie98, Wang97, Fre96, 

BlDr96, BerW96, BhGM95, IvOzFo95, LePS95, SohnR95, BatAl94, YangGe94, Weber93, 

PengS93, SihLee93, AngerHC90, ShWP90]).  The precise optimal solutions of most scheduling 

problems are intractable [GareyJ79], so many papers discuss heuristic algorithms.  The 

formulation of problems being discussed in the present paper does not explicitly consider the 

temporal aspect of task performance in their formulation.  In other words, minimizing execution 

time is not explicitly a formal performance objective of our task allocation (assignment), 

although achieving the performance criteria defined in the present paper will strongly tend to 

reduce the execution time.  Thus our problems, formulated as mapping between graph 

components, may address applications in which the distributed system performs an ongoing task 

(in contrast to a finite amount of computation).  Or, in the case of finite computation, we can 

macroscopically consider load balancing as an effort to reduce execution time. 

            The design problems that we have formulated are reminiscent of the mapping problem in 

[Bok87], which is to map the vertices of the “problem graph” to the nodes of a graph modeling a 

parallel processor or array.  However, the objective and constraint of the task assignment 

problem in the present paper are different.  The mapping problem discussed in the present paper 

is also similar to a general class of problems referred to as task assignment problems or module 

allocation (MA) problems [Stone77, Stone78, ChuHLE80, Bok81, Gus83, Towsley86, 

Sinclair87, Lo88, Fer89].  The “communication graph” in the module allocation problem and the 

task graph GT in the present paper have different meaning, as our task assignment problem 

assigns edges of GT to agents (processors) as well as the vertices.  Moreover, the module 

allocation (MA) problem minimizes the sum of the execution cost and communication cost, 

while the task assignment problem in the present paper addresses conflicting objectives of 

communication cost and load balancing. 

             Although independently developed, reference [Efe82] is similar to the problems 

presented in the present paper in that the load imposed on each process is considered as a 

constraint in minimizing the communication cost resulting from the module allocation.  Since the 

processors are assumed to be homogeneous in the module allocation problem discussed in 

[Efe82], the constraint on the load forces the load to be balanced to a certain extent.   The 
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problems introduced in the present paper have different task structures, however.  Also, the 

assumptions on the structure of the processor network are much looser than [Efe82], because 

[Efe82] assumes a fully interconnected network of processors.    

             It is worthwhile to differentiate between the task assignment problem in the present 

paper and the widely studied graph embedding problem [Röm96, Mon95, Diek93]. The graph 

embedding problem would be to find a mapping from VT to VO while considering load, dilation, 

and congestion as performance measures. A major differentiator of the task assignment problem 

in the present paper is that it seeks a mapping from VT ∪AT to VO.  In addition, the task 

assignment problem has the constraint that the resulting organizational structure should be valid, 

as specified in Definition 1. 

       In the problem discussed in section 5 (the case in which the only constraint imposed on 

organizational graph GO is the number of agents, OV ), the system designer has the flexibility of 

designing the topology of the agents, GO= ( ),O OV A . Thus, the task assignment problem contains 

an element of graph topology design similar to a communication network’s topological design 

problem [BerGal92]. However, there are significant differences. First, the communication 

requirement in the task assignment problem is determined by the designer’s choice of mapping 

σ , whereas the amounts of data traffic between origin-destination pairs are given in the 

communication network topology design problem. Second, the constraint of valid organizational 

structure (Definition 1) greatly limits the routing of information between each origin-destination 

pair − namely, GO= ( ),O OV A  must have the property that (σij,σi) ∈ AO and (σij,σj) ∈ AO for every 

(i,j) ∈ AT.  

 

 3  FIXED DISTRIBUTED SYSTEM ORGANIZATION AND EXPERTISE 

             Let there be given a task graph GT . In this section, we consider the distributed system 

design problem under the following assumptions: 

1) the organizational graph ( ),O O OG V A=  is also given. 

2) T OV V≤ . 

3) σi = ia  for all i (the assignment of each subtask is given). 
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(An exemplary physical meaning of this is that subtask i in VT requires expertise that only agent 

ia  has. Or, from an example of information security, only agent ia  has access to information 

required to handle subtask i.) Thus, the task assignment problem under these assumptions is to 

choose the value of σij for every (i,j) ∈ AT. First, we note the possibility that there does not exist 

a feasible task assignment− that is, there may not exist a mapping σ  that results in a “valid 

organizational structure” as defined in section I.  It is easy to determine whether a feasible 

mapping σ exists. In particular, we only need to check whether for every (i, j) ∈ AT there exists 

some agent ka  for which ( ),i ka a  ∈ AO and ( ),j ka a  ∈ AO. (Note that ka  here can be ia  or ja  

because ( ), ,l l O l Oa a A a V∈ ∀ ∈  in our definition of GO = (VO, AO).) 

3.1 Minimizing the maximum load L 

   The first problem we consider is the following. We wish to find a valid task assignment 

which minimizes the maximum load L, subject to the constraints mentioned in the introduction to 

this section. 

            The above defined problem can be solved in polynomial time by solving a sequence of 

linear network flow problems. We start by considering the following related question: given a 

value Lup, does there exist a valid task assignment, satisfying all of our constraints and such that 

L ≤  Lup? This question can be answered by solving a network flow problem.  The following 

algorithm produces the answer. 

Algorithm 3.1 – Phase 1 

• For each element (i,j) of AT, create a node mij, and for each element ia  of VO, create a 

node di. 

• For each element (i,j) of AT and for each node k Oa V∈ , if ( , )i k Oa a A∈  and ( , )j k Oa a A∈ , 

then create an edge from mij to dk .  

• Create the source node s and make an edge from s to each mij  with capacity limit 1. 

• Create the sink node t 

• For each agent ia  that is assigned a subtask (i.e., Ti V∈ ), make an edge from node di to t 

with capacity limit ( )upL p i− . 

•  For each agent la  that is not assigned with a subtask ( Tl V∉ ), make an edge from node 

ld  to t with capacity limit Lup. 
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(A flow graph constructed by Algorithm 3.1 – Phase 1 is illustrated in Fig. 1.)  Phase 2 solves 

the max-flow problem associated with this flow graph. 

 

Algorithm 3.1 – Phase 2 

• Run an algorithm that solves, under the constraint of integer flows, the max-flow problem 

constructed in Phase 1. 

• If the maximal flow is |AT|, there is a valid task assignment.  Otherwise, there is not. 

 

There are algorithms that efficiently (in polynomial time) find the maximal flow from s to t with 

the property that the flow through each link has an integer value (e.g., [PaSt82], [BerTsi97], 

[Ber98], [BaJS05]).  We denote by variable xij,k  the flow through the edge from mij to dk.  Then, 

xij,k=1 signifies σij = ak, and xij,k=0 signifies that the interaction between subtasks i and j is not 

handled by agent ak. The flow graph imposes constraint xij,k =1k =1
n∑ for the case of max-flow = 

|AT|, reflecting the fact that each interacting pair (i, j) in AT must be assigned to some agent ak 

Furthermore, since σij must be able to communicate to ia  and ja , we construct the flow graph 

in the following way: if either ( , )i k Oa a A∉  or ( , )j k Oa a A∉ , then there is no edge from mij to dk .  

Through the capacity limits of the edges to t, we impose the constraint, ,( , )
( )

T
ij k upi j A

p k x L
∈

+ ≤∑  

for each agent ia  in OV .  

In order to find the optimal value of L, we could solve the above network flow problem for all 

values of Lup from { }max ( ) | k Op k a V∈  to { }max ( ) | k Op k a V∈ + TA , and this would still be a 

polynomial-time algorithm for the original problem.  In fact a faster algorithm is obtained if we 

perform binary search for the optimal value of L; in particular, it would suffice to solve 

O(log TA ) network flow problems.  
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3.2 Minimizing a communication measure 
  The problem of minimizing the number C1 of arcs is vacuous because GO is assumed to be 

given and therefore C1 is predetermined. The problem of minimizing C2 is also very simple, as 

we now discuss.  In the case of fixed distributed system organization, we have 

( )( , )
2 ( , ), , ,

T
i j iji j A

C i j a aµ σ
∈

= ∑ . Therefore, in order to minimize C2, clearly we should choose 

assignment for each ( , ) Ti j A∈ : 

{ }

( )
|( , ) ,( , )

arg min

                            ( , ), , ,
k O i k O j k O

ij a V a a A a a A

i j ki j a a a

σ

µ

∈ ∈ ∈
=

 

3.2.1 Minimizing a communication measure under load constraints 

  A more interesting problem addresses the constraint on the load imposed on the agents. We 

consider the problem of minimizing C2 subject to an upper bound Lup on the maximum load L. 

This problem again can be formulated as the min-cost flow problem [PaSt82] through the 

following procedure:   

 

Algorithm 3.2 

• Run Phase 1 of Algorithm 3.1. 

• Set the required flow to be TA . 

• For each combination of mij and dk that are connected by an edge, set the cost of the edge 

to be ( )( , ), , ,i j ki j a a aµ . 

• Set the costs of other edges to be each 0. 

 

Flow from mij to dk, xij,k, cannot exceed 1 from the construction of the network flow graph.  Also, 

if we constrain xij,k within {0,1}, clearly the min-cost flow of the network is the minimal C2 

under the load constraint Lup.    Application of the Primal-Dual algorithms in [PaSt82, Chapter 7] 

shows that we can achieve the minimal cost of the network constructed in Algorithm 3.2 and 

that the same minimal cost can be achieved by a flow vector that has an integer flow value along 

each edge. In order to obtain such a flow vector in the above network flow graph, we can apply 

polynomial-time algorithms in [PaSt82, Chapter 7].  
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 4  FIXED DISTRIBUTED SYSTEM ORGANIZATION OF VERSATILE AGENTS 
       Let there be given a task graph GT. In this section we again assume that the graph GO is 

given.  However, in contrast to the preceding section, we do not impose the requirement that a 

particular subtask must be assigned to a particular agent. In this section, instead of constraint σi 

=ai, i∀ , which was imposed in section 3, we impose the milder requirement that each agent is 

assigned at most one subtask. An exemplary physical meaning of this constraint is that an 

organization prevents an individual agent from having excessive information or authority for the 

purpose of security (i.e., adequate compartmentalization of information and power). With this 

constraint, we can trivially conclude that there is no feasible mapping σ if T OV V> . Therefore, 

for the rest of this subsection, we assume that T OV V≤ . Our main result states that even the 

problem of determining existence of a valid task assignment is difficult (in particular, NP-

complete.) In order to prove this, we consider a subproblem in which all instances have 

T OV V= , and we will prove that this subproblem is NP-complete.  Thus, for the rest of this 

subsection, we further assume that T OV V= . That is, the mapping i σi is a permutation.  

 

Theorem 4.1: The problem of deciding whether there exists a mapping σ such that the 

organizational structure (GO,σ) is valid with respect to a given task graph GT is NP-complete. 

 

Proof: That the problem belongs to NP is evident: if we have a YES instance, the mapping σ 

provides a certificate. 

 

We now note that the problem of interest is equivalent to the following: 

Problem P: Does there exist a permutation i σi such that whenever (i,j) ∈ AT., then the 

distance of σi and σj (in the graph GO) is at most 2. 

 

For any graph G, let ( )T G   be a graph with the same set of nodes and such that (i,j) is an arc of 

( )T G  if and only if the distance of i and j in the graph G is at most two. We then see that we are 

dealing with the following problem: 
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Problem P': Given two graphs GT and GO with the same number of nodes, is GT  isomorphic with 

a subgraph of ( )OT G ? 

 

We recall the problem, CLIQUE: Given a graph G= ( , )V A , and a positive integer k | |V≤ , does G 

have a clique of size k? CLIQUE is known to be NP-complete [GareyJ79].  We now consider a 

subproblem of CLIQUE, which we will call “Restricted Clique.” 

 

Restricted Clique: Given a graph ( ),G V A′ ′ ′=  in which the degree of each node is at least 

2 1V ′ + , and an integer k ′  such that 2 2V k V′ ′ ′+ ≤ ≤ ,  does G′  have a clique of size k ′ ? 

 

Lemma 1: “Restricted Clique” is NP-complete.  

Proof: Let there be given an instance (G,k) of the CLIQUE problem and let m be the number of 

nodes of G. We construct a new graph G′, as follows. The graph G′ consists of the graph G 

together with m + 4 additional nodes. Each of these additional nodes are connected by means of 

an arc to every other node in G′. Note that G′ has 2m + 4 nodes − i.e., 2 4V m′ = + . Also, note 

that the degree of each node in G′ is at least m + 3 = 2 1V ′ + . Construct k′  by k′ = m + 4 + k. 

Note that 4 2 2k m V′ ′≥ + = +  and 4 4k m k m V V′ ′= + + ≤ + + =  . These constructions can 

be completed in polynomial time. If G has a clique of size k, then the nodes in this clique and the 

m + 4 added nodes form a clique of size 4k m k ′+ + =  in G′. For converse, suppose G′ has a 

clique of size 4k k m′ = + + . Then, among the k ′  nodes in this clique, the number of nodes 

added in constructing G′ can be at most 4m + . Therefore, at least ( )4k m′ − +  = k  nodes are in 

G and fully connected. Thus, it is implied that G has a clique of size k. We have thus reduced the 

general CLIQUE problem to the “Restricted Clique” problem. Then, because CLIQIUE is in NP-

complete, “Restricted Clique” is in NP-complete.  Q.E.D. 

 

Recall now the SUBGRAPH ISOMORPHISM problem: given two graphs G and G′, is G 

isomorphic to a subgraph of G′? Now we consider a subproblem of SUBGRAPH 
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ISOMORPHISM. Since CLIQUE is a special case of SUBGRAPH ISOMORPHISM, which we 

call “Restricted Subgraph Isomorphism.”  

 

Restricted Subgraph Isomorphism: Let ( ),G V A=  and ( ),G V A′ ′ ′=  be graphs in which the 

degree of each node is at least 2 1V ′ +  and such that V V ′≤ .  Is G isomorphic to a subgraph 

of G′? 

 

Lemma 2: “Restricted Subgraph Isomorphism” is NP-complete.  

Proof: We can further restrict the instances of this problem so that G must be a fully connected 

graph with k ′  nodes, where k ′  is some integer such that 2 2V k V′ ′ ′+ ≤ ≤ .  Then, the degree 

of each node in G is 1 2 1k V′ ′− ≥ + . This subproblem of the “Restricted Subgraph 

Isomorphism” is the “Restricted Clique” problem, which is NP-complete.  Therefore, the 

“Restricted Subgraph Isomorphism” is NP-complete. Q.E.D. 

 

We will need another graph transformation. Given a graph G, we denote by Q(G) the graph 

which is the same as G except that each arc of G is replaced by a sequence of 3 arcs, as shown in 

Fig. 2. We introduce some more notation. If G = (V, A) is a graph and i V∈  is a node of that 

graph, we use T(Q(i)) to denote the image of node i when the transformations Q and T are 

applied in succession. Some nodes in graph ( )( )T Q G  is of the from T(Q(i)) with i V∈ , and 

other nodes in ( )( )T Q G  are not in that form. 
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a) b)

c)

a) b)

c)c)  

 

Fig. 2. a) A graph G;    b) the graph Q(G);    c) the graph ( )( )T Q G . 

 

Lemma 3: Let G = (V, A)  be a graph in which all nodes have degree at least d. 

(a) If i is a node of G, then node ( )( )T Q i   has degree at least 2d; all nodes of ( )( )T Q G  that 

are not of the form ( )( )T Q i  for some i V∈  have degree bounded above by V  + 1.  

(b) If (i,j) is an arc of G, then the distance in the graph ( )( )T Q G  between ( )( )T Q i  and 

( )( )T Q j  is equal to 2; if (i, j) is not an arc of G, then the distance between ( )( )T Q i  and 

( )( )T Q j  is larger than 2. 
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Proof: a) If a node in G has degree δ > d, then the corresponding node in ( )( )T Q G  is connected 

to its neighbors in Q(G) (there are δ of them) and to the neighbors of these neighbors (there are δ 

of them as well, for a total of 2δ > 2d. 

Note that Q(G) and ( )( )T Q G  have an identical set of nodes. If a node in ( )( )T Q G  is not of the 

form ( )( )T Q i , then it has only 2 neighbors in the graph Q(G). One of these neighbors has a 

single extra neighbor; the other one corresponds to a node of the original graph G and has at 

most 2V −  extra neighbors in Q(G). Thus, the degree of the node under consideration in 

( )( )T Q G  is at most 2 + 1 + ( )2V −   = 1V +  . 

b) Evident from Fig. 2. Q.E.D. 

 

Consider a graph G= ( , )V A  in which each node has degree at least 2 1V + .  Then, in the graph 

( )( )T Q G , nodes of the form ( )( )T Q i  will have degree at least  2V + . All other nodes in 

( )( )T Q G  will have degree at most 1V + . Thus, for each node of ( )( )T Q G , it can be 

immediately determined whether it is of the form ( )( )T Q i  or not. 

 

Lemma 4: Let G= ( , )V A  and G′ = ( , )V A′ ′  be graphs in which the degree of each node is at least 

2 1V ′ +  and such that V V ′≤ .   Then, G is isomorphic to a subgraph of G′ if and only if 

( )( )T Q G  is isomorphic to a subgraph of ( )( )T Q G′ . 

Proof: If G is isomorphic to a subgraph of G′, it is evident that ( )( )T Q G  is isomorphic to a 

subgraph of ( )( )T Q G′ . It only remains to prove the reverse implication. 

     Suppose that ( )( )T Q G  is isomorphic to a subgraph of ( )( )T Q G′ . Consider any node of 

( )( )T Q G  which has degree larger than V ′  + 1. Then, the degree of this node is larger than 

1V +  because V V ′≤ . Such a node is of the form ( )( )T Q i  for some node i of G, by Lemma 

3(a). Since ( )( )T Q G  is isomorphic to a subgraph of ( )( )T Q G′ , node ( )( )T Q i  is mapped to 
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some node of ( )( )T Q G′  that has also degree larger than 1V ′ + , and is therefore of the form 

( )( )T Q i′ , where i' is a node of G′. 

      Suppose that (i, j) is an arc of G. Then, because nodes i and j in graph G have degree at least 

2 1V ′ + , ( )( )T Q i  and ( )( )T Q j  have both degree larger than ( )2 2 1 1 1V V′ ′+ − = +  (by 

Lemma 3(a)). Also, their distance in ( )( )T Q G  is equal to 2 (by Lemma 3(b).) Since ( )( )T Q G  is 

a subgraph of ( )( )T Q G′ , the nodes ( )( )T Q i  and ( )( )T Q j  are mapped to some (distinct) nodes 

in ( )( )T Q G′  which are of degree larger than 1V ′ + . In particular, these latter nodes of 

( )( )T Q G′   must be of the form ( )( )T Q i′  and ( )( )T Q j′ , for some nodes i′ and j′ of G′. Since 

the distance between ( )( )T Q i  and ( )( )T Q j  is equal to 2, the distance of ( )( )T Q i′  and 

( )( )T Q j′  must be at most 2. Using Lemma 3(b), we conclude that (i′, j′) is an arc of G′ . 

Therefore, by mapping i and j to i′ and j′, respectively, and by mapping similarly all other nodes 

of G to nodes of G′, we see that G is isomorphic to a subgraph of G′, which concludes the proof 

of the lemma. Q.E.D. 

 

We notice that Lemma 4 facilitates polynomially transforming the “Restricted Subgraph 

Isomorphism” problem (shown earlier to be NP-complete) to Problem P′. We now consider this 

polynomial transformation.  For an instance of the “Restricted Subgraph Isomorphism” problem 

such that V V ′= , construct the instance of Problem P′, G0 and GT, by G0 = Q(G′) and GT 

= ( )( )T Q G . By Lemma 4, G is isomorphic with a subgraph of G′  if and only if GT is isomorphic 

with a subgraph of  ( )OT G . For an instance of the “Restricted Subgraph Isomorphism” problem 

such that V V ′< , construct G0 = Q(G′) and construct GT by adding zero-degree nodes to 

( )( )T Q G  so that G0 and GT have the same number of nodes.  Then, GT is isomorphic with a 

subgraph of ( )OT G  if and only if ( )( )T Q G  is isomorphic with a subgraph of ( )( )T Q G′ .  Then, 

by Lemma 4, ( )( )T Q G  is isomorphic with a subgraph of ( )( )T Q G′  if and only if G is 

isomorphic with a subgraph of G′ .  Because of this polynomial transformation, we can conclude 

that Problem P′ is NP-complete, and the proof of Theorem 4.1 has been completed. Q.E.D. 
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             We have shown that it is difficult to even determine whether a valid organizational 

structure, as defined in section 1, does exist. It follows that the problem of determining an 

optimal valid organization is also difficult (NP-hard), for any nontrivial choice of the 

performance criterion. 

 

5   THE CASE WHERE ONLY THE NUMBER OF NODES IN GO IS FIXED 
            We now consider the case where GT is given and the system designer has the flexibility 

of designing the network topology of the agents, GO= ( ),O OV A . This problem models a situation 

in which a government needs to design an organizational structure to perform a huge global task. 

We assume that the number of agents, OV , is given, and the problem is to find graph 

GO= ( ),O OV A  and mapping σ : VT ∪AT → VO. As in sections 3 and 4, in this section we also 

assume that each agent can have at most one subtask.  Therefore, if T OV V> , there is obviously 

no feasible mapping σ.  For the rest of this section, we assume that T OV V≤ . No other 

constraints are imposed on GO − i.e.,  OA  is not given.  

            Under the above constraints, the problem of designing a valid organizational structure 

that minimizes C1 is trivial. Let us denote VT = {1, 2,…, m}, { }1 2, , ,O nV a a a= . We can pick m 

nodes from OV  and construct an organizational graph, 

          { } ( ) ( ) ( ) ( ){ }( )1 2 1 2 1 3 1 4 1, , , , , , , , , , , ,O m mG a a a a a a a a a a a=  (a “star" graph),  

and let σij = 1a  for all (i,j) ∈ AT. We then have C1 = 1m − . Since GT is connected, as mentioned 

in section 1, it is clear that GO must also be connected and therefore no valid organization could 

have less than m−1 arcs. Therefore, the minimum value of C1 is 1m − . 

               If we impose a load balancing constraint L < Lup and attempt to minimize Cl subject to 

that constraint, we obtain an apparently more difficult problem. We conjecture that this problem 

is NP-hard [GareyJ79], although we have not been able to establish this result. 

  The following theorem addresses minimizing C2. 
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Theorem 5.1: Under the assumptions of this section, the problem of designing a valid 

organizational structure in which C2 is minimized subject to the constraint L ≤ Lup, can be 

formulated as a min-cost linear network flow problem and can be solved in polynomial time. 

Proof: Because GO is not given as a constraint, the task assignment process can pick GO to be a 

complete (fully connected) graph in order to minimize C2.  With the fully connected GO, we can 

minimize C2 subject to the constraint L < Lup. However, this problem is a special case of the 

problem considered in section 3.2.1, and the result follows from section 3.2.1 Q.E.D. 

 

6  ALLOWING MULTIPLE SUBTASKS FOR AN AGENT  
       So far in this paper, we have discussed the task assignment problem under the assumption 

that an agent cannot have more than one subtask. We now briefly discuss the problems with that 

assumption relaxed. 

6.1 Fixed Organization 

    As in section 3.1, we now assume that the organizational graph OG  is fixed and that the 

assignment of subtasks, ,i Ti Vσ ∀ ∈ , is predetermined.  The difference of these assumptions from 

those in section 3.1 is that the task assigner may face the case that i jσ σ=  even if i j≠ .  

Therefore, the task assignment problem for a fixed organization under discussion now is a 

generalization of the problem addressed in section 3.1.  The generalized problem can be solved 

by simply adjusting Algorithm 3.1 as follows: 

Algorithm 6.1 – Phase 1 

• For each element (i,j) of AT, create a node mij, and for each element ia  of VO, create a 

node di. 

• For each element (i,j) of AT and for each node k Oa V∈ , if ( , )i k OAσ σ ∈  and ( , )j k OAσ σ ∈ , 

then create an edge from mij to dk .  

• Create the source node s and make an edge from s to each mij  with capacity limit 1. 

• Create the sink node t 

• For each agent ka , make an edge from node dk to t with capacity 

limit { } ( )
T i k

up i V a
L p i

σ∈ =
− ∑ . 
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  Phase 2 solves the max-flow problem associated with this flow graph. 

Algorithm 6.1 – Phase 2 

• Run an algorithm that solves, under the constraint of integer flows, the max-flow problem 

constructed in Phase 1. 

• If the maximal flow is |AT|, there is a valid task assignment.  Otherwise, there is not. 

 

6.2 Fixed Organization of Versatile Agents 
    In this subsection, we consider the task assignment problem in the organization of versatile 

agents without any constraint on which agent can be assigned which tasks. We make no 

assumption about the relative sizes of TV  and OV .  In this problem, a valid organizational 

structure, per Definition 1, obviously exists. (For example, if all subtasks in TV  and all 

interactions in TA  are assigned to a single agent, the resulting organizational structure is valid.) 

 

6.2.1 Minimizing the maximum load L 

      We formulate the task assignment problem in the fixed organization of versatile agents as an 

integer linear programming problem. For each subtask Ti V∈  and each agent k Oa V∈ , we define 

one binary integer variable , {0,1}i kx ∈ . The expression , 1i kx =  signifies that i kaσ = . For each 

( , ) Ti j A∈  and each agent k Oa V∈ , we define one binary integer variable , {0,1}ij kx ∈ . The 

expression xij,k=1 signifies σij = ak, and xij,k=0 signifies that the interaction between subtasks i and 

j is not handled by agent ak.  We formulate the following ILP constraints: 

, 1,  i k Tk
x i V= ∀ ∈∑  

, 1,  ( , )ij k Tk
x i j A= ∀ ∈∑  

 

   Note that if σij = ak, then both ( , )k ia σ  and ( , )k ja σ  must be in OA  in order for mapping (task 

assignment) σ  to be feasible. This constraint in terms of ILP variables can be expressed as 

follows: 

           ( )( ), , , , and ,  

                                    ( , ) , ,
l k l k

ij k i l ij k j la H a a H a

T k O

x x x x

i j A a V
∈ ∈

≤ ≤

∀ ∈ ∀ ∈

∑ ∑
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where we denote the set of all neighboring nodes of agent k Oa V∈  as  

           ( ){ }( ) ,k l O l k OH a a V a a A= ∈ ∈ . 

In summary, the ILP problem is: 

minimize     
subject to        

L
 

     , ,( , )
( ) ,    

T T
i k ij k k Oi V i j A

L x p i x a V
∈ ∈

≥ + ∀ ∈∑ ∑  

     , 1,  i k Tk
x i V= ∀ ∈∑  

     , 1,  ( , )ij k Tk
x i j A= ∀ ∈∑  

     ( )( ), , , , and ,  

                                    ( , ) ,
l k l k

ij k i l ij k j la H a a H a

T k O

x x x x

i j A a V
∈ ∈

≤ ≤

∀ ∈ ∀ ∈

∑ ∑
 

     
{ }
{ }

,

,

0,1 , ( , ) ,

0,1 , ,
ij k T k O

i k T k O

x i j A a V

x i V a V

∈ ∀ ∈ ∀ ∈

∈ ∀ ∈ ∀ ∈
 

 

We can use available algorithms to solve this integer linear programming problem. However, 

whether there is a polynomial-time algorithm for this particular ILP problem is unknown. 

 

6.2.2 Minimizing a communication measure 

     The problem of minimizing the number C1 of arcs is vacuous because GO is assumed to be 

given and therefore C1 is predetermined. The problem of minimizing the number C2 without a 

further constraint is also trivial. If we choose a constant mapping  

1, , ( , )i ij T Ta i V i j Aσ σ= = ∀ ∈ ∀ ∈ ,  

(that is, to assign all subtasks and all interactions to one agent), then C2=0. However, this 

mapping places all of the load on a single agent. Thus, we now consider minimizing C2 subject 

to an upper bound Lup on the maximum load L. We can formulate this problem as an integer 

programming problem similar to the one formulated in section 6.2.1: 

 

( )
( )

, , ,
,

minimize ( , ), , ,

subject to
T l O m O k O

l m k i l j m ij k
i j A a V a V a V

i j a a a x x xµ
∈ ∈ ∈ ∈

∑ ∑ ∑ ∑
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     , ,( , )
( ) ,    

T T
up i k ij k k Oi V i j A

L x p i x a V
∈ ∈

≥ + ∀ ∈∑ ∑  

     , 1,  i k Tk
x i V= ∀ ∈∑  

     , 1,  ( , )ij k Tk
x i j A= ∀ ∈∑  

     ( )( ), , , , and ,  

                                    ( , ) ,
l k l k

ij k i l ij k j la H a a H a

T k O

x x x x

i j A a V
∈ ∈

≤ ≤

∀ ∈ ∀ ∈

∑ ∑
 

      
{ }
{ }

,

,

0,1 , ( , ) ,

0,1 , ,
ij k T k O

i k T k O

x i j A a V

x i V a V

∈ ∀ ∈ ∀ ∈

∈ ∀ ∈ ∀ ∈
 

The main difference between this problem and the ILP problem in section 6.2.1 is that the 

objective function in this problem is nonlinear.  

 

 6.3 The Case in Which Only the Number of Nodes in GO Is Fixed 
      Now we consider the case in which the system designer determines the organizational graph 

GO as well as mapping σ. Because we have two objectives (load balancing and minimizing the 

communication measure), we can consider two types of optimization problem formulations: 

1) Minimizing the communication measure (C1 or C2) under constraint ,upL L<  where Lup is the 

maximum allowed load for an individual agent. 

2) Minimizing L  under the constraint C1≤ C1up (or under the constraint C2≤ C2up) 

In this section, we establish that a polynomial-time algorithm is not likely to exist for either of 

these two problems.  In order to establish that, we first convert these problems into the following 

single decision [PaSt82] problem: 

 Problem 6.1: Given ( ),T T TG V A= , the number of agents OV , upL , and C1up (or C2up), is there 

a valid organizational structure that results in upL L<  and C1≤ C1up (or C2 ≤ C2up)? 

We will prove that this problem is NP-complete.  To do so, we consider a subproblem in which 

C1up (or C2up) is sufficiently large that the constraint on the communication measure is never 

violated for any choice of valid organizational structure, e.g.,  

C1up ( )1 2O OV V≥ − ,  

C2up ≥ ( )( , ) , , ,max ( , ), , ,
T l m kT i j A a a a l m kA i j a a aµ∈ .  



 25

In such a subproblem, the communication constraint plays no role.  The following theorem 

proves that this subproblem is NP-complete and thus that Problem 6.1 is also NP-complete. 

 

Theorem 6.1  The problem of deciding whether there exists a mapping σ  such that  

{ } { }|
 ( ) ( , ) | ,  

T i
k T ij k up k Oi V k

p i i j A a L a V
σ

σ
∈ =

≡ + ∈ = ≤ ∀ ∈∑   

for a given task graph TG , set of agents OV ,  and Lup, is NP-complete. 

 

Proof: We recall an NP-complete problem, Bin Packing [GareyJ79].  

Bin Packing: Given a set U={ }1 2, , , mu u u  of items, a positive integer size ( )s u  for each 

u U∈ , a positive integer bin capacity B, and a positive integer K, is there a partition of U into 

disjoint sets 1U , 2U , …, KU  such that the sum of the sizes of the items in each iU  is B or less? 

      Now we describe a polynomial transformation from the Bin Packing problem to our task 

assignment problem under discussion. Construct the set of subtasks TV U= . For each subtask 

Tu V∈ , define ( ) ( )p u s u mα= − , where α  is an integer such that 2mα >> . Construct 

( ) ( ) ( ){ }1 2 2 3 1, , , , , ,T m mA u u u u u u−=  so that ( ),T T TG V A=  is connected. (Thus, 1TA m= − .) 

Construct a set, { }1 2, , ,O KV a a a= , of K agents. (Note that agent ka  corresponds to set kU .) 

Let upL Bα= .  These constructions can be completed in polynomial time. 

      Suppose that U can be partitioned into disjoint sets 1U , 2U , …, KU  such that the sum of the 

sizes of the items in each kU  is B or less.  Then we have ( )
ku U
s u B

∈
≤∑  for each 1,2, ,k K= . 

Consider a mapping : T OU A Vσ ∪ →  (or equivalently, : T T OV A Vσ ∪ → ) such that u kaσ =  if 

item u is in kU  in the Bin Packing instance, and such that *, ( , )ij Ta i j Aσ = ∀ ∈  for some agent *a  

that is assigned with at least one subtask. Now, for agent *a ,   

{ }

[ ]{ }

{ }

*

*

*

* |
= ( )

( 1) ( )

 ( )

T u
T u V a

u U

upu U

A p u

m s u m

s u B L

σ

α

α α

∈ =

∈

∈

+

= − + −

≤ ≤ =

∑
∑

∑
 

For an arbitrary agent *ka a≠ ,  
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{ }

[ ]{ }

{ }

|

= ( )

( )

( )  if >0 

0                                   if =0

T u k

k

k

k
u V a

u U

k ku U

k

up

p u

s u m

m U s u U

U

B L

σ

α

α

α

∈ =

∈

∈

= −

− += 


≤ =

∑

∑
∑  

Therefore, there exists a mapping σ  that results in the maximal load less than or equal to Lup. 

     Suppose there exists no partition of U into disjoint sets 1U , 2U , …, KU  such that the sum of 

the sizes of the items in each kU  is B or less.  Then, in every way U is partitioned, 

( ) 1
ku U
s u B

∈
≥ +∑  for some kU . Consider an arbitrary mappingσ . Then { }k T u kU u V aσ≡ ∈ = , 

k=1,2,…,K is a partition of U; namely, in this corresponding partition, each item u in U = TV is in 

kU  if u kaσ = . For some kU , ( ) 1
ku U
s u B

∈
≥ +∑ , which is equivalent to ( )

ku U
s u Bα α α

∈
≥ +∑ . 

Therefore, for some ka ,  

{ }

[ ]{ }

[ ]{ }

|

|

2
|

2

2

 ( )

( )

( )

( 1)

T u

T u k

T u k

u V k

u V a

u V a

up

p u

s u m

s u m

B m
B m B L

σ

σ

σ

α

α

α

α α α

∈ =

∈ =

∈ =

= −

≥ −

≥ + −

= + − > =

∑
∑
∑  

Therefore, for some agent ka , we have 

{ } { }|
 ( ) ( , ) |

T u k
k T ij ku V a

up

p u i j A a

L
σ

σ
∈ =

≡ + ∈ =

>

∑  

This implies that for every mapping σ , the maximum load is strictly more than Lup. 

Q.E.D. 

 

     We have considered a subproblem in which C1up (or C2up) is sufficiently large and proved 

that this subproblem is NP-complete.  Now we briefly discuss other specialized subproblems of 

Problem 6.1. Without a constraint on the load, minimizing C1 or C2 is a trivial problem.  If we 

assign all subtasks and interactions to a single agent, we have C1 = C2  = 0. If we impose a load-
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balancing constraint L < Lup, where Lup ( ) ,
T

Ti V
p i A

∈
< +∑  and attempt to minimize Cl, then we 

obtain an apparently more difficult problem, but we may have an efficient algorithm to solve it. 

We leave this problem for future study. Also, we consider minimizing C2 under the same load-

balancing constraint L < Lup. In this case, we can use the fully connected OG  for the purpose of 

minimization because there is no constraint on the physical connectivity of OG . In contrast to 

Theorem 5.1, this problem is apparently difficult.  This problem is again left for future study. 

 

7  CONCLUSIONS 
             This paper formulated a new class of design problems for distributed systems. We have 

derived solution procedures for some of these design problems, and we have seen that another 

variation leads to NP-hard problems. It is believed that these formulations capture some generic 

features of distributed system design problems. 
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