

SOME COMPARTMENTALIZED SECURE TASK ASSIGNMENT
MODELS FOR DISTRIBUTED SYSTEMS

Daniel C. Lee , Member, IEEE

Abstract – This paper formulates abstract problems of assigning subtasks to agents

(processors) in a distributed system with a goal that they can perform its global task

efficiently. The paper models the distributed system with a graph that describes the

communication capabilities of the constituting agents. This graph is referred to as the

“organizational graph.” In addition, the desired task-performing activity is modeled with

another graph describing the required communications. Then, a few variants of the task

assignment problem are formulated with potentially conflicting objectives (or constraints)

of load balancing and communication costs. For some of these variants this paper

provides efficient algorithms that solve the assignment problem. Some problems are

proven NP-complete, and some others are left open.

Index terms– Task assignment, distributed systems, load balancing, complexity,

information security

 D. C. Lee is with the School of Engineering Science at Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6,
Canada.
E-mail: dchlee@sfu.ca
Some part of this work was presented in Proc. Fourth International Conference on Knowledge-Based Intelligent Engineering
Systems & Allied Technologies, University of Brighton, UK, Aug. 2000.

 1

1 INTRODUCTION
 A distributed computing system designed to perform a particular global task accomplishes

its objectives by partitioning that task into subtasks and assigning these to its agents (processors).

Generically, some of these subtasks interact; that is, they cannot be carried out by the

corresponding agents in isolation. This introduces the need for communication between certain

pairs of agents. This paper focuses on such communication aspects of a distributed system. In

particular, we describe the system’s organization by specifying “who talks to whom” −that is, by

means of an undirected graph GO = (VO, AO). The set of nodes { }1 2, , ,O nV a a a= represents the

set of agents, and the presence of an arc (),i ja a ∈ AO signifies that agents ia and ja can

communicate with each other. In this paper, we will always assume that (),i ia a ∈ AO for all ia

∈ VO, which simply expresses the fact that any agent can communicate with itself. We will refer

to graph GO as the distributed system’s organizational graph. GO specifies the communication

capabilities available to the system. Note that (),i ka a ∉ AO indicates that agents ia and ka

cannot communicate, even if (),i ja a ∈ AO and (),j ka a ∈ AO for some ja . Two agents’ inability

to communicate with each other may model the distributed system’s security constraint. In some

groups, in order to prevent the leakage of secret information, the information is

compartmentalized and kept separately by different agents that are prevented from

communicating with each other. Such compartmentalization is common in the intelligence

community as a protective measure against counterintelligence. Alternatively, such an inability

to communicate may model the case in which maintaining reliable communication between two

agents is prohibitively expensive.

 Certain tasks might require communication among all agents of the distributed system, in

which case the most suitable system organization would correspond to a complete graph. On the

other hand, there are numerous situations in which the task to be executed has a special structure,

in which case fewer communication links suffice. Thus, the task assignment in the distributed

system is closely related to the organizational structure. For the case of fixed organizational

structure (that is, the task assigner cannot control which agent can communicate with which), the

subtasks must be assigned in such a way that the organizational structure can accommodate the

communication requirements. In this case, the major performance measure of the assignment

 2

may be the balance of loads among agents. For the case in which the task assigner also has

authority over the organizational structure, the task assignment is not constrained by the fixed

organizational structure. However, each assignment requires a specific structure of inter-agent

communications (i.e., organizational structure). The cost of retaining the communication

structure may be an additional performance criterion in this case.

 To clearly define our problem, we need to mathematically represent the communication

requirements of the task to be executed. This can be done in terms of another undirected graph,

GT = (VT,AT), called the task graph. The nodes of GT correspond to subtasks while the presence

of an arc (i, j) ∈ AT signifies that subtasks i and j are interdependent. Each subtask i ∈ VT is to be

assigned to an agent in VO, the agent primarily responsible for that task. We denote by iσ the

agent to which subtask i is assigned. In our model, the interdependence between two subtasks i

and j is handled by assigning to a particular agent in VO the responsibility of keeping track of this

interdependence. (For practical illustration, the interdependence necessitates communication

between two processes handling the two compartmentalized subtasks, and some agent should

handle the responsibility of supervising that communication between the two processes.) We

denote by σij the agent to which this responsibility is assigned. (For example, agent σij oversees

cooperative activities between σi and σj for security purposes.) It is then natural to require that

σij should be able to communicate with both σi and σj . In this paper we assume that GT is a

connected graph. (If GT is not connected, then it can be regarded as a collection of maximal

connected subgraphs 1
TG , 2

TG , …, TGν −that is, each of 1
TG , 2

TG , …, and TGν is a connected

graph and no path exists from a node in i
TG to a node in j

TG if i j≠ . Each subgraph can be

considered an independent project task and can be regarded as a separate task.

 Formally, we have the following definition.

Definition 1: Given a task graph GT, a valid organizational structure is defined as a graph GO,

together with a mapping σ : VT ∪AT → VO with properties: (σij,σi) ∈ AO and (σij,σj) ∈ AO for

every (i,j) ∈ AT.

 (We will mostly use the notation σij and σi instead of the more standard functional notations σ(i)

or σ(i,j). Also, recall that in accordance with our definition of GO, (),i ia a ∈ AO for all ia ∈ VO.)

The task assignment problems to be considered will be of the following form: given the task

graph GT, find a valid organizational structure (the mapping σ and graph GO per Definition 1) so

 3

as to optimize a given performance measure, subject to some additional constraints that remain

to be specified. The following are some additional constraints:

• We can impose a constraint on the cardinality of VO — that is, on the number of available

agents.

• We could assume that the graph GO is given, which would correspond to the case in which

we are dealing with a pre-existing system organization. In this case, all that remains to be

done is to design the mapping σ in some desirable way. An implicit assumption here is that

all agents of the pre-existing organization are equally capable and versatile, so that any

subtask can be assigned to any agent.

• Going one step further, we could assume that the graph GO is given and that the agent σi,

which is in charge of subtask i, is also pre-specified for each task i. In this case, we only have

to choose which agent will be responsible for the handling of each subtask interaction. That

is, we only need to choose the values of σij, for every (i,j) ∈ AT. Such a problem would

correspond to a situation in which each subtask is of a specific nature, intimately linked to a

particular agent that is the only agent capable of handling it. On the other hand, the implicit

assumptions are that the handling of the interactions between subtasks i and j does not

involve any particular expertise and that it can be handled by any agent, as long as the

necessary communication links are in place.

 Next, we have to specify some relevant performance criteria. Our first criterion pertains to

load balancing. The agents of any distributed system have limited resources, and there is a limit

to the number of their responsibilities. We assume that handling the interaction between each

pair of subtasks imposes a unit processing load. We denote by ()p i for each Ti V∈ the load of

executing subtask i. Formally, we define the load k of agent ka ∈ VO to be:

{ } { }|
 () (,) |

T i k
k T ij ki V a

p i i j A a
σ

σ
∈ =

≡ + ∈ =∑ . (1)

This is the agent ka ’s burden of executing subtasks plus the interactions for which this agent is

responsible. In this paper, we will assume that ()p i is an integer for each Ti V∈ . (This

assumption of integer p(i) and that of the unit load for the interaction between each pair are

crucial to the arguments used in the following sections. Problems with more relaxed assumptions

 4

are left for future research.) The maximum load L is defined by L = { }max k k Oa V∈ . L is a

performance criterion to be considered and smaller L is favored.

 Another performance criterion relates to the amount of communication resources employed

by the distributed system. This is a natural measure, given that communication is often a

constrained resource. In fact, we will be considering two alternative ways of measuring

communication resources, as follows.

• Given a system organization GO, let C1 be the number of arcs (),i ja a ∈ AO for which

i ja a≠ . Thus, C1 measures the number of communication links that have to be in place when

setting up the system.

• In an alternative method of measuring communication, we can measure the total amount of

communication cost in the system. We model the fact that interactions between different

pairs may need different intensities of communication. Also, the required amount of

communication for subtask interactions may depend upon the task assignment. By way of

illustration, for every (i, j) ∈ AT, agent σij has to exchange messages with both agents σi and

σj if σij coincides with neither. In this case, communication cost will be incurred in both

links. However, if σij coincides with σi, then we should not “charge” for communication

between σij and σi. Furthermore, we can imagine a system in which different links have

different communication costs. Thus, we represent the communication cost for the

interaction (,) Ti j A∈ between subtasks by function value ()(,), , ,i j iji jµ σ σ σ . The total

communication cost for all pairs of (distinct) agents, to be denoted by C2, can be defined as

()(,)
2 (,), , ,

T
i j iji j A

C i jµ σ σ σ
∈

= ∑ . For illustration, let us consider a special case of equal

communication intensity for all pairs of subtasks and equal communication cost for all links.

We can model this case by defining ()(,), , , 2i j iji jµ σ σ σ = if i jσ σ≠ and { },ij i jσ σ σ∉ ,

()(,), , , 1i j iji jµ σ σ σ = if i jσ σ≠ and { },ij i jσ σ σ∈ , ()(,), , , 1i j iji jµ σ σ σ = if i j ijσ σ σ= ≠ ,

and ()(,), , , 0i j iji jµ σ σ σ = if i j ijσ σ σ= = . Let us specialize further to the case that i jσ σ≠

as long as i j≠ . That is, no two subtasks are assigned to the same agent. Then C2 can be

regarded as 2|AT| minus the number of elements (i,j) of AT for which σij ∈{σi,σj} − that is,

 5

one unit of communication cost for (i,j) because one link is used if σij ∈{σi,σj} and two units

of communication cost for (i,j) because two links are used if { },ij i jσ σ σ∉ .

 It should be clear that the objectives of load balancing and low communication

requirements compete with each other. For example, in the special case of equal communication

intensity for all pairs of subtasks and equal communication cost for all links, communication

requirements are lowest if all subtasks are assigned to a single agent, which results in a very

unbalanced load. In our problem formulations, we will often deal with this trade-off by

attempting to optimize one of the performance measures while constraining the other. For

example, we might wish to minimize C1 subject to a constraint that L be bounded above by some

given Lup.

 The results presented by this paper are organized as follows. In sections 3, 4, and 5, we

assume that each agent can be assigned at most one subtask−i.e., a feasible mapping σ is

constrained to have property i jσ σ≠ if i j≠ . As one example of a physical meaning of this

constraint, an organization might prevent an individual agent from having excessive information

or authority for the purpose of security (i.e., adequate compartmentalization of information and

power). Each of sections 3, 4, and 5 then considers the task assignment problem under different

assumptions about “how much” of GO and of mapping σ are to be predetermined. For each

choice of assumptions, we consider a few different problems, depending upon the particular

choice of performance measure (L, C1 or C2). Section 6 relaxes the assumption that each agent

can be assigned at most one subtask, and discusses the task assignment problems.

2 MOTIVATION AND RELATED WORKS

 The mapping, σ : VT ∪AT → VO , which is part of a valid organizational structure that this

paper is seeking, is reminiscent of the well defined graph embedding problem [Röm96,

Mon95,Diek93]. The main difference is that the graph embedding problem would seek a

mapping f : VT → VO [Röm96]. In the present paper, we place a relatively high emphasis on

information security among the purposes of distributed processing. (Compartmentalization of

information is a very common practice for information security in an organization – especially an

intelligence organization.) As mentioned in section 1, the present paper views the responsibility

 6

of supervising communication between two subtasks as a computational burden, which is

separate from the communication cost. Indeed, when compartmentalization is employed as a

method of information security, the information exchange between parties must be carefully

guarded. The content of exchanged information should be examined to make sure that the

content really needs to be exchanged. Also, the confidentiality and integrity of the exchanged

information should be protected. The present paper regards the responsibility of supervising the

communication, which is represented by an edge in AT, between a pair of subtasks as an activity

separate from that of performing a subtask, which is represented by a node in VT. The present

paper intends to model the task assignment of a distributed organization with high emphasis on

information security.

 In fact, an idea of modeling organizational behavior by parallel and distributed computation

was presented earlier [Lee87]. Section 2.1 will show how the problem of finding mapping, σ :

VT ∪AT → VO, originated historically — namely, from the study of organizational behavior

modeled by distributed optimization and the study of decomposing the cost function

[BerTsi89,Lee87]. Section 2.2 mentions previously studied problems similar to the problem

introduced in Section 1.

2.1 Task Assignment in Distributed Organization Modeled by Decomposition of
Cost Function

 We will now describe, in some detail, an example that historically motivated the mapping

problem introduced in Section 1. (However, it should be noted that the mapping problem

introduced in Section 1 has more a general framework than this sample problem.) In this

example, the behavior of an organization is modeled by a distributed optimization algorithm

[Lee87]. Consider an organization comprising agents whose objective is to come up with an

n-dimensional decision vector x = (x1, ..., xn). Each component is decided by only one agent of

the organization; i.e., only one agent has the authority and responsibility over each component of

the vector. Let iσ denote the agent of the organization that will be responsible for the decision xi.

We assume that the performance of a decision vector x is judged according to a cost function J:

Rn→R and that the organization's aim is to choose a decision vector x that minimizes J. Let us

further assume that the organization strives toward this objective by mimicking a gradient

 7

algorithm. That is, a preliminary decision vector x is chosen, which is then updated by making a

correction along a direction of cost improvement, as in the gradient algorithm

 x : = x − γ∇J(x).

 Let us now assume that the cost function J has the structure

1 (,)
() () (,)

T

n i ij
i i ji i j A

J x J x J x x
= ∈

= +∑ ∑ (2)

(e.g., a quadratic cost function). Here, iJ captures the immediate cost to agent iσ due to its own

decision, whereas ijJ reflects the interactive effect of the decisions of agents σi and σj on the

cost. The set AT indicates the set of all pairs of interacting agents. We assume that for every pair

of interacting agents ,i jσ σ , with (i,j) ∈ AT, there is some agent, denoted by σij, that will have the

responsibility of measuring and suitably communicating the effects of these interactions. We

assume that the cost function iJ is known only to agent σi for each i, and that ijJ is known only

to agent σij for each (i,j) TA∈ . (This models the organization whose agents do not know the

global objective, possibly for reasons of protecting the secrecy of the organization.) In such a

case, the organizational behavior can be modeled by an asynchronous or synchronous version of

a distributed gradient algorithm [Tsi84]. Note that agent σi, in order to perform its variable

update for the gradient algorithm

 () () ()
(,)

: ,
T

i ij

i i i i i j
i j Ai i i

J J Jx x x x x x x
x x x

γ γ γ
∈

∂ ∂ ∂
= − = − −

∂ ∂ ∂∑ ,

needs the value of (),
ij

i j
i

J x x
x

∂
∂

 for all j such that (,) Ti j A∈ . Also, agent σij needs values of ix

and jx . Clearly, the communication requirements of this algorithm are that σij should be able to

communicate with agents σi and σj, in conformance with our general model. Note that C1

measures the number of pairs of agents that need to communicate with each other. On the other

hand, C2 can represent the communication overhead for exchanging partial derivatives and

variables that would have to be communicated between agents; both are meaningful measures of

communication. Furthermore, according to our general definition, the load i of agent σi can

reflect the computational burden of updating its variable xi and computing the partial derivatives

that have to be evaluated by that agent during a typical iteration.

 8

2.2 Module Allocation, Mapping, Graph embedding, and Scheduling Problems
 Numerous papers have been written on task matching and scheduling. (For examples, see

[Braun98, ShHK95, CasKu88, Grid99, ArmHK98, AlPrRa99, MaSie98, Wang97, Fre96,

BlDr96, BerW96, BhGM95, IvOzFo95, LePS95, SohnR95, BatAl94, YangGe94, Weber93,

PengS93, SihLee93, AngerHC90, ShWP90]). The precise optimal solutions of most scheduling

problems are intractable [GareyJ79], so many papers discuss heuristic algorithms. The

formulation of problems being discussed in the present paper does not explicitly consider the

temporal aspect of task performance in their formulation. In other words, minimizing execution

time is not explicitly a formal performance objective of our task allocation (assignment),

although achieving the performance criteria defined in the present paper will strongly tend to

reduce the execution time. Thus our problems, formulated as mapping between graph

components, may address applications in which the distributed system performs an ongoing task

(in contrast to a finite amount of computation). Or, in the case of finite computation, we can

macroscopically consider load balancing as an effort to reduce execution time.

 The design problems that we have formulated are reminiscent of the mapping problem in

[Bok87], which is to map the vertices of the “problem graph” to the nodes of a graph modeling a

parallel processor or array. However, the objective and constraint of the task assignment

problem in the present paper are different. The mapping problem discussed in the present paper

is also similar to a general class of problems referred to as task assignment problems or module

allocation (MA) problems [Stone77, Stone78, ChuHLE80, Bok81, Gus83, Towsley86,

Sinclair87, Lo88, Fer89]. The “communication graph” in the module allocation problem and the

task graph GT in the present paper have different meaning, as our task assignment problem

assigns edges of GT to agents (processors) as well as the vertices. Moreover, the module

allocation (MA) problem minimizes the sum of the execution cost and communication cost,

while the task assignment problem in the present paper addresses conflicting objectives of

communication cost and load balancing.

 Although independently developed, reference [Efe82] is similar to the problems

presented in the present paper in that the load imposed on each process is considered as a

constraint in minimizing the communication cost resulting from the module allocation. Since the

processors are assumed to be homogeneous in the module allocation problem discussed in

[Efe82], the constraint on the load forces the load to be balanced to a certain extent. The

 9

problems introduced in the present paper have different task structures, however. Also, the

assumptions on the structure of the processor network are much looser than [Efe82], because

[Efe82] assumes a fully interconnected network of processors.

 It is worthwhile to differentiate between the task assignment problem in the present

paper and the widely studied graph embedding problem [Röm96, Mon95, Diek93]. The graph

embedding problem would be to find a mapping from VT to VO while considering load, dilation,

and congestion as performance measures. A major differentiator of the task assignment problem

in the present paper is that it seeks a mapping from VT ∪AT to VO. In addition, the task

assignment problem has the constraint that the resulting organizational structure should be valid,

as specified in Definition 1.

 In the problem discussed in section 5 (the case in which the only constraint imposed on

organizational graph GO is the number of agents, OV), the system designer has the flexibility of

designing the topology of the agents, GO= (),O OV A . Thus, the task assignment problem contains

an element of graph topology design similar to a communication network’s topological design

problem [BerGal92]. However, there are significant differences. First, the communication

requirement in the task assignment problem is determined by the designer’s choice of mapping

σ , whereas the amounts of data traffic between origin-destination pairs are given in the

communication network topology design problem. Second, the constraint of valid organizational

structure (Definition 1) greatly limits the routing of information between each origin-destination

pair − namely, GO= (),O OV A must have the property that (σij,σi) ∈ AO and (σij,σj) ∈ AO for every

(i,j) ∈ AT.

 3 FIXED DISTRIBUTED SYSTEM ORGANIZATION AND EXPERTISE

 Let there be given a task graph GT . In this section, we consider the distributed system

design problem under the following assumptions:

1) the organizational graph (),O O OG V A= is also given.

2) T OV V≤ .

3) σi = ia for all i (the assignment of each subtask is given).

 10

(An exemplary physical meaning of this is that subtask i in VT requires expertise that only agent

ia has. Or, from an example of information security, only agent ia has access to information

required to handle subtask i.) Thus, the task assignment problem under these assumptions is to

choose the value of σij for every (i,j) ∈ AT. First, we note the possibility that there does not exist

a feasible task assignment− that is, there may not exist a mapping σ that results in a “valid

organizational structure” as defined in section I. It is easy to determine whether a feasible

mapping σ exists. In particular, we only need to check whether for every (i, j) ∈ AT there exists

some agent ka for which (),i ka a ∈ AO and (),j ka a ∈ AO. (Note that ka here can be ia or ja

because (), ,l l O l Oa a A a V∈ ∀ ∈ in our definition of GO = (VO, AO).)

3.1 Minimizing the maximum load L

 The first problem we consider is the following. We wish to find a valid task assignment

which minimizes the maximum load L, subject to the constraints mentioned in the introduction to

this section.

 The above defined problem can be solved in polynomial time by solving a sequence of

linear network flow problems. We start by considering the following related question: given a

value Lup, does there exist a valid task assignment, satisfying all of our constraints and such that

L ≤ Lup? This question can be answered by solving a network flow problem. The following

algorithm produces the answer.

Algorithm 3.1 – Phase 1

• For each element (i,j) of AT, create a node mij, and for each element ia of VO, create a

node di.

• For each element (i,j) of AT and for each node k Oa V∈ , if (,)i k Oa a A∈ and (,)j k Oa a A∈ ,

then create an edge from mij to dk .

• Create the source node s and make an edge from s to each mij with capacity limit 1.

• Create the sink node t

• For each agent ia that is assigned a subtask (i.e., Ti V∈), make an edge from node di to t

with capacity limit ()upL p i− .

• For each agent la that is not assigned with a subtask (Tl V∉), make an edge from node

ld to t with capacity limit Lup.

 11

(A flow graph constructed by Algorithm 3.1 – Phase 1 is illustrated in Fig. 1.) Phase 2 solves

the max-flow problem associated with this flow graph.

Algorithm 3.1 – Phase 2

• Run an algorithm that solves, under the constraint of integer flows, the max-flow problem

constructed in Phase 1.

• If the maximal flow is |AT|, there is a valid task assignment. Otherwise, there is not.

There are algorithms that efficiently (in polynomial time) find the maximal flow from s to t with

the property that the flow through each link has an integer value (e.g., [PaSt82], [BerTsi97],

[Ber98], [BaJS05]). We denote by variable xij,k the flow through the edge from mij to dk. Then,

xij,k=1 signifies σij = ak, and xij,k=0 signifies that the interaction between subtasks i and j is not

handled by agent ak. The flow graph imposes constraint xij,k =1k =1
n∑ for the case of max-flow =

|AT|, reflecting the fact that each interacting pair (i, j) in AT must be assigned to some agent ak

Furthermore, since σij must be able to communicate to ia and ja , we construct the flow graph

in the following way: if either (,)i k Oa a A∉ or (,)j k Oa a A∉ , then there is no edge from mij to dk .

Through the capacity limits of the edges to t, we impose the constraint, ,(,)
()

T
ij k upi j A

p k x L
∈

+ ≤∑

for each agent ia in OV .

In order to find the optimal value of L, we could solve the above network flow problem for all

values of Lup from { }max () | k Op k a V∈ to { }max () | k Op k a V∈ + TA , and this would still be a

polynomial-time algorithm for the original problem. In fact a faster algorithm is obtained if we

perform binary search for the optimal value of L; in particular, it would suffice to solve

O(log TA) network flow problems.

 12

d2

t

12m

13m

15m

23m

35m

45m

]1,0[

]1,0[

]1,0[

]1,0[

]1,0[

]1,0[

12m

13m

15m

23m

35m

45m

]1,0[

]1,0[

]1,0[

]1,0[

]1,0[

]1,0[

d1

d3

d4

d5

s

12m

13m

15m

23m

35m

45

]1,0[

]1,0[

]1,0[

]1,0[

]1,0[

]1,0[

[0, Lup- p(1)]

[0, Lup- p(5)]

[0, Lup- p(2)]

[0, Lup- p(3)]

[0, Lup- p(4)]

Network flow graph

1

5 2

4 3

1

5 2

4 3

(,)T T TG V A= (,)O O OG V A=

Fig. 1. Network flow graph construction

 13

3.2 Minimizing a communication measure
 The problem of minimizing the number C1 of arcs is vacuous because GO is assumed to be

given and therefore C1 is predetermined. The problem of minimizing C2 is also very simple, as

we now discuss. In the case of fixed distributed system organization, we have

()(,)
2 (,), , ,

T
i j iji j A

C i j a aµ σ
∈

= ∑ . Therefore, in order to minimize C2, clearly we should choose

assignment for each (,) Ti j A∈ :

{ }

()
|(,) ,(,)

arg min

 (,), , ,
k O i k O j k O

ij a V a a A a a A

i j ki j a a a

σ

µ

∈ ∈ ∈
=

3.2.1 Minimizing a communication measure under load constraints

 A more interesting problem addresses the constraint on the load imposed on the agents. We

consider the problem of minimizing C2 subject to an upper bound Lup on the maximum load L.

This problem again can be formulated as the min-cost flow problem [PaSt82] through the

following procedure:

Algorithm 3.2

• Run Phase 1 of Algorithm 3.1.

• Set the required flow to be TA .

• For each combination of mij and dk that are connected by an edge, set the cost of the edge

to be ()(,), , ,i j ki j a a aµ .

• Set the costs of other edges to be each 0.

Flow from mij to dk, xij,k, cannot exceed 1 from the construction of the network flow graph. Also,

if we constrain xij,k within {0,1}, clearly the min-cost flow of the network is the minimal C2

under the load constraint Lup. Application of the Primal-Dual algorithms in [PaSt82, Chapter 7]

shows that we can achieve the minimal cost of the network constructed in Algorithm 3.2 and

that the same minimal cost can be achieved by a flow vector that has an integer flow value along

each edge. In order to obtain such a flow vector in the above network flow graph, we can apply

polynomial-time algorithms in [PaSt82, Chapter 7].

 14

 4 FIXED DISTRIBUTED SYSTEM ORGANIZATION OF VERSATILE AGENTS
 Let there be given a task graph GT. In this section we again assume that the graph GO is

given. However, in contrast to the preceding section, we do not impose the requirement that a

particular subtask must be assigned to a particular agent. In this section, instead of constraint σi

=ai, i∀ , which was imposed in section 3, we impose the milder requirement that each agent is

assigned at most one subtask. An exemplary physical meaning of this constraint is that an

organization prevents an individual agent from having excessive information or authority for the

purpose of security (i.e., adequate compartmentalization of information and power). With this

constraint, we can trivially conclude that there is no feasible mapping σ if T OV V> . Therefore,

for the rest of this subsection, we assume that T OV V≤ . Our main result states that even the

problem of determining existence of a valid task assignment is difficult (in particular, NP-

complete.) In order to prove this, we consider a subproblem in which all instances have

T OV V= , and we will prove that this subproblem is NP-complete. Thus, for the rest of this

subsection, we further assume that T OV V= . That is, the mapping i σi is a permutation.

Theorem 4.1: The problem of deciding whether there exists a mapping σ such that the

organizational structure (GO,σ) is valid with respect to a given task graph GT is NP-complete.

Proof: That the problem belongs to NP is evident: if we have a YES instance, the mapping σ

provides a certificate.

We now note that the problem of interest is equivalent to the following:

Problem P: Does there exist a permutation i σi such that whenever (i,j) ∈ AT., then the

distance of σi and σj (in the graph GO) is at most 2.

For any graph G, let ()T G be a graph with the same set of nodes and such that (i,j) is an arc of

()T G if and only if the distance of i and j in the graph G is at most two. We then see that we are

dealing with the following problem:

 15

Problem P': Given two graphs GT and GO with the same number of nodes, is GT isomorphic with

a subgraph of ()OT G ?

We recall the problem, CLIQUE: Given a graph G= (,)V A , and a positive integer k | |V≤ , does G

have a clique of size k? CLIQUE is known to be NP-complete [GareyJ79]. We now consider a

subproblem of CLIQUE, which we will call “Restricted Clique.”

Restricted Clique: Given a graph (),G V A′ ′ ′= in which the degree of each node is at least

2 1V ′ + , and an integer k ′ such that 2 2V k V′ ′ ′+ ≤ ≤ , does G′ have a clique of size k ′ ?

Lemma 1: “Restricted Clique” is NP-complete.

Proof: Let there be given an instance (G,k) of the CLIQUE problem and let m be the number of

nodes of G. We construct a new graph G′, as follows. The graph G′ consists of the graph G

together with m + 4 additional nodes. Each of these additional nodes are connected by means of

an arc to every other node in G′. Note that G′ has 2m + 4 nodes − i.e., 2 4V m′ = + . Also, note

that the degree of each node in G′ is at least m + 3 = 2 1V ′ + . Construct k′ by k′ = m + 4 + k.

Note that 4 2 2k m V′ ′≥ + = + and 4 4k m k m V V′ ′= + + ≤ + + = . These constructions can

be completed in polynomial time. If G has a clique of size k, then the nodes in this clique and the

m + 4 added nodes form a clique of size 4k m k ′+ + = in G′. For converse, suppose G′ has a

clique of size 4k k m′ = + + . Then, among the k ′ nodes in this clique, the number of nodes

added in constructing G′ can be at most 4m + . Therefore, at least ()4k m′ − + = k nodes are in

G and fully connected. Thus, it is implied that G has a clique of size k. We have thus reduced the

general CLIQUE problem to the “Restricted Clique” problem. Then, because CLIQIUE is in NP-

complete, “Restricted Clique” is in NP-complete. Q.E.D.

Recall now the SUBGRAPH ISOMORPHISM problem: given two graphs G and G′, is G

isomorphic to a subgraph of G′? Now we consider a subproblem of SUBGRAPH

 16

ISOMORPHISM. Since CLIQUE is a special case of SUBGRAPH ISOMORPHISM, which we

call “Restricted Subgraph Isomorphism.”

Restricted Subgraph Isomorphism: Let (),G V A= and (),G V A′ ′ ′= be graphs in which the

degree of each node is at least 2 1V ′ + and such that V V ′≤ . Is G isomorphic to a subgraph

of G′?

Lemma 2: “Restricted Subgraph Isomorphism” is NP-complete.

Proof: We can further restrict the instances of this problem so that G must be a fully connected

graph with k ′ nodes, where k ′ is some integer such that 2 2V k V′ ′ ′+ ≤ ≤ . Then, the degree

of each node in G is 1 2 1k V′ ′− ≥ + . This subproblem of the “Restricted Subgraph

Isomorphism” is the “Restricted Clique” problem, which is NP-complete. Therefore, the

“Restricted Subgraph Isomorphism” is NP-complete. Q.E.D.

We will need another graph transformation. Given a graph G, we denote by Q(G) the graph

which is the same as G except that each arc of G is replaced by a sequence of 3 arcs, as shown in

Fig. 2. We introduce some more notation. If G = (V, A) is a graph and i V∈ is a node of that

graph, we use T(Q(i)) to denote the image of node i when the transformations Q and T are

applied in succession. Some nodes in graph ()()T Q G is of the from T(Q(i)) with i V∈ , and

other nodes in ()()T Q G are not in that form.

 17

a) b)

c)

a) b)

c)c)

Fig. 2. a) A graph G; b) the graph Q(G); c) the graph ()()T Q G .

Lemma 3: Let G = (V, A) be a graph in which all nodes have degree at least d.

(a) If i is a node of G, then node ()()T Q i has degree at least 2d; all nodes of ()()T Q G that

are not of the form ()()T Q i for some i V∈ have degree bounded above by V + 1.

(b) If (i,j) is an arc of G, then the distance in the graph ()()T Q G between ()()T Q i and

()()T Q j is equal to 2; if (i, j) is not an arc of G, then the distance between ()()T Q i and

()()T Q j is larger than 2.

 18

Proof: a) If a node in G has degree δ > d, then the corresponding node in ()()T Q G is connected

to its neighbors in Q(G) (there are δ of them) and to the neighbors of these neighbors (there are δ

of them as well, for a total of 2δ > 2d.

Note that Q(G) and ()()T Q G have an identical set of nodes. If a node in ()()T Q G is not of the

form ()()T Q i , then it has only 2 neighbors in the graph Q(G). One of these neighbors has a

single extra neighbor; the other one corresponds to a node of the original graph G and has at

most 2V − extra neighbors in Q(G). Thus, the degree of the node under consideration in

()()T Q G is at most 2 + 1 + ()2V − = 1V + .

b) Evident from Fig. 2. Q.E.D.

Consider a graph G= (,)V A in which each node has degree at least 2 1V + . Then, in the graph

()()T Q G , nodes of the form ()()T Q i will have degree at least 2V + . All other nodes in

()()T Q G will have degree at most 1V + . Thus, for each node of ()()T Q G , it can be

immediately determined whether it is of the form ()()T Q i or not.

Lemma 4: Let G= (,)V A and G′ = (,)V A′ ′ be graphs in which the degree of each node is at least

2 1V ′ + and such that V V ′≤ . Then, G is isomorphic to a subgraph of G′ if and only if

()()T Q G is isomorphic to a subgraph of ()()T Q G′ .

Proof: If G is isomorphic to a subgraph of G′, it is evident that ()()T Q G is isomorphic to a

subgraph of ()()T Q G′ . It only remains to prove the reverse implication.

 Suppose that ()()T Q G is isomorphic to a subgraph of ()()T Q G′ . Consider any node of

()()T Q G which has degree larger than V ′ + 1. Then, the degree of this node is larger than

1V + because V V ′≤ . Such a node is of the form ()()T Q i for some node i of G, by Lemma

3(a). Since ()()T Q G is isomorphic to a subgraph of ()()T Q G′ , node ()()T Q i is mapped to

 19

some node of ()()T Q G′ that has also degree larger than 1V ′ + , and is therefore of the form

()()T Q i′ , where i' is a node of G′.

 Suppose that (i, j) is an arc of G. Then, because nodes i and j in graph G have degree at least

2 1V ′ + , ()()T Q i and ()()T Q j have both degree larger than ()2 2 1 1 1V V′ ′+ − = + (by

Lemma 3(a)). Also, their distance in ()()T Q G is equal to 2 (by Lemma 3(b).) Since ()()T Q G is

a subgraph of ()()T Q G′ , the nodes ()()T Q i and ()()T Q j are mapped to some (distinct) nodes

in ()()T Q G′ which are of degree larger than 1V ′ + . In particular, these latter nodes of

()()T Q G′ must be of the form ()()T Q i′ and ()()T Q j′ , for some nodes i′ and j′ of G′. Since

the distance between ()()T Q i and ()()T Q j is equal to 2, the distance of ()()T Q i′ and

()()T Q j′ must be at most 2. Using Lemma 3(b), we conclude that (i′, j′) is an arc of G′ .

Therefore, by mapping i and j to i′ and j′, respectively, and by mapping similarly all other nodes

of G to nodes of G′, we see that G is isomorphic to a subgraph of G′, which concludes the proof

of the lemma. Q.E.D.

We notice that Lemma 4 facilitates polynomially transforming the “Restricted Subgraph

Isomorphism” problem (shown earlier to be NP-complete) to Problem P′. We now consider this

polynomial transformation. For an instance of the “Restricted Subgraph Isomorphism” problem

such that V V ′= , construct the instance of Problem P′, G0 and GT, by G0 = Q(G′) and GT

= ()()T Q G . By Lemma 4, G is isomorphic with a subgraph of G′ if and only if GT is isomorphic

with a subgraph of ()OT G . For an instance of the “Restricted Subgraph Isomorphism” problem

such that V V ′< , construct G0 = Q(G′) and construct GT by adding zero-degree nodes to

()()T Q G so that G0 and GT have the same number of nodes. Then, GT is isomorphic with a

subgraph of ()OT G if and only if ()()T Q G is isomorphic with a subgraph of ()()T Q G′ . Then,

by Lemma 4, ()()T Q G is isomorphic with a subgraph of ()()T Q G′ if and only if G is

isomorphic with a subgraph of G′ . Because of this polynomial transformation, we can conclude

that Problem P′ is NP-complete, and the proof of Theorem 4.1 has been completed. Q.E.D.

 20

 We have shown that it is difficult to even determine whether a valid organizational

structure, as defined in section 1, does exist. It follows that the problem of determining an

optimal valid organization is also difficult (NP-hard), for any nontrivial choice of the

performance criterion.

5 THE CASE WHERE ONLY THE NUMBER OF NODES IN GO IS FIXED
 We now consider the case where GT is given and the system designer has the flexibility

of designing the network topology of the agents, GO= (),O OV A . This problem models a situation

in which a government needs to design an organizational structure to perform a huge global task.

We assume that the number of agents, OV , is given, and the problem is to find graph

GO= (),O OV A and mapping σ : VT ∪AT → VO. As in sections 3 and 4, in this section we also

assume that each agent can have at most one subtask. Therefore, if T OV V> , there is obviously

no feasible mapping σ. For the rest of this section, we assume that T OV V≤ . No other

constraints are imposed on GO − i.e., OA is not given.

 Under the above constraints, the problem of designing a valid organizational structure

that minimizes C1 is trivial. Let us denote VT = {1, 2,…, m}, { }1 2, , ,O nV a a a= . We can pick m

nodes from OV and construct an organizational graph,

 { } () () () (){ }()1 2 1 2 1 3 1 4 1, , , , , , , , , , , ,O m mG a a a a a a a a a a a= (a “star" graph),

and let σij = 1a for all (i,j) ∈ AT. We then have C1 = 1m − . Since GT is connected, as mentioned

in section 1, it is clear that GO must also be connected and therefore no valid organization could

have less than m−1 arcs. Therefore, the minimum value of C1 is 1m − .

 If we impose a load balancing constraint L < Lup and attempt to minimize Cl subject to

that constraint, we obtain an apparently more difficult problem. We conjecture that this problem

is NP-hard [GareyJ79], although we have not been able to establish this result.

 The following theorem addresses minimizing C2.

 21

Theorem 5.1: Under the assumptions of this section, the problem of designing a valid

organizational structure in which C2 is minimized subject to the constraint L ≤ Lup, can be

formulated as a min-cost linear network flow problem and can be solved in polynomial time.

Proof: Because GO is not given as a constraint, the task assignment process can pick GO to be a

complete (fully connected) graph in order to minimize C2. With the fully connected GO, we can

minimize C2 subject to the constraint L < Lup. However, this problem is a special case of the

problem considered in section 3.2.1, and the result follows from section 3.2.1 Q.E.D.

6 ALLOWING MULTIPLE SUBTASKS FOR AN AGENT
 So far in this paper, we have discussed the task assignment problem under the assumption

that an agent cannot have more than one subtask. We now briefly discuss the problems with that

assumption relaxed.

6.1 Fixed Organization

 As in section 3.1, we now assume that the organizational graph OG is fixed and that the

assignment of subtasks, ,i Ti Vσ ∀ ∈ , is predetermined. The difference of these assumptions from

those in section 3.1 is that the task assigner may face the case that i jσ σ= even if i j≠ .

Therefore, the task assignment problem for a fixed organization under discussion now is a

generalization of the problem addressed in section 3.1. The generalized problem can be solved

by simply adjusting Algorithm 3.1 as follows:

Algorithm 6.1 – Phase 1

• For each element (i,j) of AT, create a node mij, and for each element ia of VO, create a

node di.

• For each element (i,j) of AT and for each node k Oa V∈ , if (,)i k OAσ σ ∈ and (,)j k OAσ σ ∈ ,

then create an edge from mij to dk .

• Create the source node s and make an edge from s to each mij with capacity limit 1.

• Create the sink node t

• For each agent ka , make an edge from node dk to t with capacity

limit { } ()
T i k

up i V a
L p i

σ∈ =
− ∑ .

 22

 Phase 2 solves the max-flow problem associated with this flow graph.

Algorithm 6.1 – Phase 2

• Run an algorithm that solves, under the constraint of integer flows, the max-flow problem

constructed in Phase 1.

• If the maximal flow is |AT|, there is a valid task assignment. Otherwise, there is not.

6.2 Fixed Organization of Versatile Agents
 In this subsection, we consider the task assignment problem in the organization of versatile

agents without any constraint on which agent can be assigned which tasks. We make no

assumption about the relative sizes of TV and OV . In this problem, a valid organizational

structure, per Definition 1, obviously exists. (For example, if all subtasks in TV and all

interactions in TA are assigned to a single agent, the resulting organizational structure is valid.)

6.2.1 Minimizing the maximum load L

 We formulate the task assignment problem in the fixed organization of versatile agents as an

integer linear programming problem. For each subtask Ti V∈ and each agent k Oa V∈ , we define

one binary integer variable , {0,1}i kx ∈ . The expression , 1i kx = signifies that i kaσ = . For each

(,) Ti j A∈ and each agent k Oa V∈ , we define one binary integer variable , {0,1}ij kx ∈ . The

expression xij,k=1 signifies σij = ak, and xij,k=0 signifies that the interaction between subtasks i and

j is not handled by agent ak. We formulate the following ILP constraints:

, 1, i k Tk
x i V= ∀ ∈∑

, 1, (,)ij k Tk
x i j A= ∀ ∈∑

 Note that if σij = ak, then both (,)k ia σ and (,)k ja σ must be in OA in order for mapping (task

assignment) σ to be feasible. This constraint in terms of ILP variables can be expressed as

follows:

 ()(), , , , and ,

 (,) , ,
l k l k

ij k i l ij k j la H a a H a

T k O

x x x x

i j A a V
∈ ∈

≤ ≤

∀ ∈ ∀ ∈

∑ ∑

 23

where we denote the set of all neighboring nodes of agent k Oa V∈ as

 (){ }() ,k l O l k OH a a V a a A= ∈ ∈ .

In summary, the ILP problem is:

minimize
subject to

L

 , ,(,)
() ,

T T
i k ij k k Oi V i j A

L x p i x a V
∈ ∈

≥ + ∀ ∈∑ ∑

 , 1, i k Tk
x i V= ∀ ∈∑

 , 1, (,)ij k Tk
x i j A= ∀ ∈∑

 ()(), , , , and ,

 (,) ,
l k l k

ij k i l ij k j la H a a H a

T k O

x x x x

i j A a V
∈ ∈

≤ ≤

∀ ∈ ∀ ∈

∑ ∑

{ }
{ }

,

,

0,1 , (,) ,

0,1 , ,
ij k T k O

i k T k O

x i j A a V

x i V a V

∈ ∀ ∈ ∀ ∈

∈ ∀ ∈ ∀ ∈

We can use available algorithms to solve this integer linear programming problem. However,

whether there is a polynomial-time algorithm for this particular ILP problem is unknown.

6.2.2 Minimizing a communication measure

 The problem of minimizing the number C1 of arcs is vacuous because GO is assumed to be

given and therefore C1 is predetermined. The problem of minimizing the number C2 without a

further constraint is also trivial. If we choose a constant mapping

1, , (,)i ij T Ta i V i j Aσ σ= = ∀ ∈ ∀ ∈ ,

(that is, to assign all subtasks and all interactions to one agent), then C2=0. However, this

mapping places all of the load on a single agent. Thus, we now consider minimizing C2 subject

to an upper bound Lup on the maximum load L. We can formulate this problem as an integer

programming problem similar to the one formulated in section 6.2.1:

()
()

, , ,
,

minimize (,), , ,

subject to
T l O m O k O

l m k i l j m ij k
i j A a V a V a V

i j a a a x x xµ
∈ ∈ ∈ ∈

∑ ∑ ∑ ∑

 24

 , ,(,)
() ,

T T
up i k ij k k Oi V i j A

L x p i x a V
∈ ∈

≥ + ∀ ∈∑ ∑

 , 1, i k Tk
x i V= ∀ ∈∑

 , 1, (,)ij k Tk
x i j A= ∀ ∈∑

 ()(), , , , and ,

 (,) ,
l k l k

ij k i l ij k j la H a a H a

T k O

x x x x

i j A a V
∈ ∈

≤ ≤

∀ ∈ ∀ ∈

∑ ∑

{ }
{ }

,

,

0,1 , (,) ,

0,1 , ,
ij k T k O

i k T k O

x i j A a V

x i V a V

∈ ∀ ∈ ∀ ∈

∈ ∀ ∈ ∀ ∈

The main difference between this problem and the ILP problem in section 6.2.1 is that the

objective function in this problem is nonlinear.

 6.3 The Case in Which Only the Number of Nodes in GO Is Fixed
 Now we consider the case in which the system designer determines the organizational graph

GO as well as mapping σ. Because we have two objectives (load balancing and minimizing the

communication measure), we can consider two types of optimization problem formulations:

1) Minimizing the communication measure (C1 or C2) under constraint ,upL L< where Lup is the

maximum allowed load for an individual agent.

2) Minimizing L under the constraint C1≤ C1up (or under the constraint C2≤ C2up)

In this section, we establish that a polynomial-time algorithm is not likely to exist for either of

these two problems. In order to establish that, we first convert these problems into the following

single decision [PaSt82] problem:

 Problem 6.1: Given (),T T TG V A= , the number of agents OV , upL , and C1up (or C2up), is there

a valid organizational structure that results in upL L< and C1≤ C1up (or C2 ≤ C2up)?

We will prove that this problem is NP-complete. To do so, we consider a subproblem in which

C1up (or C2up) is sufficiently large that the constraint on the communication measure is never

violated for any choice of valid organizational structure, e.g.,

C1up ()1 2O OV V≥ − ,

C2up ≥ ()(,) , , ,max (,), , ,
T l m kT i j A a a a l m kA i j a a aµ∈ .

 25

In such a subproblem, the communication constraint plays no role. The following theorem

proves that this subproblem is NP-complete and thus that Problem 6.1 is also NP-complete.

Theorem 6.1 The problem of deciding whether there exists a mapping σ such that

{ } { }|
 () (,) | ,

T i
k T ij k up k Oi V k

p i i j A a L a V
σ

σ
∈ =

≡ + ∈ = ≤ ∀ ∈∑

for a given task graph TG , set of agents OV , and Lup, is NP-complete.

Proof: We recall an NP-complete problem, Bin Packing [GareyJ79].

Bin Packing: Given a set U={ }1 2, , , mu u u of items, a positive integer size ()s u for each

u U∈ , a positive integer bin capacity B, and a positive integer K, is there a partition of U into

disjoint sets 1U , 2U , …, KU such that the sum of the sizes of the items in each iU is B or less?

 Now we describe a polynomial transformation from the Bin Packing problem to our task

assignment problem under discussion. Construct the set of subtasks TV U= . For each subtask

Tu V∈ , define () ()p u s u mα= − , where α is an integer such that 2mα >> . Construct

() () (){ }1 2 2 3 1, , , , , ,T m mA u u u u u u−= so that (),T T TG V A= is connected. (Thus, 1TA m= − .)

Construct a set, { }1 2, , ,O KV a a a= , of K agents. (Note that agent ka corresponds to set kU .)

Let upL Bα= . These constructions can be completed in polynomial time.

 Suppose that U can be partitioned into disjoint sets 1U , 2U , …, KU such that the sum of the

sizes of the items in each kU is B or less. Then we have ()
ku U
s u B

∈
≤∑ for each 1,2, ,k K= .

Consider a mapping : T OU A Vσ ∪ → (or equivalently, : T T OV A Vσ ∪ →) such that u kaσ = if

item u is in kU in the Bin Packing instance, and such that *, (,)ij Ta i j Aσ = ∀ ∈ for some agent *a

that is assigned with at least one subtask. Now, for agent *a ,

{ }

[]{ }

{ }

*

*

*

* |
= ()

(1) ()

 ()

T u
T u V a

u U

upu U

A p u

m s u m

s u B L

σ

α

α α

∈ =

∈

∈

+

= − + −

≤ ≤ =

∑
∑

∑

For an arbitrary agent *ka a≠ ,

 26

{ }

[]{ }

{ }

|

= ()

()

() if >0

0 if =0

T u k

k

k

k
u V a

u U

k ku U

k

up

p u

s u m

m U s u U

U

B L

σ

α

α

α

∈ =

∈

∈

= −

− += 


≤ =

∑

∑
∑

Therefore, there exists a mapping σ that results in the maximal load less than or equal to Lup.

 Suppose there exists no partition of U into disjoint sets 1U , 2U , …, KU such that the sum of

the sizes of the items in each kU is B or less. Then, in every way U is partitioned,

() 1
ku U
s u B

∈
≥ +∑ for some kU . Consider an arbitrary mappingσ . Then { }k T u kU u V aσ≡ ∈ = ,

k=1,2,…,K is a partition of U; namely, in this corresponding partition, each item u in U = TV is in

kU if u kaσ = . For some kU , () 1
ku U
s u B

∈
≥ +∑ , which is equivalent to ()

ku U
s u Bα α α

∈
≥ +∑ .

Therefore, for some ka ,

{ }

[]{ }

[]{ }

|

|

2
|

2

2

 ()

()

()

(1)

T u

T u k

T u k

u V k

u V a

u V a

up

p u

s u m

s u m

B m
B m B L

σ

σ

σ

α

α

α

α α α

∈ =

∈ =

∈ =

= −

≥ −

≥ + −

= + − > =

∑
∑
∑

Therefore, for some agent ka , we have

{ } { }|
 () (,) |

T u k
k T ij ku V a

up

p u i j A a

L
σ

σ
∈ =

≡ + ∈ =

>

∑

This implies that for every mapping σ , the maximum load is strictly more than Lup.

Q.E.D.

 We have considered a subproblem in which C1up (or C2up) is sufficiently large and proved

that this subproblem is NP-complete. Now we briefly discuss other specialized subproblems of

Problem 6.1. Without a constraint on the load, minimizing C1 or C2 is a trivial problem. If we

assign all subtasks and interactions to a single agent, we have C1 = C2 = 0. If we impose a load-

 27

balancing constraint L < Lup, where Lup () ,
T

Ti V
p i A

∈
< +∑ and attempt to minimize Cl, then we

obtain an apparently more difficult problem, but we may have an efficient algorithm to solve it.

We leave this problem for future study. Also, we consider minimizing C2 under the same load-

balancing constraint L < Lup. In this case, we can use the fully connected OG for the purpose of

minimization because there is no constraint on the physical connectivity of OG . In contrast to

Theorem 5.1, this problem is apparently difficult. This problem is again left for future study.

7 CONCLUSIONS
 This paper formulated a new class of design problems for distributed systems. We have

derived solution procedures for some of these design problems, and we have seen that another

variation leads to NP-hard problems. It is believed that these formulations capture some generic

features of distributed system design problems.

ACKNOWLEDGMENT
 The author would like to thank Prof. John Tsitsiklis at the Massachusetts Institute of Technology for

his valuable advisement.

REFERENCES
 [AlPrRa99] A.H. Alhusaini, Viktor K. Prasanna, and C.S. Raghavendra, “A unified resource scheduling

framework for heterogeneous computing environments,” 8th Heterogeneous Computing Workshop

(HCW'99), Apr. 1999.

[AngerHC90] F. D. Anger, J. J. Hwang, and Y. C. Chow, “Scheduling with sufficiently loosely coupled

processors,” J. Parallel and Distributed Computing, vol. 9, no. 1, 1990, pp. 87−92.

[ArmHK98] R. Armstrong, D. Hensgen, and T. Kidd, “The relative performance of various mapping

algorithm is independent of sizable variance in run-time predictions,” 7th Heterogeneous Computing

Workshop (HCW '98), March 1998.

[BaJS05] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network Flows, Wiley,

Hoboken, NJ, 2005.

[BatAl94] S. Bataineh and B. Al-Alsir, “An efficient scheduling algorithm for divisible and indivisible

tasks in loosely coupled multiprocessor systems,” Software Engineering J., vol. 9, 1994, pp. 13-18.

[Ber98] D. P. Bertsekas, Network Optimization: Continuous and Discrete Models, Athena Scientific,

Belmont, MA, 1998.

 28

[BerGal92] D. Bertsekas and R. Gallager, Data Networks, 2nd Ed., Prentice Hall, Englewood Cliffs, NJ,

1992.

[BerTsi89] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical

methods, Prentice Hall, Englewood Cliffs, N.J, 1989.

[BerTsi97] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific,

Belmont, MA, 1997.

[BerW96] F. Berman and R. Wolski, “Scheduling from the perspective of the application,” 5th IEEE

International Symposium on High Performance Distributed Computing, Aug. 1996.

[BhGM95] V. Bharadwaj, D. Ghose, and V. Mani, “An efficient load distribution strategy for a

distributed linear network of processors with communication delays,” Computers and Mathematics with

Applications, vol. 29, no. 9, 1995, pp. 95-112.

[BlDr96] J. Blazewicz and M. Drozdowski, “The performance limits of a two-dimensional network of

load sharing processors,” Foundations of Computing and Decision Sciences, vol. 21, no.1, 1996, pp.

3−15.

[Bok81] S. Bokhari, “A shortest tree algorithm for optimal assignments across space and time in a

distributed processor system,” IEEE Transactions on Software Engineering, vol. 7, no. 6. pp. 583−589,

1981.

[Bok87] Bokhari, S.H., Assignment Problems in Parallel and Distributed Computing, Kluwer Academic

Publishers, Boston, MA, 1987.

[Braun98] T. D. Braun et al., “A taxonomy for describing matching and scheduling heuristics for mixed-

machine heterogeneous computing systems,” IEEE Workshop on Advances in Parallel and Distributed

Systems, West Lafayette, IN. Oct. 1998. pp. 330−335.

[CasKu88] T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling heuristics in general-purpose

distributed computing systems,” IEEE Trans. Software Engineering, vol. 14, no. 2, Feb. 1988.

[ChuHLE80] W. W. Chu, L. J. Holloway, M. Lan, and K. Efe, “Task allocation in distributed data

processing,” IEEE Computer, pp. 57−69, Nov. 1980.

[Diek93] R. Diekmann, R. Lüling, A. Reinefeld, “Distributed combinatorial optimization,” Proc.

SOFSEM’93, Hrdoňov Šumava, Czech Republic, 1993, pp. 33−60.

[Efe82] K. Efe, “Heuristic models of task assignment scheduling in distributed systems,” IEEE

Computer, June 1982, pp.50−56.

 [Fer89] D. Fernández-Baca, “Allocating modules to processors in a distributed system,” IEEE

Transactions on Software Engineering, vol. 15, no. 11, Nov. 1989, pp. 1427−1436.

 29

[Fre96] R. Freund, B. Carter, D. Watson, E. Keith, and F. Mirabile, “Generational scheduling for

heterogeneous computing systems,” International Conf. Parallel and Distributed Processing Techniques

and Applications (PDPTA’96), pp. 769−778, Aug. 1996.

[GareyJ79] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman and Company,

New York, 1979.

[Grid99] I. Foster and C. Kesselman, ed., The Grid: blueprint for new computing infrastructure,

Morgan Kaufmann Publishers, San Francisco, CA, 1999.

[Gus83] D. Gusfield, “Parametric combinatorial computing and a problem in module distribution,”

Journal of the Association for Computing Machineray, vol. 30, no. 3, July, 1983, pp. 551−563.

[IvOzFo95] M. Iverson, F. Ozguner, and G. J. Follen, “Parallelizing existing applications in a distributed

homogeneous environment,” 4th Heterogeneous Computing Workshop (HCW '95), pp. 93−100, April

1995.

[LePS95] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task mapping algorithms for a distributed

homogeneous computing environment,” 4th Heterogeneous Computing Workshop (HCW '95), pp. 30−34,

April 1995.

[Lee87] D. C. Lee, Task Allocation for Efficient Performance of a Decentralized Organization, Master's

thesis, Massachusetts Institute of Technology, 1987, Dept. of Electrical Engineering and Computer

Science.

[Lo88] V. M. Lo, “Heuristic algorithms for task assignment in distributed systems,” IEEE Transactions

on Computers, vol. 37, no. 11, Nov. 1988, pp.1384−1397.

[MaSie98] M. Maheswaran and H. J. Siegel, “A dynamic matching and scheduling algorithm for

heterogeneous computing systems,” 7th Heterogeneous Computing Workshop (HCW’98), pp. 57−69,

March 1998.

[Mon95] B. Monien, R. Diekmann, R. Feldmann, R. Klasing, R. Lüling, K. Menzel, T. Römke, U.-P.

Schroeder, “Efficient use of parallel & distributed systems: from theory to practice,” Lecture Notes in

Computer Science, No. 1000, Springer-Verlag, 1995.

[PaSt82] Papadimitriou, C.H. and Steiglitz, K., Combinatorial Optimization: Algorithms and Complexity,

Prentice Hall, Englewood Cliffs, New Jersey, 1982.

[PengS93] D.-T. Peng and K. G. Shin, “Optimal scheduling of cooperative tasks in a distributed system

using an enumerative method,” IEEE Transactions on Software Engineering, vol. 19, no. 3, Nov. 1993,

pp. 253−267.

[Röm96] T. Römke, M. Röttger, U.-P. Schroeder, and J. Simon, “On efficient embedding of grids into

grids in PARIX,” Proc. 1st Int. Conf. on Parallel Processing, Euro-PAR’95, LNCS 966, Aug. 1996, pp.

181−192.

 30

[ShHK95] B. A. Shirazi, A. R. Hurson, and K. M. Kavi, eds., Scheduling and Load Balancing in Parallel

and Distributed Systems, IEEE Computer Society Press, Los Alamitos, CA, 1995.

[ShWP90] B. Shirazi, M. Wang, and G. Pathak, “Analysis and evaluation of heuristic methods for static

task scheduling,” Journal of Parallel and Distributed Computing, 10:222−232, 1990.

[SihLee93] G. C. Sih and E. A. Lee, “A compile-time schedule heuristic for interconnection-constrained

heterogeneous processor architectures,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 2, Feb.

1993.

[Sinclair87] J. B. Sinclair, “Efficient computation of optimal assignments for distributed tasks,” Journal

of Parallel and Distributed Computing, vol. 4, no. 4, Aug. 1987, pp. 342−362.

[SohnR95] J. Sohn and T. G. Robertazzi, “An optimum load sharing strategy for divisible jobs with time-

varying processor speed,” Proc. Eighth International Conf. Parallel and Distributed Computer Systems,

Orlando, FL, 1995, pp. 27−32.

[Stone77] H. S. Stone, “Multiprocessor scheduling with the aid of network flow algorithms,” IEEE

Transactions on Software Engineering, vol. 3, Jan. 1977, pp. 85−94.

[Stone78] H. S. Stone, “Critical load factors in two-processor distributed systems,” IEEE Transactions

on Software Engineering, vol. 4, May, 1978, pp. 254−258.

[Towsley86] D. Towsley, “Allocating problems containing branches and loops within a multiple

processor system,” IEEE Transactions on Software Engineering, vol. 12, no. 10, 1986, pp. 1018−1024.

[Tsi84] J. N. Tsitsiklis, Problems in Decentralized Decision Making and Computation, Ph.D. thesis, Dept.

of EECS, MIT, Cambridge, MA, 1984.

[Wang97] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, “Task matching and

scheduling in heterogeneous computing environments using a genetic-algorithm-based approach,” J.

Parallel and Distributed Computing, 47(1):8−22, Nov. 1997.

[Weber93] R. Weber, “On a conjecture about assigning jobs to processes of different speeds,” IEEE

Trans. Automatic Control, vol. 38, no. 1, 1993, pp. 166−170.

[YangGe94] T. Yang and A. Gerasoulis, “DSC: scheduling parallel tasks on an unbounded number of

processors,” IEEE Trans. Parallel and Distributed Systems, vol. 5, no. 9, Sep. 1994.

 31

Daniel C. Lee (S’91-M’92) received the Ph.D. (1992) and M.S. (1987) degrees from the
Massachusetts Institute of Technology in Electrical Engineering & Computer Science. He
received a B.S. (1985) degree in Electrical Engineering with honors and a B.S. (1985) degree in
Mathematics from the University of Maryland at College Park. He is currently an Associate
Professor in the School of Engineering Science at Simon Fraser University. His main research
interests include quality of service and resource allocation issues in networks and communication
systems. Applications of his research include wireless communications and networking, sensor
networks, optical networks, and internet multimedia. He was previously an Assistant Professor
in the Electrical Engineering Department of the University of Southern California. From 1993 to
1998, Dr. Lee devoted his research to the systems engineering of networks and communication
systems at the U.S. Naval Research Laboratory (NRL) in Washington, DC. At the Center for
Computational Science in NRL, Dr. Lee participated in the development of an object oriented
protocol software framework, CASiNO. At the Naval Space Center in NRL, Dr. Lee developed a
proxy agent for managing the ICEbox network, a U.S. government information-dissemination
system. Dr. Lee's honors include the Alan Berman Research Publication Award from NRL in
1995, the Navy's Outstanding Performance Award at NRL in 1995, and the Frederick C. Hennie
III Teaching Award from MIT in 1989.

