Estimation of Distribution Algorithm for Sensor Selection Problems

Muhammad Naeem and Daniel C. Lee

Motivation

The motivations to choose a subset of sensors depend on applications, but in general a small subset means less energy consumption of sensors and simpler computation than operating all sensors. Especially in sensor networks, activating only a subset of sensors can be important in prolonging the network's life time.

THE SENSOR SELECTION PROBLEM

The sensor selection problem can be viewed as a combinatorial optimization problem of selecting from potential m sensor measurements a subset of sensor measurements with conflicting goals of maximizing the utility of selected measurements and minimizing the cost.

Problem Formulation

- > m = Total number of sensors
- > k = Number of selected sensors
- > n = Number of parameters to be estimated

The problem is to select *k* sensors from the set of *m* sensors in the system of estimating *n* parameters

Problem Formulation

 $X_1, X_2, ..., X_n$, the n parameters to be estimated $Y_1, Y_2, ..., Y_m$ scalar measurements from m sensors

> The measurements and parameters have linear relation

$$(Y_1, Y_2, ..., Y_m)^T = A(x_1, x_2, ..., x_n)^T + (V_1, V_2, ..., V_m)^T$$

where $A = (a_1, a_2, ..., a_m)^T$ is $m \times n$ real-valued matrix known to the system designer. $(a_i, i = 1, 2, ..., m, is an$ *n*-dimensional real-valued column vector.)

 $\gt V_1, V_2, ..., V_m$ are i.i.d. additive white Gaussian noise with variance σ^2 .

 \succ The maximum likelihood (ML) estimator of $(x_1, x_2, ..., x_n)^T$ is

$$(A^{T}A)^{-1}A^{T}(Y_{1},Y_{2},...,Y_{m})^{T} = \left(\sum_{i=1}^{m} a_{i} a_{i}^{T}\right)^{-1} \sum_{i=1}^{m} a_{i} Y_{i}$$

> This is an unbiased estimator and the estimation error is

$$(A^{T} A)^{-1} A^{T} (Y_{1}, Y_{2}, ..., Y_{m})^{T} - (x_{1}, x_{2}, ..., x_{n})^{T}$$

$$= (A^{T} A)^{-1} A^{T} (V_{1}, V_{2}, ..., V_{m})^{T}$$

> The covariance of this estimation error is

$$\Lambda \equiv \sigma^2 \left(A^T A \right)^{-1} = \sigma^2 \left(\sum_{i=1}^m a_i a_i^T \right)^{-1}$$

➤ Let us denote by $S \subset \{1, 2, ..., m\}$ the set of selected sensors. Then, the ML estimator is

$$\left(\sum_{i\in S} a_i a_i^T\right)^{-1} \sum_{i\in S} a_i Y_i$$

 \triangleright The volume of the α – confidence ellipsoid of the estimator is

$$K(\alpha, n) \det(\Lambda_S)^{1/2} = K(\alpha, n) \det(\sigma^2 \left(\sum_{i \in S} a_i a_i^T\right)^{-1}\right)^{1/2}$$

 \triangleright The mean radius of the α – confidence ellipsoid is

$$B(\alpha)\det(\Lambda_S)^{1/2n} = B(\alpha)\det(\sigma^2(\sum_{i\in S}a_ia_i^T)^{-1})^{1/2n}$$

A larger value of $\det(\sum_{i \in S} a_i a_i^T)$ implies smaller volume or mean radius of the α – confidence ellipsoid, thus means better utility of the estimation. Therefore, the sensor selection problem can be formulated as

maximize
$$\log \det \left(\sum_{i \in S} a_i a_i^T \right)$$
 subject to $|S| = k$

We denote by Φ the collection of all possible sensor selections. We denote by ϕ in Φ a selection of sensors. Each selection is represented as binary string

$$Z = [z_1 \ z_2 \ \dots \ z_m], z_i \in \{0,1\}$$

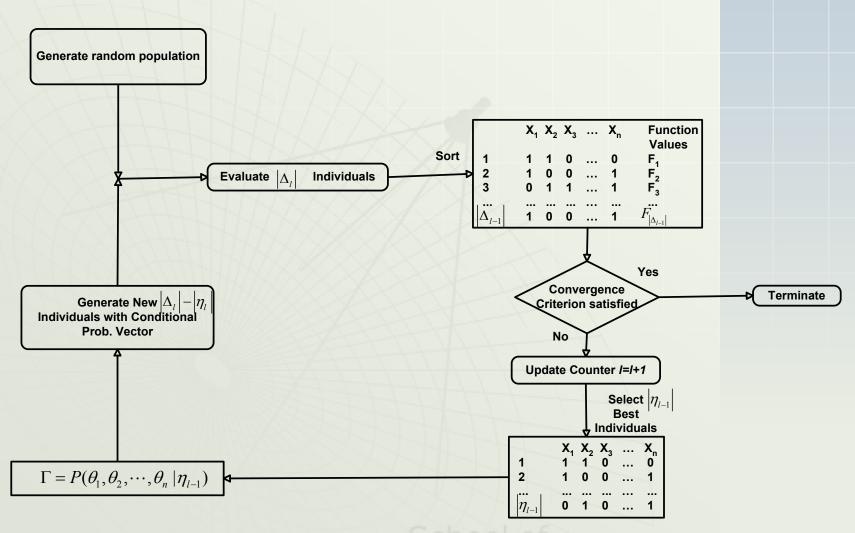
We can rewrite sensor selection problem as

maximize
$$\log \det \left(\sum_{i=1}^{m} z_i a_i a_i^T \right)$$

subject to $\Theta^T z = k$
 $z_i \in \{0,1\}, i = 1,...,m \text{ and } z \in \Re^m$

The Θ is a vector with all entries equal to one.

EDA-Flow Diagram

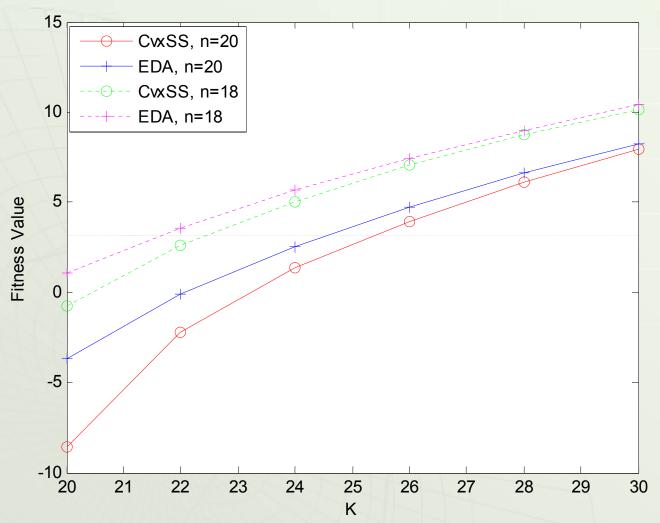


EDA

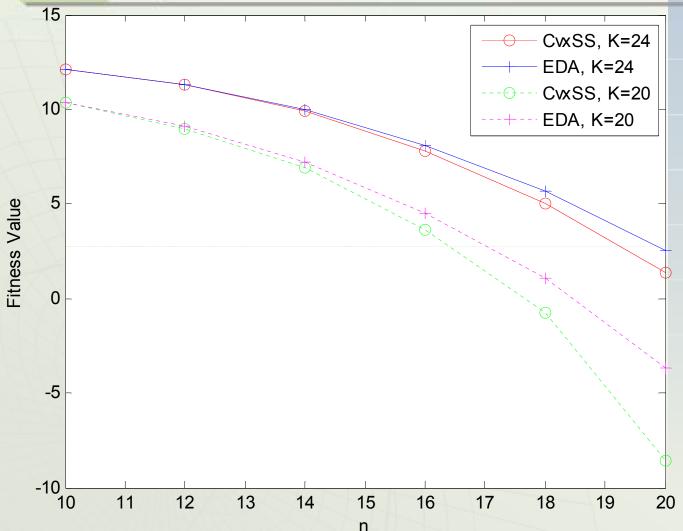
EDA can be characterized by parameters and Notations

- 1. I_s is the space of all potential solutions
- 2. F denotes a fitness function.
- 3. Δ_l is the set of individuals (population) at the l_{th} iteration.
- 4. η_i is the set of best candidate solutions selected from set Δ_i at the I_{th} iteration.
- 5. We denote $\beta_l \equiv \Delta_l \eta_l \equiv \Delta_l \cap \eta_{cl}$ where η_{cl} is the complement of η_l .
- 6. p_s is the selection probability. The EDA algorithm selects $p_s|\Delta_l$ individuals from set Δ_l to make up set η_l .
- 7. We denote by Γ the distribution estimated from η_l (the set of selected candidate solutions) at each iteration
- 8. I_{Ter} are the maximum number of iteration

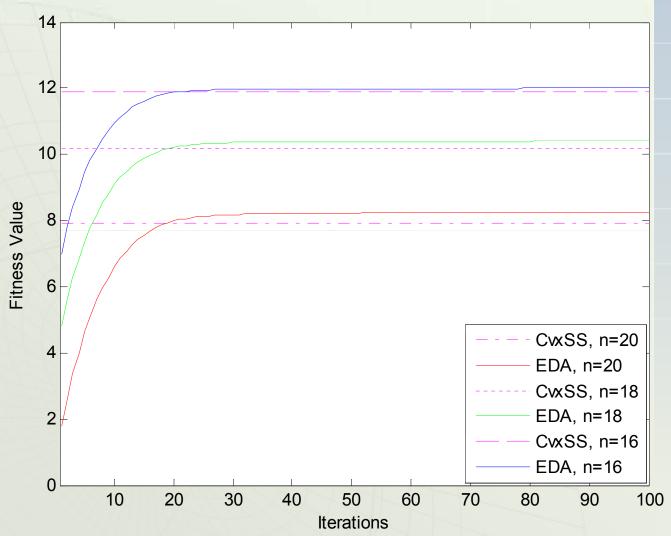
Simulation Results



Performance comparison of EDA and Convex optimization with m=100, n = {18,20}, $|\Delta|$ =100, Ψ =100 and p_s =0.3.



Performance comparison of EDA and Convex optimization with m=100, k = $\{20,24\}$, $|\Delta|=100$, $\Psi=100$ and $p_s=0.3$.



EDA Performance per iteration with m=100, k = 30, $|\Delta|$ =100, Ψ =100 and p_s =0.3

Conclusions

- ➤ The complexity of sensor selection problem grows exponentially with the number sensors.
- The relaxation of binary constraints can only give upper bound.
- ➤ The performance of EDA algorithm is better than convex optimization.
- The EDA surpasses the convex optimization within a few iterations.

Thank You