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M ti ti
The motivations to choose a subset of sensors

Motivation
The motivations to choose a subset of sensors 
depend on applications, but in general a small 
subset means less energy consumption of sensors gy p
and simpler computation than operating all 
sensors. Especially in sensor networks, activating 

l b t f b i t t ionly a subset of sensors can be important in 
prolonging the network’s life time.
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THE SENSOR SELECTION PROBLEM

The sensor selection problem can be viewed as aThe sensor selection problem can be viewed as a 
combinatorial optimization problem of selecting from 
potential m sensor measurements a subset of sensor 
measurements with conflicting goals of maximizing the 
utility of selected measurements and minimizing the 

tcost.
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Problem FormulationProblem Formulation
m = Total number of sensors
k N b f l t dk  = Number of selected sensors
n  = Number of parameters to be estimated

The problem is to select k sensors from the set of m
sensors in the system of estimating n parameters
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Problem FormulationProblem Formulation

x1,x2,…,xn, the n parameters to be estimatedx1,x2,…,xn, the n parameters to be estimated
Y1,Y2,…,Ym scalar measurements from m sensors

The measurements and parameters have linear relationThe measurements and parameters have linear relation

( ) ( ) ( )1 2 1 2 1 2, ,..., , ,..., , ,...,T T T
m n mY Y Y A x x x V V V= +

where A=(a1,a2,…,am)T is m×n real-valued matrix known   
to the system designer. (ai, i = 1,2,…,m, is an n-dimensionalto the system designer.  (ai, i  1,2,…,m, is an n dimensional 
real-valued column vector. )
V1,V2,…,Vm are i.i.d. additive white Gaussian noise with 

i 2
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variance σ2.   



The maximum likelihood (ML) estimator of (x1,x2,…,xn)T is
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This is an unbiased estimator and the estimation error is
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The covariance of this estimation error is
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Let us denote by                            the set of selected 
sensors.  Then, the ML estimator is 

{1, 2,..., }S m⊂
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−
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a a a Y
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The volume of the α − confidence ellipsoid of the estimator is
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The mean radius of the α confidence ellipsoid isThe mean radius of the α − confidence ellipsoid is 
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A larger value of implies smaller volume( )det Ta a∑A larger value of                   implies smaller volume 
or mean radius of the α − confidence ellipsoid, thus 
means better utility of the estimation. Therefore, the

( )det i ii S
a a

∈∑

means better utility of the estimation. Therefore, the 
sensor selection problem can be formulated as

( )i i l d t T∑( )maximize       log  det

subject to

T
i ii SS
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We denote by Φ the collection of all possible sensor selectionsWe denote by Φ the collection of all possible sensor selections. 
φWe denote by     in Φ a selection of sensors. Each selection is 

represented as binary string  

[ ] { }1 2 ... , 0,1m iZ z z z z= ∈

We can rewrite sensor selection problem as

maximize      log  det
m

T
i i iz a a 
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∈ = ∈ℜ{ }0,1 , 1,...,iz i m and z∈ = ∈ℜ

The     is a vector with all entries equal to one. Θ
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EDA-Flow Diagramg

Generate random population

Evaluate             Individuals
Sort

               X1  X2  X3   …   Xn        Function
                                                    Values
  1           1    1    0    …    0         F1
  2           1    0    0    …    1         F2
3 0 1 1 1 Fl∆

C
Yes

 3           0    1    1    …    1         F3
  ...          ...   ...   ...   …    ...        ...

           1    0    0    …    1
1l

F
−∆1l−∆

l

Convergence
Criterion satisfied

No

TerminateGenerate New
Individuals with Conditional

Prob. Vector

l lη∆ −

Update Counter l=l+1

               X1  X2  X3   …   Xn
  1           1    1    0    …    0
  2           1    0    0    …    1

Select
Best

Individuals

1lη −

1 2 1( , , , | ) n lP −Γ = θ θ θ η
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EDAEDA
EDA can be characterized by parameters and Notations

1. Is is the space of all potential solutions
2. F denotes a fitness function.  
3. ∆l is the set of individuals (population) at the lth iteration. 
4. ηl is the set of best candidate solutions selected from set ∆l at the 

lth iteration.Γth
5. We denote βl ≡ ∆l – ηl≡ ∆l ∩ ηC l .where ηC l is the complement of ηl.
6. ps is the selection probability. The EDA algorithm selects ps|∆l| 

individuals from set ∆l to make up set ηl.  l p ηl
7. We denote by Γ the distribution estimated from ηl (the set of 

selected candidate solutions) at each iteration
8. ITer are the maximum number of iteration  
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Si l ti R ltSimulation Results
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p p
m=100, n = {18,20}, |∆|=100, Ψ=100 and ps=0.3.
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Performance comparison of EDA and Convex optimization with 
m=100, k = {20,24}, |∆|=100, Ψ=100 and ps=0.3. 
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CvxSS, n=16
EDA, n=16
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EDA Performance per iteration with m=100, k = 30, |∆|=100, Ψ=100 
and ps=0.3 



ConclusionsConclusions
The complexity of sensor selection problem grows 
exponentially with the number sensorsexponentially with the number sensors.

The relaxation of binary constraints can only give upperThe relaxation of binary constraints can only give upper 
bound.

The performance of EDA algorithm is better than convex 
optimization.

The EDA surpasses the convex optimization within a few 
iterations.
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Thank You
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