Simon Fraser University

Complexity Analysis of Optimal Stationary Call Admission Policy and Fixed Set Partitioning Policy for OVSF-CDMA Cellular Systems

Daniel Lee
Muhammad Naeem
Chingyu Hsu

Presentation Outline

-Background

-System Model

-Call Admission Control Schemes

Complexity Of Proposed Schemes
-Numerical Results
-Summary

Background

In Wideband CDMA orthogonal variable spreading factor (OVSF) are codes for providing different channels for different users with different data rates

Well known OVSF code generation

- Nodes with the depth $=l$ from the root of the tree have code words of code length $=2^{l}$.

Example

Resource constraint: $\sum_{j=0}^{M-1} 2^{j} k_{j} \leq C$
k1

k0

Example of capacity region,, $\mathrm{Cmax}=32$

System Model

Random arrivals of call requests in each class can be modeled by a stochastic process - (Poisson process).

For class j

- Average arrival rate is λ_{j}
- Average call duration μ_{j}.

In response to each arrival of call request, the network operator must make a call admission control (CAC) decision (whether to accept or reject the call request), and the decision should be made based on the resource constraint.
$>$ The objective can be to maximize average throughput, or minimize blocking probability, etc.

System Model

We allow code re-assignment

Main point

- The greedy Call Admission Policy is not necessarily optimal.

Optimal policy

- The system can be modeled by a Markov decision process, so an optimal policy can be obtained by optimizing a Markov Decision Process.
- Linear Programming
- Policy iteration
- etc.

$$
\left\{\left(k_{0}, k_{1}, \cdots, k_{M-1}\right) \mid \sum_{i=0}^{M-1} 2^{i} k_{i} \leq C, k_{i} \in Z^{+}\right\}
$$

Previous Results: optimal policy

- An optimal policy can have significantly better performance than the greedy policy
- According to small-scale cases
- Large-scale: large C, large number of classes, etc.
- Computational complexity of linear programming (e.g., number of variables)

$$
\left\{\left(k_{0}, k_{1}, \cdots, k_{M-1}\right) \mid \sum_{i=0}^{M-1} 2^{i} k_{i} \leq C, k_{i} \in Z^{+}\right\}
$$

Previous results: suboptimal policy

- Even a fixed set policy can have significantly better performance than the greedy policy.

Optimal Fixed Set Partitioning

$>$ OVSF codes are partitioned into mutually exclusive groups of codes and uniquely assigns a group to each service class.
$>G_{j}$ the number of codes in the subset assigned with class j, where $j=0,1,2, \ldots, M-1$.
$>$ Once vector $G \equiv\left(G_{0}, G_{1}, \ldots ., G_{M-1}\right)$ is determined, the actual partition of the set is trivial.
$>$ The numbers of codes in the subsets $G_{0}, G_{1}, \ldots, G_{M-1}$ satisfy

$$
\sum_{j=0}^{M-1} 2^{j} G_{j}=C
$$

$>$ Average Through put of this scheme

$$
T_{F}(G)=\sum_{k=0}^{M-1}\left(2^{k} R\right)\left(1-P_{k}\right) \lambda_{k} / \mu_{k} \quad \text { where } \quad P_{k}=\frac{\left(\lambda_{k} / \mu_{k}\right)^{n} / n!}{\sum_{n=0}^{c_{k}}\left(\lambda_{k} / \mu_{k}\right)^{n} / n!}
$$

Optimal Fixed Set Partitioning

Greedy within fixed sets

Complexity Analysis

Size of the feasible set: the number of vectors $\left(G_{0}, G_{1}, \cdots, G_{M-1}\right)$ that satisfy constraint $\sum_{j=0}^{M-1} 2^{j} G_{j}=C$

Combinatorial Analysis and Recursion

$>G_{M-1}$ can have any value from $0,1, \ldots, C / 2^{M-1}$. if G_{M-1} is x_{M}. Then, G_{M-2} can be $0,1,2,3, \ldots, 2\left(C / 2^{M-1}-x_{M}\right)$ and so on.
>The relation between adjacent classes has a recursion
Let $\Gamma_{m}(v)$ be the number of non-negative integral vectors $\left(G_{0}, G_{1}, \cdots, G_{M-1}\right)$ that can occupy the space taken by v codes of largest codes i.e., satisfying constraint $\sum_{i=0}^{m} 2^{i} G_{i}=v 2^{m}$. Then,
$\Gamma_{m}(v)=\sum_{x=0}^{v} \Gamma_{m-1}(2(v-x))=\sum_{i=0}^{v} \Gamma_{m-1}(2 i)$
$\Gamma_{0}(v)=1, \quad v=0,1,2,3, \ldots$.

Functions $\Gamma_{0}(v), \Gamma_{1}(v), \ldots, \Gamma_{M-1}(v)$ can be evaluated from the recursion.

The number of vectors $\left(G_{0}, G_{1}, \cdots, G_{M-1}\right)$ that satisfy constraint $\sum_{j=0}^{M-1} 2^{j} G_{j}=C$ is $\Gamma_{M-1}\left(C / 2^{M-1}\right)$.

Numerical Results

Numerical Results

Optimization of Markove Decision process through LP

In the case of LP, its complexity is closely related to the size of state space,
$\left|\left\{\left(k_{0}, k_{1}, \cdots, k_{M-1}\right) \mid \sum_{i=0}^{M-1} 2^{i} k_{i} \leq C, k_{i} \in Z^{+}\right\}\right|$
$>$ Let $X_{m}(v)$ be the number of non-negative integer vectors $\left(k_{0}\right.$, $\left.k_{1}, \ldots, k_{m}\right)$ that satisfy the constraint $\quad \sum_{i=0}^{m} 2^{i} k_{i} \leq v 2^{m}$
$>$ The number of vectors $\left(k_{0}, k_{1}, \ldots, k_{m-1}\right)$ that satisfy this constraint is $X_{m-1}\left(2\left(v-x_{m}\right)\right)$. Therefore, we have the following recursion:

$$
\begin{gathered}
\sum_{i=0}^{m-1} 2^{i} k_{i} \leq\left(v-x_{m}\right) 2^{m}=2\left(v-x_{m}\right) 2^{m-1} \\
\chi_{m}(v)=\sum_{i=0}^{v} \chi_{m-1}(2 i)
\end{gathered}
$$

$X_{m}(v)$ and $\Gamma_{m}(v)$ have an identical recursion

The size of the state space

$$
\begin{aligned}
& \left|\left\{\left(k_{0}, k_{1}, \cdots, k_{M-1}\right) \mid \sum_{i=0}^{M-1} 2^{i} k_{i} \leq C, k_{i} \in Z^{+}\right\}\right| \\
& =\chi_{M-1}\left(C / 2^{M-1}\right)=\Gamma_{M}\left(C / 2^{M-1}\right)
\end{aligned}
$$

Numerical Results

Complexity

>Fixed Set Partitioning (FSP)
The complexity of FSP operation is characterized as $O(1)$ lookups
>DCA-CAC
The complexity of DCA-CAC is also $O(1)$ In summary, in both FSP and DCA, the computational complexity of online operations is $O(1)$ per call arrival.

Thank You.

