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Abstract
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based reference-dependence à la Kőszegi and Rabin (2006). Novel axioms pro-
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risk. The analysis completely characterizes the model’s testable implications
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1 Introduction

Seminal work by Kahneman and Tversky introduced psychologically and experimen-
tally motivated models of reference-dependence to economics. A limitation preventing
the adoption of reference-dependent models is that reference points are not a directly
observable economic variable. Kahneman and Tversky (1979) acknowledge that while
it may be natural to assume that a decision-maker’s status quo determines her ref-
erence point in their experiments, it is not appropriate in many interesting economic
environments. The lack of a generally applicable model of reference point forma-
tion in economic environments has hindered applications of reference-dependence to
economic settings.

Kőszegi and Rabin (2006) propose a model in which a decision-maker’s recently-
held expectations determine her reference point. Their solution concept for endoge-
nously determined reference points has made their model convenient in numerous
economic applications, including risk-taking and insurance decisions, consumption
planning and informational preferences, firm pricing, short-run labour supply, labour
market search, contracting under both moral hazard and adverse selection, and do-
mestic violence.1 In many of these applications, observed behaviour that appears im-
possible to explain using standard models naturally fits the intuition of expectations-
based reference-dependence.

Little is known about the testable implications of expectations-based reference-
dependence in more general settings in spite of the large number of applications.
It has been suggested that models of expectations-based reference-dependence may
have no meaningful revealed preference implications, and that their success comes
from adding in an unobservable variable, the reference point, used at the modeller’s
discretion (Gul and Pesendorfer, 2008). The results here confront this claim: mod-
els of expectations-based reference-dependence do have economically meaningful and
testable implications for standard economic data. The revealed preference axioms of
this paper completely summarize the implications of a widely-applied version of the

1Kőszegi and Rabin (2007); Sydnor (2010); Kőszegi and Rabin (2009); Heidhues and Kőszegi
(2008, Forthcoming); Karle and Peitz (2012); Crawford and Meng (2011); Abeler et al. (2011); Pope
and Schweitzer (2011); Eliaz and Spiegler (2013); Herweg et al. (2010); Carbajal and Ely (2012);
Card and Dahl (2011).
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model.
The main contribution of this paper is to provide a set of revealed preference

axioms that constitute necessary and sufficient conditions for a model of expectations-
based reference-dependence. Commonly-used cases of Kőszegi and Rabin’s model are
special cases of the model studied here. The revealed preference axioms clarify how the
model can be tested against both the standard rational model and against alternative
behavioural theories.

As in existing models of reference-dependence, behaviour is consistent with max-
imizing preferences conditional on the decision-maker’s reference point. The main
challenge of the analysis is that expectations are not observed in standard economic
data. Under expectations-based reference-dependence, the interaction between opti-
mality given a reference point and the determination of the reference point as rational
expectations can generate behaviour that appears unusual since expectations are not
observed. Axioms justified by the logic of expectation-dependent decisions are shown
to summarize the testable content of this unusual behaviour.

1.1 Background: expectations-based reference-dependence

The logic of reference-dependence suggests that rather than using a single utility
function, a reference-dependent decision-maker has a set of reference-dependent utility
functions. The utility function v(·|r) defines the decision-maker’s utility function
given reference lottery r. When the reference lottery r is observable, as in the case
where a decision-maker’s status quo is her referent, standard techniques can be applied
to study v(·|r). But when the reference lottery is determined endogenously and is
unobserved, as in the case where the reference lottery is determined by the decision-
maker’s recent expectations, an additional modelling assumption is needed. To that
end, Kőszegi and Rabin (2006) introduce two solution concepts - personal equilibrium
and preferred personal equilibrium - that capture the endogenous determination of
the reference lottery for models with expectations as the reference lottery.

In an environment in which a decision-maker faces a fully-anticipated choice set D,
rational expectations require that the decision-maker’s reference lottery corresponds
with her actual choice from D. In such an environment, the set of personal equilibria
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of D provides a natural set of predictions of a decision-maker’s choice from a set D:

PEv(D) = {p ∈ D : v(p|p) ≥ v(q|p) ∀q ∈ D} (1)

The personal equilibrium concept has the following interpretation. When choosing
from choice set D, a decision-maker uses her reference-dependent preferences v(·|r)
given her reference lottery (r) and chooses argmax

p∈D
v(p|r). When forming expecta-

tions, the decision-maker recognizes that her expected choice p will determine the
reference lottery that applies when she chooses from D. Thus, she would only expect
a p ∈ D if it would be chosen by the reference-dependent utility function v(·|p), that
is, if p ∈ argmax

q∈D
v(q|p). The set of personal equilibria of D in (1) is the set of all

such p.
There may be a multiplicity of personal equilibria for a given choice set. Indeed,

if reference-dependence tends to bias a decision-maker towards her reference lottery,
multiplicity is natural. At the time of forming her expectations, a decision-maker eval-
uates the lottery p according to v(p|p), which reflects that she will evaluate outcomes
of lottery as gains and losses relative to outcomes of p itself. The preferred personal
equilibrium concept is a natural refinement of the set of personal equilibria based on a
decision-maker picking her best personal equilibrium expectation according to v(p|p):

PPEv(D) = argmax
p∈PE(D)

v(p|p) (2)

Kőszegi and Rabin (2006) adopt a particular functional form for v. They assume
that given probabilistic expectations summarized by the lottery r, a decision-maker
ranks a lottery p according to:
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In (3), mk is a consumption utility function in “hedonic dimension” k; different
hedonic dimensions are akin to different goods in a consumption bundle, but specified
based on “psychological principles”. The function µ is a gain-loss utility function which
captures reference-dependent outcome evaluations.
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The Kőszegi-Rabin model with the preferred personal equilibrium concept has
been particularly amenable to applications, since the model’s predictions are pinned
down by (3) and (2). However, little is known about how the Kőszegi-Rabin model
behaves except in very specific applications.

This paper focuses on expectations-based reference-dependent preferences with
the preferred personal equilibrium concept as in (2). Theorem 1 provides a complete
revealed preference characterization of the choice correspondence c that equals the
set of all preferred personal equilibria of a choice set, c(D) = PPEv(D). The model
of decision-making equivalent to the axioms does not restrict v to the form in (3)
but does require that v be jointly continuous in its arguments, v(·|r) satisfy expected
utility, and v satisfy a property related to disliking mixtures of lotteries.

The tight characterization of the PPE model of expectations-based reference-
dependence in Theorem 1 may come as a surprise relative to previous work (e.g.
Gul and Pesendorfer 2008; Kőszegi 2010).2 The analysis here also provides additional
surprising connections. First, the PPE representation is related to the shortlisting
representation of Manzini and Mariotti (2007), a connection clarified in Proposition 1.
Second, there is a tight connection between expectations-based reference-dependence
and failures of the Mixture Independence Axiom; violations of Independence of Irrel-
evant Alternatives (IIA) are sufficient but not necessary for expectations-dependent
behaviour in the model (Proposition 2).

1.2 Outline

Section 2 provides two examples that motivate expectations-based reference-dependence,
and a result that illustrates the limits to the model’s testable implications in environ-
ments without risk. Section 3 provides axioms and a representation theorem for PPE
decision-making, and suggests a way of defining expectations-dependence in terms

2Gul and Pesendorfer (2008) show that with the personal equilibrium concept and without using
any lottery structure, the reference-dependent preferences of Kőszegi and Rabin (2006) have no
testable implications beyond an equivalence with a choice correspondence generated by a binary
relation. Kőszegi (2010) initially proposed the personal equilibrium concept studied here but provides
only a limited set of testable implications, and suggested that a complete revealed preference may
not be possible: “I do not offer a revealed-preference foundation for the enriched preferences—it is
not clear to what extent the decisionmaker’s utility function can be extracted from her behavior.”
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of observable behaviour. Section 4 explores special cases of the model, including
Kőszegi-Rabin and a new axiomatic model of expectations-based reference lottery
bias. Section 5 shows how the analysis can be adapted to study PE decision-making
and also to decision-making under Kőszegi and Rabin’s (2007) choice-acclimating
personal equilibrium (CPE).

2 Two examples and a motivating result

2.1 Formal setup

Let ∆ denote the set of all lotteries with support on a given finite set X, with typical
elements p, q, r ∈ ∆. Let D denote the set of all finite subsets of ∆, a typical D ∈ D
is called a choice set. The starting point for analysis is a choice correspondence,
c : D → D, which is taken as the set of elements we might observe a decision-maker
choose from a set D. Assume ∅ �= c(D) ⊆ D, that is, a decision-maker always chooses
something from her choice set.

Define the mixture operation (1− λ)D+ λD� := {(1− λ)p+ λq : p ∈ D, q ∈ D�}.

2.2 Mugs, pens, and expectations-based reference-dependence

The classic experimental motivation for loss-aversion in riskless choice comes from the
endowment effect. An example of an endowment effect comes from the experimental
finding that randomly-selected subjects given a mug have a median willingness-to-
accept for a mug that is double the median willingness-to-pay of subjects who were not
given a mug (Kahneman et al., 1990). This classic experiment provides no separation
between status-quo-based and expectations-based theories of reference-dependence
since subjects given a mug could expect to be able to keep it at the end of the
experiment.

To separate expectations-based theories of reference-dependence from status-quo
based theories, Ericson and Fuster (2011) design an experiment in which all subjects
are endowed with a mug, and subjects are told that there is a fixed probability
(either 10% or 90%) they will receive their choice between a retaining the mug or
instead obtaining a pen, and with the remaining probability they will retain the mug;
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the conditional choice must be made before uncertainty is resolved.3 Subjects in
a treatment with a 10% chance of receiving their choice must expect to receive a
mug with at least a 90% chance, and consistent with expectations-based reference-
dependence, 77% of these subjects’ conditionally choose the mug. In contrast, only
43% of subjects conditionally choose the mug in the treatment in which subjects
received their chosen item with a 90% chance.

The Mixture Independence axiom below adapts of von-Neuman and Morgenstern’s
axiom to a choice correspondence.

Mixture Independence. (1− α)c(D) + αc(D�) = c((1− α)D + αD�) ∀α ∈ (0, 1)

The median choice pattern in Ericson and Fuster’s experiment has {�mug, 1�} =

c(.9{�mug, 1�}+ .1{�mug, 1� , �pen, 1�}) but {�mug, .1; pen, .9�} = c(.1{�mug, 1�}+
.9{�mug, 1� , �pen, 1�}). This choice pattern suggests an intuitive and empirically
supported violation of Mixture Independence that is consistent with expectation-bias.

2.3 IIA violations under Kőszegi-Rabin under PPE

Consider a decision-maker with a Kőszegi-Rabin v as in (3), with linear utility and
linear loss aversion:45

m(x) = x, µ(x) =





x if x ≥ 0

3x if x < 0

When faced with a set of lotteries, suppose that our decision-maker chooses his
preferred personal equilibrium lottery as in (2).

Consider the three lotteries p = �$1000, 1�, q = �$0, .5; $2900, .5�, and r =

�$0, .5; $2000, .25; $4100, .25�. As broken down in Table 1, the decision-maker’s
3This paper interprets the subjects’ choice as being between two lotteries, each of which involves

the prize of the mug with a fixed probability (10% or 90%) and the prize chosen by the subject with
the remaining probability. An alternative interpretation of the experimental setup is that subjects
face a lottery over choice sets, one of which is a singleton, and must choose from the non-singleton
choice set before the lottery is resolved. For a result on the formal relationship between these choice
spaces, see Ortoleva (2013).

4I would like to specially thank Matthew Rabin for suggesting this example.
5Linear loss aversion is used in most applications of Kőszegi-Rabin, and the chosen parameteri-

zation is broadly within the range implied by experimental studies.
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Table 1: Example of reference-dependent preferences

v(p|·) v(q|·) v(r|·)

v(·|p) 1000 900 1050

v(·|q) -1350 0 -75

v(·|r) -1575 -450 -262.50

choice correspondence, c, is given by {p} = c({p, q}), {q} = c({q, r}), {r} =

c({p, r}), and {q} = c({p, q, r}).
Choice from binary sets reveals an intransitive cycle. Because of this, there is no

possible choice from {p, q, r} is consistent with preference-maximization! Consider
the Independence of Irrelevant Alternatives (IIA) axiom below, which Arrow (1959)
shows is equivalent to maximization of a complete and transitive preference relation.

IIA. D� ⊂ D and c(D) ∩D� �= ∅ =⇒ c(D�) = c(D) ∩D�.

In the Kőszegi-Rabin PPE example, adding the lottery r to the set {p, q} generates a
violation of IIA, since r is not chosen yet affects choice from the larger set. Given fixed
expectations r, our decision-maker’s behaviour would be consistent with the standard
model: she would maximize v(·|r). The decision-maker exhibits novel behaviour be-
cause her expectations, and hence preferences, are determined endogenously in a
choice set. However, rational expectations combined with preferred personal equi-
librium put quite a bit of structure on the decision-maker’s novel behaviour. The
axiomatic analysis that follows will clarify the nature of such structure.

2.4 The testable implications of Kőszegi-Rabin under PE: a

negative result

The preceding example demonstrates that the Kőszegi-Rabin model with PPE gen-
erates choice behaviour that cannot be rationalized by a complete and transitive
preference relation. Gul and Pesendorfer (2008) suggest that compared to the stan-
dard rational model, this may be the only revealed preference implication of the
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Kőszegi-Rabin model when paired with the personal equilibrium solution criteria in
(1). Gul and Pesendorfer take as a starting point a finite set X of riskless elements,
a reference-dependent utility v : X ×X → �, and offer the following result:

Proposition 0. (Gul and Pesendorfer 2008). The following are equivalent: (i)
c is induced by a complete binary relation, (ii) there is a v such that c(D) = PEv(D)

for any choice set D, (iii) there is a v that satisfies (3) such that c(D) = PEv(D) for
any choice set D.

Proof. (partial sketch)
If c(D) = {x ∈ D : xRy ∀y ∈ D} then define v by: v(x|x) ≥ v(y|x) if xRy, and

v(y|x) > v(x|x) otherwise. Then, {xRy ∀y ∈ D} ⇐⇒ {v(x|x) ≥ v(y|x) ∀y ∈ D}.
By reversing the process, we could construct R from v. Thus (i) holds if and only if
(ii) holds.

Gul and Pesendorfer cite Kőszegi and Rabin’s (2006) argument that the set of
hedonic dimensions in a given problem should be specified based on “psychological
principles”. Since X has no assumed structure, Gul and Pesendorfer infer hedonic
dimensions from c and the structure imposed by (3). Their construction shows any v

has a representation in terms of the functional form in (3).

The analysis that follows uses two assumptions that allow for a rich set of testable
implications of expectations-based reference-dependence. First, c is defined on a sub-
sets of lotteries over a finite set. The structure of lotteries in choice sets places
additional observable restrictions on expectations in a choice set and additional in-
formation on behaviour relative to expectations. New axioms make particular use
of this lottery structure to trace the observable implications of expectations-based
reference-dependence.

Second, the main analysis looks for the revealed preference implications of pre-
ferred personal equilibrium. The sharper predictions of preferred personal equilibrium
lead to different testable implications of the PPE based model expectations-based
reference-dependence in the absence of risk.

This choice space does not allow the analysis to say anything insightful about the
set of hedonic dimensions of the problem. In light of Gul and Pesendorfer’s result,
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the representation here does not seek any particular structure on the v that repre-
sents reference-dependent preferences. The analysis considers the particular structure
imposed by the functional form (3) as a secondary issue for future work.

3 Revealed preference analysis of PPE

3.1 Technical prelude

Define distance on lotteries using the Euclidean distance metric, dE(p, q) :=
��

i

(pi − qi)2,

and the distance between choice sets using the Hausdorff metric,

dH(D,D�) := max

�
max
p∈D

�
min
q∈D�

dE(p, q)

�
, max

q∈D�

�
min
p∈D

dE(p, q)

��
.

It will be useful to offer a few definitions in advance of the analysis. For any
set T with typical element t, let {t�} denote a convergent net indexed by a set (0, �̄]

and with limit point t; t� will be used to denote the � term in the net.6 Define
cU(D) as the upper hemicontinuous extension of c; that is, cU(D) := {p ∈ D :

∃{p�, D�} such that p� ∈ c(D�), p� → p, D� → D}. For p ∈ ∆ and � > 0, let
N �

p
:= {p� ∈ ∆ : dE(p, p�) < �} denote a �-neighbourhood of p. For any binary

relation R, let clR denote its closure, defined by: p(clR)q if ∃{p�} → p, {q�} → q

such that for each � > 0, p�Rq�. For any finite set D and binary relation R, define
m(D, R) := {p ∈ D : �q ∈ D such that qRp but not pRq} as the set of undominated
elements in D according to binary relation R.

3.2 Revealed preference analysis without risk

Ignoring restrictions specific to risks, the classic IIA axiom provides the point of
departure from standard models. The two axioms below allow for failures of IIA
that can arise from the endogenous determination of expectations and preferences in
each choice set. For this section, restrict attention to axioms and restrictions on the
representation in (2) that do not make use of the particular economic structure of
lotteries, except for the continuity of ∆.

The following Expansion axiom is due to Sen (1971).
6A net in a set T is a function t : S → T for some directed set S (Aliprantis and Border, 1999).
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Expansion. p ∈ c(D) ∩ c(D�) =⇒ p ∈ c(D ∪D�)

Expansion says that if a lottery p is chosen in both D and D� then it is chosen
in D ∪ D�. This seems weak as both a normative and a descriptive property, and
is an implication of variations on the Weak Axiom of Revealed Preference (see Sen
(1971)). Expansion rules out the attraction and compromise effects, in which an agent
chooses p over both q and r in pairwise choices, but chooses q from {p, q, r}.7 In the
attraction effect, r is similar to, but dominated by q and attracts the decision-maker
to p in {p, q, r}; in the compromise effect, q is a compromise between more extreme
options p and r in the choice set {p, q, r}.

The Weak RARP (RARP for Richter’s (1966) Axiom of Revealed Preference8)
is in the spirit of the classic axioms of revealed preference (like WARP, SARP, and
GARP) albeit with an embedded continuity requirement. In particular, the axiom
weakens (a suitably continuous version of) RARP.

Define p ˜̄Rq if p ∈ c(D) and q ∈ cU(D̄) for some D, D̄ with {p, q} ⊆ D ⊆ D̄.
The relation ˜̄R is defined whenever sometimes p is chosen when q is available, and
sometimes q is choosable (in the sense that q ∈ cU(D̄)) when p is available. The
statement p ˜̄Rq holds when p is weakly chosen over q in a smaller set, but q is weakly
choosable over p in a set that is larger in the sense of set inclusion. Define p ˜̄Wq if
there exist p0 = p, p1, ..., pn−1, pn = q such that (pi−1, pi) ∈ cl ˜̄R for i = 1, ..., n. That
is, ˜̄W is the continuous and transitive extension of ˜̄R.

Weak RARP. p ∈ c(D), q ∈ cU(D̄), q ∈ D ⊆ D̄, and q ˜̄Wp =⇒ q ∈ c(D)

The crucial implication of Weak RARP is captured by its main economic implication,
Weak WARP : if p = c({p, q}) and p ∈ c(D) then q /∈ c(D�) whenever p ∈ D� ⊆
D.9 Manzini and Mariotti (2007) offer an interpretation in terms of constraining
reasons : an agent might choose p over q in a smaller set, like {p, q}, yet might have

7See Simonson (1989) for evidence on attraction and compromise effects. Ok et al. (2012) provide
a model of the attraction effect that captures this phenomenon.

8Richter refers to his axiom as “Congruence”. I use RARP to emphasize the close connection
with WARP, SARP, GARP, etc. For more on the connection between these axioms, see Sen (1971).

9The following proof that Weak RARP implies Weak WARP may help clarify the connection.
Suppose p ∈ c(D), p ∈ D� ⊂ D, and q ∈ c(D�). Then q ˜̄Wp, and so if p ∈ c({p, q}), Weak RARP
implies that q ∈ c({p, q}) as well. Thus Weak RARP implies that if p = c({p, q}) and p ∈ c(D) hold,
q ∈ c(D�) could not hold.
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a constraining reason against choosing p in a larger set D. However, if we observe p

chosen from a large set D, then any D� that is a subset of D contains no constraining
reason against choosing p. Thus, her choice in D� should be minimally consistent
with her choice in {p, q} and she should not choose q.

Weak RARP strengthens the logic of Weak WARP in two ways. Weak WARP
allows only WARP violations consistent with the existence of constraining reasons,
and takes choices from smaller sets - which can fewer constraining reasons - as the
determinant of choice in the absence of constraining reasons. The main way Weak
RARP strengthens Weak WARP is by imposing that choice among unconstrained
options is determined by a transitive procedure.10

Weak RARP as stated also strengthens a transitive version of Weak WARP by
imposing continuity in two ways. Taking the topological closure of ˜̄R and then taking
the transitive closure imposes that choice among unconstrained options is determined
by a rationale that is both transitive and continuous. This imposes a restriction that
is economically natural relative to the topological structure of lotteries. The second
continuity aspect of Weak RARP is that if p ∈ cU(D), p is seen as chooseable from
D. That is, if it is revealed that there is no reason to reject p� from D� when p� and
D� are ’arbitrarily close’ to p and D respectively, then Weak RARP assumes that
there is no reason revaled to reject p from D (even if p is not chosen at D). These
two strengthenings in Weak RARP are natural given the topological structure of the
space of lotteries (and many other choice spaces).

Formally, say that a PPE representation in (2) is continuous if v is jointly contin-
uous. Proposition 1 (i) ⇐⇒ (ii), clarifies the link between the Expansion and Weak
RARP axioms on one hand, and the PPE decision-making on the other hand.

Manzini and Mariotti (2007) characterize a shortlisting representation, c(D) =

m(m(D,P1), P2) for two asymmetric binary relations P1, P2, in terms of two axioms,
Expansion and Weak WARP.11 If P2 is transitive and both P1 and P2 are continuous,
say that P1, P2 is a continuous and transitive shortlisting representation.12 Proposition

10In this regard, Weak RARP is closely related to the “No Binary Cycle Chains” axiom of
Cherepanov et al. (Forthcoming).

11Manzini and Mariotti (2007) and follow-up papers assume that c is a single-valued choice func-
tion, which simplifies their analysis.

12This terminology is different from Au and Kawai (2011) and Horan (2012) who discuss short-
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1 (ii) ⇐⇒ (iii), provides a link between a version of the shortlisting model of Manzini
and Mariotti and the PPE representation in (2).

Proposition 1. (i)-(iii) are equivalent: (i) c satisfies Expansion and Weak RARP,
(ii) c has a continuous PPE representation, (iii) c has a continuous and transitive
shortlisting representation.

Proof. (ii) ⇐⇒ (iii)
Consider the following mapping between a continuous PPE representation v and

a continuous and transitive shortlisting representation:
v(q|p) > v(p|p) ⇐⇒ qP1p

v(p|p) > v(q|q) ⇐⇒ pP2q

For v and P1, P2 that satisfy this mapping, m(D, P1) = PEv(D), and m(m(D, P1), P2) =

PPEv(D).
It remains to verify that joint continuity in v is equivalent to continuity of P1 and

P2 - the full argument is in the appendix.

The v in a PPE representation characterized by Proposition 1 is highly non-unique:
any v̂ that satisfies v̂(q|p) > v̂(p|p) ⇐⇒ v(q|p) > v(p|p) and has v̂(p|p) = u(p) for
some u that represents P2 in the shortlisting representation also represents the same
c. Put another way, v includes information about how a decision-maker would choose
between any two lotteries p and q given any reference lottery r. However, if the
decision-maker’s rational expectations determine her reference lottery, as in a PPE
representation, choices give us no direct information about a decision-maker would
choose between p and q given any reference lottery r /∈ {p, q}.

3.3 Revealed preference analysis with risk

The result in Proposition 1 did not consider the possibility of adopting stronger ax-
ioms or restrictions on v that are suitable when working with choice among lotteries
but may not be economically sensible in other domains. But the evidence supporting
expectations-based reference-dependence in Ericson and Fuster (2011) suggests that
environments with risk provide a natural environment for studying expectations-based

listing representations in which both P1 and P2 are transitive.
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reference-dependence. This section explores the possibility of a stronger characteri-
zation in environments with risk.

Environments with risk enable a partial separation between expectations and
choice. Suppose we view the mixture (1 − α)q + αD as arising from a lottery over
choice sets that gives the singleton choice set {q} with probability 1 − α and gives
choice set D with probability α. Under this interpretation, fraction 1 − α of expec-
tations are fixed at expecting q and we also observe the decision-maker’s conditional
choice from D. The three axioms below make use of variations on this interpretation.

The Induced Reference Lottery Bias Axiom uses this partial separation between
expectations and choice. The axiom requires that if p is chosen in a choice set D,
then p would also be conditionally chosen from D when some of the expectations are
fixed at p, as in any mixture of the form (1 − α)p + αD. This is a natural axiom
to adopt under expectations-based reference-dependence: fixing expectations at p at
least partially fixes the reference-lottery weakly towards p; if the decision-maker is
biased towards her reference-lottery, this should bias her towards choosing p.

Induced Reference Lottery Bias. p ∈ c(D) implies p ∈ c((1 − α)p + αD) ∀α ∈
(0, 1).

Notice that Induced Reference Lottery Bias allows for the violation of Mixture In-
dependence observed by Ericson and Fuster (2011), but rules out a violation in the
opposite direction.

IIA Independence weakens the Mixture Independence Axiom to a variation that
only implies a restriction on behaviour in the presence of IIA violations, with an
embedded continuity requirement.

IIA Independence. If p ∈ c(D) and ∃α ∈ (0, 1] such that p /∈ c(D∪((1−α)p+αq)) �
r and p ˜̄Wr, then ∃� > 0 such that ∀α� ∈ (0, 1], ∀p̂ ∈ N �

p
, ∀q̂ ∈ N �

q
, and

∀D� � (1− α�)p̂+ α�q̂, p̂ /∈ c(D�).

The spirit of Weak RARP is the requirement that in the absence of constraining rea-
sons, c is consistent with maximizing ˜̄W , derived from choice from smaller choice sets.
The choice pattern p ∈ c(D), p /∈ c(D∪q) � r, and p ˜̄Wr then reveals that q blocks p.13

13In the appendix, it is shown that this choice pattern is ruled out by Weak RARP and Expansion.
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Table 2: Two choice correspondences
D c(D) ĉ(D)

{�apple, 1� , �don’t eat, 1�} {�apple, 1�} {�apple, 1�}
{�candy, 1� , �apple, 1� , �don’t eat, 1�} {�don’t eat, 1�} {�don’t eat, 1�}
{�apple, .9; candy, .1� , �apple, 1�} {�apple, 1�} {�apple, .9; candy, .1�}

This revealed blocking behaviour only appears when the model violates IIA. The IIA
Independence axiom requires that in this case, any mixture between q and p also pre-
vents p from being chosen from any choice set. The logic of expectations-dependence
then requires that the agent would not choose p when it involves a conditional choice
of p over q.

Remark 1. A simple test of IIA Independence that could detect behaviour inconsistent
with expectations-dependence would be to find p, q,α, D with p ∈ c(D), {p, q}∩c(D∪
q) = ∅ but p ∈ c(D ∪ ((1− α)p+ αq)). Table 2 shows two possible choice correspon-
dences that describe a decision-maker who finds candy too tempting to turn down
for an apple whenever she had been expecting to eat but who can avoid temptation
by planning in advance to abstain from snacking. Choice correspondence c captures
a decision-maker who can exert limited self-control against the expectations-induced
temptation to go for candy, and is inconsistent with the IIA Independence axiom.
Choice correspondence ĉ cannot exert this limited self-control, and is consistent with
the axiom.

The continuity requirement embedded in IIA Independence slightly strengthens
restriction on c when adding q to the choice set prevents p from being conditionally
chosen. The IIA Independence axiom requires that in this case, lotteries close to p

prevent lotteries close to q from being conditionally chosen as well.
Say that q is a weak conditional choice over r given p, qR̄pr, if there exists a net

{p�, q�, r�} → p, q, r such that (1 − �)p� + �q� ∈ c((1 − �)p� + �{q�, r�}) for each �. A
conditional choice involves a choice between q and r for when expectations are close
to p.

Transitive Limit. qR̄pr and rR̄ps =⇒ qR̄ps.

If IIA violations are only driven by the behavioural influence of expectations and their
endogenous determination, then the agent’s behaviour should be consistent with the
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Table 3: Two choice correspondences
D = .9{�mug, 1�}+ .1 c(D) ĉ(D)

{�pen, 1� , �mug, 1�} {�mug, 1�} {�mug, 1�}
{�candy, 1� , �mug, 1�} .9{�mug, 1�}+ .1{�candy, 1�} {�mug, 1�}
{�candy, 1� , �pen, 1�} .9{�mug, 1�}+ .1{�pen, 1�} .9{�mug, 1�}+ .1{�pen, 1�}

standard model when her expectations are fixed. The Transitive Limit axiom says that
conditional choice behaviour should look like the standard model when expectations
are almost fixed, although the axiom only imposes this restriction on weak conditional
choices.

Remark 2. As with continuity axioms, the Transitive Limit axiom is not exactly
testable. However, the axiom is approximately testable. The choice sets in Table
3 provide an approximate test of Transitive Limit; ĉ is consistent with what we
would expect if the choice correspondence satisfies Transitive Limit. However, the
choice pattern displayed by c is approximately inconsistent with Transitive Limit,
and suggests that c would violate this axiom.

Formally, say that a PPE representation is an EU-PPE representation if v(·|p)
takes an expected utility form for any p ∈ ∆. Say that v dislikes mixtures if v(p|p) ≥
v(q|p) and v(q|q) ≤ max [v(p|p), v(p|q)] imply that ∀α ∈ (0, 1), v((1− α)p+ αq|(1−
α)p+ αq) ≤ max [v(p|p), v(p|(1− α)p+ αq)].

Theorem 1. c satisfies Weak RARP, Expansion, IIA Independence, Induced Refer-
ence Lottery Bias, and Transitive Limit if and only if it has a continuous EU-PPE
representation in which v dislikes mixtures.

The full proof is in the appendix, and is discussed in the next subsection.

Corollary 1. Given a continuous EU-PPE representation v for c, any other contin-
uous EU-PPE representation v̂ for c satisfies v̂(q|p) ≥ v̂(r|p) ⇐⇒ v(q|p) ≥ v(r|p)
and v̂(p|p) ≥ v̂(q|q) whenever p ˜̄Wq.

Corollary 1 clarifies that a continuous EU-PPE is unique in the sense that any v, v̂
that represent the same c must represent the same reference-dependent preferences.14

14A stronger uniqueness result is possible, since (i) each v(·|p) satisfies expected utility and thus
has an affinely unique representation, (ii) joint continuity of v in the representation restricts the
allowable class of transformations of v.
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This definition of uniqueness captures that the underlying reference-dependent pref-
erences are uniquely identified, but says nothing about the cardinal properties of
reference-dependent utility functions. In an EBRD, v plays roles in both determining
the set of of personal equilibria, and selecting from personal equilibria. The second
part of Corollary 1 clarifies that this second role places a restriction that any v repre-
senting c must represent the same ranking of personal equilibria, at least when that
ranking is revealed from choices.

Remark 3. In the representation in Theorem 1, any p chosen in D is (i) an element of
D, and (ii) is in argmax

q∈D
v(·|p). A more general model might allow a decision-maker

to randomize among elements of her choice set. An alternative representation might
have the decision-maker’s reference lottery involve a randomization among elements
in D, or perhaps only elements in c(D). However, Theorem 1 proves that if c satisfies
the five axioms it has a representation in which it is as-if the decision-maker never
views herself as randomizing among elements of D.

3.4 Sketch of proof and an intermediate result

The first part of the proof takes R̄p and characterizes a v such that v(·|p) represents
R̄p. By Transitive Limit and because R̄p is continuous by construction, such a v(·|p)
exists. A sequence of lemmas show that the definition of R̄p and Transitive Limit
axiom imply the existence of a jointly continuous v such that v(·|p) represents R̄p and
satisfies expected utility.

Crucial to proof is providing a link between behaviour captured by v and behaviour
in arbitrary choice sets. Consider an alternative axiom, Limit Consistency, which was
not assumed in Theorem 1 but which would have been a reasonable axiom to adopt.
First, define Rp as the asymmetric part of R̄p.

Limit Consistency. qRpp implies p /∈ c(D) whenever q ∈ D.

The statement qRpp says that q is always conditionally chosen over p when expec-
tations are almost fixed at p. Limit Consistency requires that a decision-maker who
always conditionally chooses q over p when her expectations are almost fixed at p

would also never choose p when q is available. This is consistent with the logic of
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expectations-dependence. If instead qRpp but p were chosen over q in some set D,
then the decision-maker would choose p over q when her expectations are p even
though she always conditionally chooses q over p when her expectations are almost
fixed at p; such behaviour would be inconsistent with expectations-dependence and
is ruled out.

The lemma below establishes that the axioms in Theorem 1 imply Limit Consis-
tency.

Lemma. Expansion, Weak RARP, and Induced Reference Lottery Bias imply Limit
Consistency.

The sufficiency part of the proof of Theorem 1 proceeds by using Expansion,
Weak RARP, Limit Consistency, and v constructed from R̄p to show that c(D) =

PPEv(D). This gives the following intemediate result, a characterization of an EU-
PPE representation in terms of Weak RARP, Expansion, IIA Independence, Limit
Consistency, and Transitive Limit.

Theorem 2. c satisfies Weak RARP, Expansion, IIA Independence, Limit Consis-
tency, and Transitive Limit if and only if it has a continuous EU-PPE representation.

Notice than in any EU-PPE representation, expected utility of v(·|p) and joint
continuity of v will imply that v(q|p) > v(r|p) =⇒ qRpr. With this observation in
hand, the necessity of Limit Consistency follows obviously from the representation.
The remainder of the proof of the above Theorem follows from the proof of Theorem
1.

3.5 A definition of expectations-dependence and its implica-

tions

Say that c exhibits expectations-dependence at D,α, p, q, r for α ∈ (0, 1) and p, q, r ∈
∆ if (1 − α)p + αr ∈ c((1 − α)p + αD) but (1 − α)q + αr /∈ c((1 − α)q + αD).
Interpret (1 − α)p + αr ∈ c((1 − α)p + αD) as involving a conditional choice of r
from D, conditional on fraction 1 − α of expectations being fixed by p. Say that
c exhibits strict expectations-dependence at D,α, p, q, r for D ∈ D, α ∈ (0, 1), and
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Table 4: Two choice correspondences
c ĉ

.9{�pen, 1�}+ .1{�pen, 1� , �mug, 1�} {�pen, 1�} {�pen, 1�}
.9{�mug, 1�}+ .1{�pen, 1� , �mug, 1�} {�mug, 1�} {�mug, .9; pen, .1�}

p, q, r ∈ ∆ if there is a �̄ > 0 such that for all r�, D� pairs such that r� ∈ D� and
max

�
dE(r�, r), dH(D�, D)

�
< �, (1 − α)p + αr� ∈ c((1 − α)p + αD�) for all � < �̄

but (1 − α)q + αr� /∈ c((1 − α)q + αD�) for all � < �̄. This behavioural definition
of expectations-dependence provides a tool for identifying and eliciting expectations-
dependence, as illustrated by the example below.

Example (mugs and pens). Fix α = .1, let p = �pen, 1�; q = �mug, 1�, r = p,
and D = {p, q}.

Table 4 shows the values that two choice correspondences, c and ĉ, take on
the menus (1 − α)p + αD = {�mug, 1� , �mug, .9 ; pen, .1�} and (1 − α)q + αD =

{�mug, .1; pen, .9� , �pen, 1�}. Of these two choice correspondences, c exhibits expectations-
dependence given D,α, p, q, r, while ĉ does not.

�
The definition of exhibiting expectations-dependence bears striking relation to

the Mixture Independence axiom. Indeed, expectations-dependence as defined is a
type of violation of Mixture Independence. Proposition 2 below clarifies the link
between a exhibiting expectations-dependence, properties of a continuous EU-PPE
representation, and violations of the IIA axiom.

Proposition 2. c with a continuous EU-PPE representation strictly exhibits expectations-
dependence if and only if v(·|p) is not ordinally equivalent to v(·|q) for some p, q ∈ ∆.
In addition, c with a continuous EU-PPE representation that violates IIA exhibits
strict expectations-dependence.

The first part of Proposition 2 highlights how expectations-dependence in c is cap-
tured in a PPE representation. There is a tight tie between expectations-dependence
and failures of Mixture Independence in a PPE representation, and the second part of
Proposition 2 shows that a failure of IIA implies, but is not necessary for, expectations-
dependence.

19



The mugs and pens example shows how one might study expectations-dependence
based on the definition. Ericson and Fuster’s (2011) data violate Mixture Indepen-
dence in a way consistent with expectations-based reference-dependence, and Propo-
sition 2 shows that any PPE representation representing their median subject’s be-
haviour must exhibit expectations-dependence.

3.6 Limited cycle property of a PPE representation

The characterization in Theorem 1 is tight. However, it is possible that some structure
already imposed on the problem implies additional structure on v. Proposition 3
shows that this is indeed the case.

Say that a PPE representation satisfies the limited cycle inequalities if for any
p0, p1, ..., pn ∈ ∆, v(pi|pi−1) > v(pi−1|pi−1) for i = 1, ..., n, then v(pn|pn) ≥ v(p0|pn).

Proposition 3. Any PPE representation satisfies the limited cycle inequalities. More-
over, if v is jointly continuous, satisfies the limited-cycle inequalities, dislikes mix-
tures, and v(·|p) is EU for each p ∈ ∆, then v defines an EU-PPE representation by
(2).

Proof. Take any p0, p1, ..., pn ∈ ∆, with v(pi|pi−1) > v(pi−1|pi−1). The ith term in this
sequence implies by the representation that pi−1 /∈ c({p0, ..., pn}); since c({p0, ..., pn}) �=
∅ by assumption it follows that pn = c({p0, ..., pn}). This implies, by the represen-
tation, that v(pn|pn) ≥ v(pi|pn) for all i = 0, 1, ..., n − 1, which implies the desired
result.

Conversely, for any v that satisfies the three given restrictions, the limited cycle
inequalities imply that PE(D) is non-empty for any D ∈ D. Thus by Theorem 2, v
defines a EU-PPE representation.

Munro and Sugden (2003) mention the limited cycle inequalities (their Axiom
C7), and defend the limited cycle inequalities based on a money-pump argument. In
contrast, the limited cycle inequalities emerge here as a consequence of the assumption
that c(D) is always non-empty combined with the reference-dependent preference
representation. If one considers a class of choice problems in which the agent always
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makes a choice, the limited cycle inequalities are a basic consequence of this and the
agent’s endogenous determination of her reference lottery, regardless of the normative
interpretation of the inequalities.

4 Special cases of PPE representations

4.1 Kőszegi-Rabin reference-dependent preferences

It may not be apparent at first glance whether Kőszegi-Rabin preferences in (3) satisfy
the limited-cycle inequalities that a PPE representation must satisfy to generate a
non-empty choice correspondence. Kőszegi and Rabin (2006) cite a result due to
Kőszegi (2010, Theorem 1) that a personal equilibrium exists whenever D is convex,
or equivalently, an agent is free to randomize among elements of any non-convex
choice set. It is unclear whether or when this restriction is necessary to guarantee the
existence of a non-empty choice correspondence.

Kőszegi and Rabin suggest restrictions on (3). In particular, applications of
Kőszegi-Rabin have typically assumed linear loss aversion, which holds when there
are η and λ such that:

µ(x) =





ηx if x ≥ 0

ηλx if x < 0
(4)

where λ > 1 captures loss aversion and η ≥ 0 determines the relative weight on
gain/loss utility. Proposition 4 shows that under linear loss aversion, Kőszegi-Rabin
preferences with the PPE solution concept are a special case of the more general
continuous EU-PPE representation.

Proposition 4. Kőszegi-Rabin preferences that satisfy linear loss aversion satisfy the
limited cycle inequalities and dislike mixtures.

Proposition 4 is alternative result to Kőszegi and Rabin’s (2006) Proposition 1.3,
and to my knowledge provides the first general proof that a personal equilibrium
that does not involve randomization always exists in finite sets for this subclass of
Kőszegi-Rabin preferences.
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While commonly used versions of Kőszegi-Rabin preferences can provide the v in
a PPE representation, there are (pathological?) cases of Kőszegi-Rabin preferences
that cannot.

Proposition 5. Not all Kőszegi-Rabin preferences consistent with (3) satisfy the
limited cycle inequalities.

4.2 Reference lottery bias and dynamically consistent non-

expected utility

Expectations-based reference-dependence is the central motivation to considering the
PPE representation. Now equipped with some understanding of the revealed prefer-
ence implications of a PPE representation, we might take the preference relations �L

and {�p}p∈∆ as primitives, where �p is the preference relation corresponding to v(·|p),
and p �L q corresponds to the ranking v(p|p) ≥ v(q|q). With these primitives, we
can study axioms that capture reference lottery bias. This is similar to the standard
exercise in the axiomatic literature on reference-dependent behaviour (e.g. Tversky
and Kahneman (1991; 1992); Masatlioglu and Ok (2005; 2012); Sagi (2006)). In that
vein, consider the Reference Lottery Bias axiom below, which is closely related to the
“Weak Axiom of Status Quo Bias” in Masatlioglu and Ok (2012).

Reference Lottery Bias. p �L q =⇒ p �p q

I offer three interpretations of Reference Lottery Bias. The first interprets �L as
representing the preferences that take into account that expecting to choose and then
choosing lottery p leads to p being evaluated against itself as the reference lottery.
Under this interpretation, if an agent would want to choose p over q, knowing that this
choice would also determine the reference-lottery against which they would evaluate
outcomes, then the agent would also choose p over q when p is the reference lottery.
The second interpretation (along the lines of Masatlioglu and Ok (2012)) is that
�L captures reference-independent preferences; in this second interpretation, if p is
preferred to q in a reference-independent comparison, then when p is the reference
lottery, p is also preferred to q. According to either interpretation, Reference Lottery
Bias imposes that �p biases an agent towards p relative to �L. This seems like
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a natural generalization of the endowment effect for expectations-based reference-
dependence.

A third interpretation emphasizes �L as the ranking of lotteries induced by the
agent’s ex-ante ranking of choice sets when restricted to singleton choice sets. Under
this interpretation, an agent who wants to choose a lottery from a choice set according
to her ex-ante ranking would also want to choose it from that choice set if she then
expected that lottery, and it subsequently acted as her reference point.

What implications does the Reference Lottery Bias axiom have? Kőszegi-Rabin
preferences do not satisfy Reference Lottery Bias; recall the example in Section 2.2.2
in which v(p|p) > v(r|r) but v(r|p) > v(p|p). This suggests a conflict between the
psychology of reference-dependent loss aversion captured by the Kőszegi-Rabin model
and the notion of Reference Lottery Bias defined in the axiom. No experimental
evidence to my knowledge sheds light on this matter.

Proposition 6. A PPE representation satisfies Reference Lottery Bias if and only if
c(D) = m(D,�L).

Proposition 6 implies (recalling Proposition 2) that under Reference Lottery Bias,
reference-dependent behaviour in a PPE representation is tightly connected to non-
expected utility behaviour in �L.

The non-expected utility literature has provided numerous models of decision-
making under risk based on complete and transitive preferences that, motivated by
the Allais paradox, satisfy a relaxed version of the Mixture Independence axiom (e.g.
Quiggin (1982); Chew (1983); Dekel (1986); Gul (1991)). The model of expectations-
based reference-dependence based on the Reference Lottery Bias axiom is based on
a dynamically consistent implementation of non-expected utility preferences (as in
Machina (1989)). I offer two examples of PPE representations that satisfy Reference-
Lottery Bias and capture expectations-based reference-dependence.

Example (Disappointment Aversion). Suppose �L satisfies Gul’s (1991) dis-
appointment aversion; that is (letting u(x) denote u(�x, 1�)),
u(p) = 1

1+β

�
i
pi (u(xi) + βmin[u(xi), u(p)]) represents �L for some β ≥ 0. Then

Reference Lottery Bias implies:
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vDA(p|r) = 1

1 + β

�

i

pi (u(xi) + βmin[u(xi), u(r)]) (5)

In cases of lotteries over multidimensional choice objects, it is not hard to see how
to extend (5) via additive separability across dimensions. The resulting functional
form captures loss aversion relative to past expectations (as in Kőszegi-Rabin) but
does not generate IIA violations.

�

Example (Mixture Symmetry). Suppose �L satisfies Chew et al.’s (1991)
mixture symmetric utility; that is, there is a symmetric function φ such that u(p) =
�
i

�
j

φ(xi, xj) represents �L. Then Reference Lottery Bias implies:

vMS(p|r) =
�

i

�

j

pirjφ(xi, xj) (6)

While the functional form for vMS in 6 does capture the Kőszegi-Rabin functional
form in (3), but the φ function corresponding to vKR is generally not symmetric.

�

5 Alternative models of expectations-based reference-
dependence: analysis of PE and CPE representa-
tions

5.1 Characterization of PE

In addition to the PPE representation in (2) which is used in most applications
of expectations-based reference-dependence, Kőszegi and Rabin (2006) also discuss
the PE as a solution concept as in (1). The analysis below shows that the PE
representation can be axiomatized similar to the PPE representation, by replacing
Weak RARP with Sen’s α, changing the continuity assumptions, and modifying IIA
Independence.
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Sen’s α. p ∈ D� ⊂ D and p ∈ c(D) implies p ∈ c(D�)

Sen’s α requires that if an item p is choosable in a larger set D, then it is also deemed
choosable in any subset D� of D where p is available. Sen’s α is strictly weaker than
IIA.15

The Upper Hemicontinuity axiom is the continuity property satisfied by contin-
uous versions of the standard model, in which choice is determined by a continuous
binary relation.

UHC. c(D) = cU(D)

Proposition 7 (i) ⇐⇒ (ii) provides an axiomatic characterizating of PE decision-
making that does not make use of the structure of environments with risk; (ii) ⇐⇒
(iii) is a continuous version of Gul and Pesendorfer’s (2008) result (Proposition 0 in
this paper).16

Proposition 7. (i)-(iii) are equivalent: (i) c satisfies Expansion, Sen’s α, and UHC,
(ii) c has a continuous PE representation, (iii) c is induced by a continuous binary
relation.

IIA Independence 2 modifies the antecedent in the IIA Independence axiom to PE.
Under PE, a lottery q is revealed to block p if there is a D such that p ∈ c(D) but
p /∈ c(D ∪ q). IIA Independence 2 has a different antecedent from IIA Independence
that reflects the differences in how constraining lottery pairs are revealed in the two
models. IIA Independence 2 also embeds a continuity requirement.

IIA Independence 2. If p ∈ c(D) and ∃α ∈ (0, 1] such that p /∈ c(D∪(1−α)p+αq)),
then ∃� > 0 such that ∀α� ∈ (0, 1], ∀p̂ ∈ N �

p
, ∀q̂ ∈ N �

q
, and ∀D� � (1−α�)p̂+α�q̂,

p̂ /∈ c(D�).

Theorem 3 provides a characterization of a continuous EU-PE representation.

Theorem 3. c satisfies Expansion, Sen’s α, UHC, IIA Independence 2, and Transitive
Limit if and only if c has a continuous EU-PE representation. These axioms jointly
imply that Induced Reference Lottery Bias holds as well.

15Sen’s α and Sen’s β are jointly equivalent to IIA; see Sen (1971) and Arrow (1959).
16The result (i) ⇐⇒ (iii) is a continuous version of Theorem 9 in Sen (1971).
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5.2 Characterization of CPE

Kőszegi and Rabin (2007) also introduce the choice-acclimating personal equilibrium
(CPE) concept:

CPEv(D) = argmax
p∈D

v(p|p) (7)

While most applications of expectations-based reference-dependence use the PPE
solution concept, many use CPE. Theorem 4 clarifies the revealed preference founda-
tions of CPE decision-making.

Theorem 4. (i)-(iii) are equivalent. (i) c satisfies IIA and UHC, (ii) c has a con-
tinuous EU-CPE representation in which v is continuous, (iii) there is a complete,
transitive, and continuous binary relation � such that c(D) = m(D, �) ∀D.

Theorem 4 appears to be a negative result - it suggests that expectations-based
reference-dependence combined with CPE has no testable implications beyond the
standard model of preference maximization! However, CPE decision-making can
fail the Mixture Independence Axiom in ways that are consistent with expectations-
based reference-dependent behaviour. This raises the question of what restrictions
the Induced Reference Lottery Bias impose on the representation. Say that a binary
relation � is quasiconvex if p � q =⇒ p � (1− α)p+ αq ∀α ∈ (0, 1).

Proposition 8. Suppose ∃ �, v such that c(D) = m(D, �) = CPEv(D). (i)-(iii)
are equivalent: (i) c satisfies Induced Reference Lottery Bias, (ii) � is quasiconvex,
(iii) v(p|p) ≥ v(q|q) =⇒ v(p|p) ≥ v((1− α)p+ αq|(1− α)p+ αq) ∀α ∈ (0, 1).

Remark 4. Proposition 6 and Theorem 4 establish that if c has a PPE representation
that satisfies the Reference Lottery Bias axiom, then PPEv(D) = CPEv(D).

Example (Kőszegi-Rabin and Mixture Symmetry). Under CPE concept,
the requirement that φ in 6 be symmetric is without loss of generality. Thus the
Kőszegi-Rabin functional form in 3 corresponds to a special case of the mixture sym-
metric utility functional form in 6 under CPE.

�
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Appendix: Proofs

Lemma 1. For any two sets D,D� and any asymmetric binary relation P , m(D, P )∪
m(D�, P ) ⊇ m(D ∪D�, P ).

Proof. Suppose p ∈ m(D ∪D�, P ) ∩D.
=⇒ �q ∈ D ∪D� s.t. qPp.
=⇒ �q ∈ D s.t. qPp

=⇒ p ∈ m(D,P ).
If p ∈ m(D ∪D�, P ) ∩D�, an analogous result would follow.
Thus p ∈ m(D ∪D�, P ) implies p ∈ m(D,P ) ∪m(D�, P ).
=⇒ m(D, P ) ∪m(D�, P ) ⊇ m(D ∪D�, P )

Results on IIA Independence and IIA Independence 2.

Lemma 2. Suppose Expansion and Weak RARP hold. If p ∈ c(D), p /∈ c(D∪ q) � r,
and p ˜̄Wr, then �Dpq such that p ∈ c(Dpq).

Proof. If ∃Dpq such that p ∈ c(Dpq) then by Expansion, p ∈ c(D ∪ Dpq). Since
D ∪ q ⊆ D ∪ Dpq and r ∈ c(D ∪ q) with p ˜̄Wr, it follows by Weak RARP that
p ∈ c(D ∪ q), a contradiction. Thus no such Dpq can exist.

Lemma 3. Suppose Expansion and Sen’s α hold. If p ∈ c(D), p /∈ c(D ∪ q) , then
�Dpq such that p ∈ c(Dpq).

Proof. If p ∈ c(D) ∩ Dpq then by Expansion, p ∈ c(D ∪ Dpq). Then by Sen’s α,
p ∈ c(D ∪ q). This proves the claim.

Proof of Proposition 1.

(i) ⇐⇒ (iii)

Let P1, P2 denote the asymmetric part of relations P̄1, P̄2 that form a transitive short-
listing representation. By definition, m(D, Pi) = m(D, P̄i) for i = 1, 2 and for any
D.

27



Necessity of Expansion. p ∈ c(D) and p ∈ c(D�) implies:
(i) p ∈ m(D,P1) and p ∈ m(D�, P1)

=⇒ �q ∈ D s.t. qP1p and �q ∈ D� s.t. qP1p

=⇒ �q ∈ D ∪D� s.t. qP1p

=⇒ p ∈ m(D ∪D�, P1)

(ii) p ∈ m(m(D,P1), P2) and p ∈ m(m(D�, P1), P2)

=⇒ �q ∈ m(D,P1) s.t. qP2p and �q ∈ m(D�, P1) s.t. qP2p

=⇒ �q ∈ m(D,P1) ∪m(D�, P1) s.t. qP2p

by Lemma 1,
=⇒ �q ∈ m(D ∪D�, P1) s.t. qP2p

By (i),
=⇒ p ∈ m(m(D ∪D�, P1), P2) = c(D ∪D�)

This implies that Expansion holds.

Necessity of Weak RARP. Suppose q ˜̄Wp, and there are D,D� such that: {p, q} ⊆
D ⊆ D̄ and p ∈ c(D), q ∈ cU(D̄).

By definition of q ˜̄Wp, there is a chain q = r0, r1, ..., rn−1, rn = p such that for
each i ∈ {1, ..., n}, there are Di, D̄i such that {ri−1, ri} ⊆ Di ⊆ D̄i, ri ∈ cU(D̄i) and
ri−1 ∈ c(Di), or (if not) there is a net {D̄i,�, Di,�} → D̄i, Di for which ri ∈ cU(D̄i,,�)

and ri−1 ∈ c(Di,�) ∀� > 0.
For each i, from the representation, it follows that:
=⇒ ri ∈ m(Di, P1)

=⇒ not riP2ri−1.
Since the transitive completion of P2 is transitive, it follows that not qP2p.
Since q ∈ cU(D̄), by continuity of P1, q ∈ m(D̄, P1).
Since q ∈ D ⊆ D̄ as well, q ∈ m(D, P1).
Since p ∈ m(m(D,P1), P2), not pP2q, and P2 has a transitive completion, it follows

that not rP2q ∀r ∈ m(D, P1).
Thus, q ∈ m(m(D, P1), P2) = c(D).

Sufficiency. Part of the idea of the proof follows Manzini and Mariotti (2007). The
two rationales constructed here are not unique.
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Define P1 by:

qP1p if �Dpq s.t. p ∈ cU(Dpq)

Define P̄2 by:

P̄2 =
˜̄W

Define P2 as the asymmetric part of P2.
First, show that P1 and P2 are appropriately continuous.
If pP1q, � a net {Dp�q�}� → Dpq with p� ∈ c(Dp�q�) and max [d(p�, p), d(q�, q)] < �

for each � > 0, since then we would have p ∈ cU(Dpq) for some Dpq. Thus, ∃�̄ > 0

such that ∀p� ∈ N �̄

p
, ∀q� ∈ N �̄

q
, p�P1q�. This implies that P1 has open better and worse

than sets.
P2 is continuous by construction.
Second, show c(D) ⊆ m(m(D,P1), P2).
By definition of P1, p ∈ c(D) implies p ∈ m(D,P1).
Take any q ∈ m(D,P1). By the definition of P1, ∀r ∈ D, ∃Dqr such that q ∈

c(Dqr). Successively applying Expansion implies that q ∈ c( ∪
r∈D

Dqr). Since D ⊆

∪
r∈D

Dqr and p ∈ c(D), it follows that p ˜̄Wq, thus pP̄2q. Since this implies not qP2p for
any arbitrary q ∈ m(D,P1), it further follows that p ∈ m(m(D,P1), P2).

Third, show m(m(D,P1), P2) ⊆ c(D)

Suppose p ∈ m(m(D,P1), P2).
Then, ∀r ∈ D, ∃Dpr : p ∈ c(Dpr). By Expansion, p ∈ c( ∪

r∈D
Dpr).

Since p ∈ m(m(D,P1), P2), it p ˜̄Wq ∀q ∈ c(D) by the definition of ˜̄W .
Thus by Weak RARP, p ∈ c(D).

(ii) ⇐⇒ (iii) Consider a continuous PPE representation v that represents c, and
a continuous and transitive shortlisting representation P1, P2.

Map between v and P1 by:

qP1p ⇐⇒ v(q|p) > v(p|p)

Map between v and P2 by:
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qP2p ⇐⇒ v(q|q) > v(p|p)

Joint continuity of v will map to continuity of P1 and P2.
Notice that the mapping from P1 to v only specifies v(·|p) partially; the mapping

from P2 to v imposes an continuous additive normalization on v.
Consider the following construction of v from P1, P2:
Let u : ∆ → � be a continuous utility function that represents P2. Define v(p|p) =

u(p) ∀p ∈ ∆. Let I(p) = {q ∈ ∆ : (q, p) ∈ cl{(q̂, p̂) : q̂P1p̂}\{(q̂, p̂) : q̂P1p̂}}.
The following definition of v is consistent with the mapping proposed above:

v(q|p) =





u(p) + dH({q}, I(p)) if qP1p

u(p)− dH({q}, I(p)) otherwise
It can be verified that continuity of P1 and u imply that v so constructed satisfies

joint continuity.
�

Proof of Theorem 1.

Notation.

Let for p, q ∈ ∆, let Dpq ∈ D denote an arbitrary choice set that contains p and q.

Sufficiency: Lemmas.

In the lemmas in this section, assume that c satisfies Expansion, Weak RARP, IIA
Independence, Induced Reference Lottery Bias, and Transitive Limit.

Lemma 4. R̄p is complete, transitive, and if there exists a net {p�, q�, r�} → p, q, r

with q�R̄p�r� for each term in the net, then qR̄pr.

Proof. Transitivity of R̄p follows by Transitive Limit.
For any net {p�, q�, r�} → p, q, r, non-emptiness of c implies that the net either has

a convergent subnet pδ, qδ, rδ in which (1−δ)pδ+δqδ ∈ c({(1−δ)pδ+δqδ, (1−δ)pδ+δrδ}
or in which (1− δ)pδ + δrδ ∈ c({(1− δ)pδ + δqδ, (1− δ)pδ + δrδ} for each term in the
subnet. Thus R̄p is complete.
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Take a net {p�, q�, r�} → p, q, r, for which q�R̄p�r� for each term in the net. By
the definition of R̄p� , for each � there is a net {p�,δ, q�,δ, r�,δ}δ → p�, q�, r� such that
(1− δ)p�,δ + δq�,δ ∈ c((1− δ)p�,δ + δ{q�,δ, r�,δ}) for each term in the net. Let δ̄� denote
the largest element in the index set for {p�,δ, q�,δ, r�,δ}δ and �̄ the largest element in
the index set for {p�, q�, r�} . Take δ̄ := δ̄�̄. For each δ < δ̄, define �δ as a decreasing
net such that for each δ < δ̄�δ . Then define {p̂δ, q̂δ, r̂δ} := {p�δ ,δ, q�δ ,δ, r�δ ,δ}δ. By
construction, {p̂δ, q̂δ, r̂δ} establishes that qR̄pr.

Let Rp denote the strict part of R̄p. Lemma A.5 shows that Rp satisfies the
Independence Axiom.

For a binary relation R, say that R satisfies the Independence axiom if qRr ⇐⇒
(1− α)s+ αqR(1− α)s+ αr ∀α ∈ (0, 1). ∀s ∈ ∆.

Lemma 5. Rp satisfies the Independence Axiom if p ∈ int∆.

Proof. Part I: suppose qRpr, and take a α ∈ (0, 1) and s ∈ ∆.
Then,∃δ̄, �̄ > 0 such that ∀� ∈ (0, �̄), p̂, q̂, r̂ ∈ N δ̄

p
× N δ̄

q
× N δ̄

r
, {(1 − �)p̂ + �q̂} =

c((1− �)p̂+ �{q̂, r̂}).
Define δ̄α = min

�
αδ̄, (1− α)δ̄

�
.

Let p̂, ŝ ∈ N δ̄α
p
×N δ̄α

s
. Since dE(p, q) ≤ 1, it follows that dE((1−β)p̂+βŝ, p) ≤ (1−

β)δ̄α+β by the triangle inequality. Thus if β ≤ β̄α := δ̄−δ̄α

1−δ̄α
, then (1−β)p̂+βŝ ∈ N δ̄

p
.

Then for any q̂, r̂ ∈ N δ̄

q
×N δ̄

r
, � ∈ (0, �̄), and β ∈ (0, β̄), {(1− �) ((1− β)p̂+ βŝ) +

�q̂} = c((1− �) ((1− β)p̂+ βŝ) + �{q̂, r̂}). Define �̂ := �

α
and β�,α := �

α

1−α

1−�
. Then ∀�̂

such that α�̂ ∈ (0, �̄) and �̂ 1−α

1−α�̂
∈ (0, β̄), it follows that {(1− �̂)p̂+ �̂ ((1− α)ŝ+ αq̂)} =

c((1 − �̂)p̂ + �̂ ((1− α)ŝ+ α{q̂, r̂})). Since N δ̄α
(1−α)s+αq

⊂ (1 − α)N δ̄

s
+ αN δ̄

q
and

N δ̄α
(1−α)s+αq

⊂ (1− α)N δ̄

s
+ αN δ̄

q

It follows that (1− α)s+ αqRp(1− α)s+ αr.
Part II: suppose (1− α)s+ αqRp(1− α)s+ αr.
Recall that N δ̄

(1−α)s+αq
⊆ (1− α)N δ̄

s
+ αN δ̄

q
.

Then,∃δ̄, �̄ > 0 such that N δ̄

p
⊂ int∆ and ∀� ∈ (0, �̄), p̂, q̂, r̂, ŝ ∈ N δ̄

p
×N δ̄

q
×N δ̄

r
×N δ̄

s
,

{(1− �)p̂+ �((1− α)ŝ+ αq̂)} = c((1− �)p̂+ �((1− α)ŝ+ α{q̂, r̂})).
Fix κ ∈ (0, 1). Fix p̂, q̂, r̂, ŝ ∈ Nκδ̄

p
×Nκδ̄

q
×Nκδ̄

r
×Nκδ̄

s
.

Given � ∈ (0, �̄), take γ�,α := �1−α

1−�
. If γ < (1−κ)δ̄, then p̂+γ�,α(p̂− ŝ) ∈ N δ̄

p
⊆ ∆.

Then,
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(1 − �) (p̂+ γ�,α(p̂− ŝ)) + �((1 − α)ŝ + αq̂) = c((1 − �) (p̂+ γ�,α(p̂− ŝ)) + �((1 −
α)ŝ+ α{q̂, r̂}))

⇐⇒ (1− α�)p̂+ α�{q̂} = c((1− α�)p̂+ α�{q̂, r̂})
Since the above holds ∀p̂, q̂, r̂, ŝ, � ∈ Nκδ̄

p
×Nκδ̄

q
×Nκδ̄

r
×Nκδ̄

s
× (0, �̄) it follows that

qRpr.

Lemma 6. R̄p satisfies the Independence Axiom if p ∈ int∆.

Proof. I already have a proof that Rp satisfies the Independence Axiom.
Suppose that qR̄pr and take (1− α)s+ αq and (1− α)s+ αr.
If it is not the case that (1− α)s+ αqR̄p(1− α)s+ αr, then (1− α)s+ αrRp(1−

α)s+ αq.
Then it follows by Lemma A.5 that rRpq, which contradicts that qR̄pr.

Define q ¯̄Rpr if either:
(i) p ∈ int∆ and qR̄pr

(ii) p /∈ int∆, and ∃α, s ∈ (0, 1)×∆ such that (1− α)s+ αqR̄p(1− α)s+ αr

(iii) ∃α, s, q̂, r̂ such that q = (1− α)s+ αq̂, r = (1− α)s+ αr̂, and q̂R̄pr̂

The relation ¯̄Rp is the minimal extension of R̄p that respects with the Independence
Axiom for all p ∈ ∆.

By construction, ¯̄Rp satisfies the joint continuity properties in Lemma A.4 as well.

Lemma 7. For each p ∈ ∆, there exists a vector ûp ∈ �N such that q ¯̄Rpr ⇐⇒
q · ûp ≥ r · ûp.

Proof. Lemma A.4. shows R̄p is complete, and transitive. By construction, ¯̄Rp satis-
fies the Independence axiom. The joint continuity property on R̄p in Lemma A.4 then
implies the notion of mixture continuity required (condition 3) to apply Fishburn’s
(1970) Theorem 8.2.

Say that a vector up is flat if max
i

up

i
= min

i

up

i
. Let F := {p ∈ ∆ : up is flat}.

Lemma 8. Suppose up is not flat. Then, there is an � neighbourhood N �

p
of p such

that ∀p̂ ∈ N �

p
, up̂ is not flat.
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Proof. Suppose there is a net p̂� such that p̂� ∈ N �

p
and up̂

� is flat. Since up̂
� must

represent R̄p̂� , it follows that qR̄p̂�r ∀q, r ∈ ∆ and for each p̂�. By Lemma A.4, it
follows that qR̄pr. It follows that up must be flat as well, a contradiction.

Let ûp denote a vector that provides an EU representarion for ¯̄Rp (i.e. q ·ûp ≥ r ·ûp

⇐⇒ q ¯̄Rpr ∀q, r ∈ ∆). For all p such that p is non-flat, define:

up :=
dH({p}, F )

max
i

�
ûp

i
−

�
ûp

j

j

�
�
ûp −

�

j

ûp

j

�
(8)

If ûp is flat, define up as the zero vector.
By Lemma A.8 and the EU theorem, up provides an EU representation for ¯̄Rp.

Lemma 9. If p� → p, then up
� → up

Proof. If up is flat, then dH({p�}, F ) → 0 as � → 0, thus up
� → up.

Now suppose that up is non-flat. Suppose p� → p but for convergent subnet {p��}
of {p�}, up

�� → ūp �= up. Since up
�� represents R̄

p�
� , by the joint continuity property

in Lemma A.4., it follows that ūp ranks q ∼ r if and only if up ranks q ∼ r. Since up

and ūp must satisfy the same normalizations, they must coincide by the uniqueness
result of the EU theorem.

Define v : ∆×∆ → � by v(q|p) := q · up

Lemma 10. v is jointly continuous.

Proof. v(q|p) = q · up =
�

i
qiu

p

i
and up is continuous as a function of p, and joint

continuity of the sum
�

i
qiu

p

i
in q and up is a standard exercise.

Lemma A.11 shows that Limit Consistency is implied by the axioms assumed in
Theorem 1.

Lemma 11. The axioms in Theorem 1 imply Limit Consistency.
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Proof. Part 1. Suppose {q} = m(D,Rp) �= {p} ⊆ c(D).
That is, qRpr ∀r ∈ D.
Then ∀r ∈ D ∃ᾱr > 0 such that ∀α ∈ (0, ᾱr), (1−α)p+αq = c((1−α)+α{q, r}).
Since D is finite, min

r∈D
ᾱr > 0.

By Expansion, ∀α ∈ (0,min
r∈D

ᾱr), (1− α)p+ αq ∈ c((1− α) + αD).
By Induced Reference Lottery Bias, ∀α ∈ (0,min

r∈D
ᾱr) p ∈ c((1− α) + αD). Thus

p ˜̄W (1 − α)p + αq. Weak RARP then implies that p ∈ c((1 − α)p + α{p, q}) ∀α ∈
(0,min

r∈D
ᾱr). This implies that pR̄pq, a contradiction.

Part 2. Suppose there are elements q1, ..., ql ∈ D such that qiRpp for each i =

1, ..., l.
Suppose qi ∈ m(D,Rp), and let D̂ := D\m(D,Rp).
Then by the previous result ∀i = 1, ..., l, ∃ᾱi > 0 such that ∀α ∈ (0, ᾱi), (1 −

α)p+ αqi ∈ c((1− α)p+ α
�
D̂ ∪ qi

�
).

Since {q1, ..., ql} is finite and each ᾱi > 0, min
i

ᾱi > 0.
For each α ∈ (0, 1), c((1− α)p+ α{q1, ..., ql}) is non-empty.
For q̂ such that (1−α)p+αq̂ ∈ c((1−α)p+α{q1, ..., ql}), Expansion implies that
(1− α)p+ αq̂ ∈ c(

�
(1− α)p+ α{q1, ..., ql}

�
∪
�
(1− α)p+ α

�
D̂ ∪ q̂

��
)

= c((1− α)p+ αD).
Thus ∀α ∈ (0,min

i

ᾱi), ((1− α)p+ α{q1, ..., ql}) ∩ c((1− α)p+ αD) �= ∅.
It follows that for at least one q̂ ∈ {q1, ..., ql}, ∀ᾱ ∈ (0,min

i

ᾱi), ∃α < (0, ᾱ) such
that ((1− α)p+ αq̂ ∈ c((1− α)p+ αD).

Since p ∈ c((1 − α)p + αD) ∀α ∈ (0, 1) by Induced Reference Lottery Bias, it
follows that p ˜̄W (1− α)p+ αq̂ whenever (1− α)p+ αq̂ ∈ c((1− α)p+ αD). For such
α, it further follows by Weak RARP that p ∈ c((1−α)p+α{p, q̂}). This contradicts
that q̂Rpp.

Define P̂E(D) = {p ∈ D : pR̄pq ∀q ∈ D}.
Define ˆPPE(D) = {p ∈ P̂E(D) : �q ∈ P̂E(D) s.t. q ˜̄Wp}.
Lemma A.9 establishes that p ∈ c({p, q}) implies p ∈ ˆPPE({p, q}).

Lemma 12. If qR̄qp and p ∈ c({p, q}), then p ˜̄Wq.
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Proof. If ∃Dpq such that q ∈ cU(Dpq) then the result follows automatically. Similarly
if there exists a chain p = r0, r1, ..., rn = q such that ri−1 ˜̄Wri for i = 1, ..., n.

If ∃p�, q� that establish qR̄qp, then if for some such sequence, p� ∈ c({p�, q�}) for
a convergent subsequence of p�, q�, then p� ˜̄Wq� for such pairs. Then, continuity of ˜̄W

implies that p ˜̄Wq.
So suppose instead that for each sequence p�, q� that establishes that qR̄qp, q� =

c({p�, q�}) except on a non-convergent subsequence of p�, q�. This implies that q ∈
cU({p, q}). Then by the definition of ˜̄W , p ˜̄Wq.

Lemma A.10 establishes that p ∈ ˆPPE({p, q}) implies p ∈ c({p, q}).

Lemma 13. If pR̄pq and p ˜̄Wq, then p ∈ c({p, q}).

Proof. Since {p} = c({p}), if {q} = c({p, q}) and p ˜̄Wq it would follow by IIA Inde-
pendence and the definition of Rp that qRpp. This would contradict the assumption
that pR̄pq. Since c({p, q}) �= ∅, it then follows that p ∈ c({p, q}).

Lemmas A.11-A.12 establish that ˆPPE({p, q, r}) = c({p, q, r}) ∀p, q, r ∈ D.

Lemma 14. If p ∈ c({p, q, r}) and qR̄qp then p ˜̄Wq or rR̄qq.

Proof. Suppose p ∈ c({p, q, r}) and qR̄qp.
If p ∈ c({p, q}), then p ˜̄Wq holds.
So suppose instead that q = c({p, q}).
Then, if q ∈ c({q, r}) it would follow by Expansion that q ∈ c({p, q, r}). Since

p ∈ c({p, q, r}) as well, it follows that p ˜̄Wq; by Weak RARP, it follows that p ∈
c({p, q}), a contradiction. Thus r = c({q, r}).

By Lemma A.5, it follows that either rRqq or r ˜̄Wq; in the former case we’re done,
so suppose r ˜̄Wq and that it is not the case that rRqq.

If p ∈ c({p, r}), then it follows that either pRrr or p ˜̄Wr. In the latter case,
transitivity of ˜̄W implies p ˜̄Wq and we’re done, so suppose we have that pRrr. Then
by Limit Consistency, p = c({p, r}).

To summarize, we now have that q = c({p, q}), p = c({p, r}) = c({p, q, r}), and
r = c({q, r}). Then, by IIA Independence, it follows that ∃� > 0 : ∀α ∈ (0, 1), ∀q̂ ∈
N �

q
, ∀r̂ ∈ N �

r
, ∀D̂ ⊇ {q̂, (1−α)q̂+αr̂}, q̂ /∈ c(D̂). It follows that rRqq, a contradiction.

It follows that either rRqq or p ˜̄Wq.
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Lemma 15. If p ∈ ˆPPE({p, q, r}) then p ∈ c({p, q, r}).

Proof. Suppose p ∈ ˆPPE({p, q, r}).
We know that c({p, q, r}) �= ∅. So it is sufficient to prove that q ∈ c({p, q, r}) =⇒

p ∈ c({p, q, r}) and similarly if r ∈ c({p, q, r}).
Suppose q ∈ c({p, q, r}); the argument starting from r ∈ c({p, q, r}) is symmet-

ric.
Then, qR̄qp and qR̄qr by Limit Consistency. Since p ∈ ˆPPE({p, q, r}) and q ∈

P̂E({p, q, r}), it follows that p ˜̄Wq. Then by Lemma A.10, since pR̄pq as well, p ∈
c({p, q}).

If r ∈ c({p, q, r}) then a similar argument implies p ∈ c({p, r}). Then by Expan-
sion, p ∈ c({p, q, r}).

If instead r /∈ c({p, q, r}), we have (recalling Lemma A.6) that either p ∈ c({p, r})
or r = c({p, r}). In the former case, Expansion implies p ∈ c({p, q, r}). In the latter
case, r = c({p, r}). Recall that p ∈ c({p, q}). If p /∈ c({p, q, r}) then q = c({p, q, r});
by IIA Independence and the definition of Rp, it follows that rRpp, a contradiction
of the assumption that p ∈ ˆPPE({p, q, r}).

It follows that p ∈ ˆPPE({p, q, r}) =⇒ p ∈ c({p, q, r}).

Remark. ˆPPE(D) = ˆPPE(P̂E(D))

Lemma 16. Suppose we have established that ˆPPE(D) = c(D) whenever |D| < n.
If P̂E(D) = D and |D| ≤ n, then c(D) = ˆPPE(D).

Proof. First, suppose P̂E(D) = D.
Take p ∈ ˆPPE(D). Then p ∈ ˆPPE(D\r) ∀ ∈ D\p. Take any distinct r, r� ∈ D\p,

and then since |D\r| = |D\r�| = n− 1 < n, p ∈ c(D\r) ∩ c(D\r�). By Expansion, it
follows that p ∈ c(D).

In the reverse, suppose p ∈ c(D). Then if q ˜̄Wr ∀r ∈ D, since P̂E(D) = D, it
follows that q ∈ c({q, r}) ∀r ∈ D. By Expansion, it follows that q ∈ c(D). Then
since p ∈ c(D) and q ∈ c(D), p ˜̄Wq by definition. Thus p ∈ ˆPPE(D).

Lemma A.14 establishes by induction that c(D) = ˆPPE(D) for any D ∈ D.
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Lemma 17. Suppose c(D) = ˆPPE(D) whenever |D| < n. Then, c(D) = ˆPPE(D)

whenever |D| ≤ n as well.

Proof. Consider D with |D| = n and P̂E(D) �= D. Partition D into P̂E(D) and
D\P̂E(D). The case where P̂E(D) = D was proven in Lemma A.9.

Since |P̂E(D)| ≤ n− 1 < n, c(P̂E(D)) = ˆPPE(P̂E(D)) = ˆPPE(D).
Say that q0, q1, ..., qm form a chain if qiRqi−1qi−1 for i = 1, ...,m. Notice that

if q0, ..., qm form a chain, Limit Consistency implies that qm = c({q0, ..., qm}) =

P̂E(D) = ˆPPE(D). So if the longest chain in D contains all elements of D, then
c(D) = ˆPPE(D).

Now suppose p ∈ ˆPPE(D).
First, further suppose the longest chain in D has length n − 1; denote the chain

q0, q1, ..., qn−1. Then, qn−1 = c({q0, q1, ..., qn−1}) and since q0, q1, ..., qn−1 is the longest
chain in D and p ∈ P̂E(D), {p, qn−1} = P̂E(D). Since p ∈ ˆPPE(D), it follows that
p ˜̄Wqn−1; Lemmas A.8 and A.10, p ∈ c({p, qn−1}). Suppose p ∈ c({p, qk, ..., qn−1}) for
some k ≤ n−1. Then, since if p /∈ c({p, qk−1, ..., qn−1}) it follows by IIA Independence
and the definition of Rp that qk−1Rpp, which contradicts that p ∈ P̂E(D). Thus it
follows by induction that p ∈ c(D).

Take an arbitrary chain q0, ..., qm that cannot be extended further as a chain using
elements of D. Since q0, ..., qm cannot be extended, qm ∈ P̂E(D). Since p ∈ ˆPPE(D),
p ˜̄Wqm and by Lemma A.8, p ∈ c({p, qm}). Suppose p ∈ c({p, qk, ..., qm}) for some
k ≤ m. Then if p /∈ c({p, qk−1, ..., qm}) it follows by IIA Independence and the
definition of Rp that qk−1Rpp; this would which contradicts that p ∈ P̂E(D). Thus
it follows by induction that p ∈ c({p, q0, ..., qm}).

Notice that any element of D\P̂E(D) is in a chain in D. Let D̂ is the choice set
formed by taking the union of {p} and of the all of the choice sets formed by chains
in D. Since for any chain q0, ..., qm in D, p ∈ c({p, q0, ..., qm}), p ∈ c(D̂) follows by
Expansion. Since p ∈ c(P̂E(D)) as well follows (because |P̂E(D)| < n or Lemma
A.13 applies), it follows by Expansion that p ∈ c(D). Thus ˆPPE(D) ⊆ c(D).

In the reverse direction, now suppose p ∈ c(D). By Limit Consistency, p ∈
P̂E(D). Since c(D) ⊇ ˆPPE(D) = ˆPPE(P̂E(D)) = c(P̂E(D)) �= ∅, ∃q ∈ c(D) ∩
ˆPPE(D). Since p, q ∈ c(D), p ˜̄Wq. Thus p ∈ ˆPPE(D).
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Lemma A.15 relates the dislike of mixtures property to the Induced Reference
Lottery Bias axiom.

Lemma 18. Induced Reference Lottery Bias implies that v dislikes mixtures.

Proof. By the representation thus far, c(D) = ˆPPE(D).
If p ∈ ˆPPE({p, q}) then v(p|p) ≥ v(q|p) and either v(p|p) ≥ v(q|q) or v(p|q) >

v(q|q). Thus v(p|p) ≥ v(q|p) and v(q|q) ≤ max [v(p|p), v(q|p)]. Then the Induced
Reference Lottery Bias axiom implies that then p ∈ c((1 − α)p + αD) = ˆPPE((1 −
α)p + αD), thus v(p|p) ≥ v((1 − α)p + αq|p) and v((1 − α)p + αq|(1 − α)p + αq) ≤
max [v(p|p), v((1− α)p+ αq|p)].

Remark. ˆPPE(D) = PPEv(D)

Necessity.

Proposition 1 implies that Expansion and Weak RARP are necessary conditions
for any PPE representation.

Lemma 19. Suppose v represents c by a PPE representation. Then p ˜̄Wr implies
that v(p|p) ≥ v(r|r).

Proof. Suppose p ˜̄Wr. If ∃D, D̄ with {p, r} ⊆ D ⊆ D̄ and p ∈ c(D) and r ∈ c(D̄)

then it follows that v(p|p) ≥ v(r|r) since r ∈ PE(D̄) ∩ D ⊆ PE(D) follows by the
representation.

If instead there is a chain such that pi−1 ˜̄Wpi for i = 1, ..., n and p0 = p, pn = r,
then it follows that v(pi−1|pi−1) ≥ v(pi|pi) for each i. Chaining these inequalities
together, it follows that v(p|p) ≥ v(r|r).

Necessity of IIA Independence. Suppose p ˜̄Wr. Then by Lemma A.12,
v(p|p) ≥ v(r|r). If p ∈ PPE(D) and p /∈ PPE(D ∪ q) � r, then it follows that
v(q|p) > v(p|p). Since v is jointly continuous, ∃� > 0 such that ∀p̂ ∈ N �

p
, ∀q̂ ∈ N �

q
,

v(q̂|p̂) > v(q̂|p̂). Since v is expected utility, it follows that for all such p̂, q̂ pairs and
∀α ∈ [0, 1), v((1− α)p̂+ αq̂|p̂) > v(p̂|p̂). It follows that for all such p̂, q̂ pairs and for
any such α ∈ [0, 1), whenever (1−α)p̂+αq̂ ∈ D̂ it follows that p̂ /∈ PPE(D̂) = c(D̂).
Thus IIA Independence holds.
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Necessity of Transitive Limit. First, I show that the antecedent of Transitive
Limit has bite in the presence of, and only in the presence of, a strict preference. To
be precise, suppose (1− �)pδ + �qδ = c({(1− �)pδ + �qδ, (1− �)pδ + �rδ}) for all small
�, and pδ, qδ, rδ sufficiently close to p, q, r. By the representation, this holds only if for
all pδ close to p, qδ close to q, rδ close to r, and � close to zero, v(qδ|(1− �)pδ + �qδ) ≥
v(rδ|(1− �)pδ + �qδ), thus v(qδ|pδ) ≥ v(rδ|pδ) for all pδ, qδ, rδ. If v(q|p) = v(r|p), then
for every qδ near q, v(qδ|p) ≥ v(q|p) and for every rδ near r, v(r|p) ≥ v(rδ|p); this
contradicts local strictness of v(·|p) in the representation. Thus when the antecedent
of Transitive Limit holds, v(q|p) > v(r|p) must hold.

Now take a continuous EU-PE representation and suppose v(q|p) > v(r|p). Then,
joint continuity implies that v((1 − λ)s + λqδ|pδ) > v((1 − λ)s + λrδ|pδ) for any
s ∈ ∆, λ > 0, and δ close to zero. It follows that v((1− �)pδ + �qδ|(1− �)pδ + �rδ) >

v((1 − �)pδ + �rδ|(1 − �)pδ + �rδ) for all δ, � sufficiently small. Thus for sufficiently
small δ, �, (1− �)pδ + �qδ = c({(1− �)pδ + �qδ, (1− �)pδ + �rδ}). Thus the antecedent
of Transitive Limit holds when v(q|p) > v(r|p).

Since v(q|p) > v(r|p) and v(r|p) > v(s|p) imply v(q|p) > v(s|p), the analysis above
implies that qRpr and rRps implies qRps, so Transitive Limit must hold.

Necessity of Induced Reference Lottery Bias. In the representation, v(p|p) ≥
v(q|p) and v(q|q) ≤ max [v(p|p), v(p|q)] imply that ∀α ∈ (0, 1), v((1− α)p+ αq|(1−
α)p+ αq) ≤ max [v(p|p), v(p|(1− α)p+ αq)].

Suppose p ∈ c(D). Then, v(p|p) ≥ v(q|p) ∀q ∈ D, and v(p|p) ≥ v(q|q) ∀q ∈
PE(D). It follows that v(p|p) ≥ v(q|p) and v(q|q) ≤ max [v(p|p), v(p|q)]. Since
v(·|p) satisfies expected utility, p ∈ PE((1 − α)p + αD) ∀α ∈ (0, 1). Since v((1 −
α)p + αq|(1 − α)p + αq) ≤ max [v(p|p), v(p|(1− α)p+ αq)] ∀q ∈ D, it follows that
v(p|p) ≥ v((1−α)p+αq|(1−α)p+αq) ∀q : (1−α)p+αq ∈ PE((1−α)p+αD). Thus
p ∈ PPE((1 − α)p + αD) = c((1 − α)p + αD) ∀α ∈ (0, 1). Thus Induced Reference
Lottery Bias holds.

�
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Proof of Proposition 2.

Suppose that v(·|p) and v(·|q) are not ordinally equivalent. Then ∃r̄, s̄ ∈ ∆ such
that v(r̄|p) > v(s̄|p) but v(r̄|q) ≤ v(s̄|q). By local strictness, ∃r, s ∈ ∆ that are
close to r̄, s̄ such that v(r|p) > v(s|p) but v(r|q) < v(s|q). By EU of v(·|p) and
continuity of v, this implies that ∃δ̄, �̄ > 0 such that ∀� ∈ (0, �̄), ∀rδ ∈ N δ

r
, ∀sδ ∈ N δ

s
,

v((1 − �)p + �rδ|(1 − �)p + �sδ) > v((1 − �)p + �sδ|(1 − �)p + �sδ) but v((1 − �)q +

�sδ|(1−�)q+�rδ) > v((1−�)q+�rδ|(1−�)q+�rδ). By the representation, this implies
that for such �, rδ, sδ, (a) (1− �)p + �rδ = c({(1− �)p + �rδ, (1− �)p + �sδ}) and (b)
(1 − �)q + �sδ = c({(1 − �)q + �rδ, (1 − �)q + �sδ}). Thus if v(·|p) and v(·|q) are not
ordinally equivalent, c strictly exhibits expectations-dependence.

Now suppose that c exhibits expectations-dependence at D,α, p, q, r. That is,
∃�̄ > 0 such that ∀r� ∈ N �

r
, ∀D� � r� such that dH(D�, D) < �, (1 − α)p + αr� ∈

c((1 − α)p + αD�) but (1 − α)q + αr� /∈ c((1 − α)q + αD�). Since (1 − α)q + αr� /∈
c((1 − α)q + αD�), it follows that for each D�, ∃s̄� ∈ D�, v(s̄�|(1 − α)p + αs̄�) ≥
v(r�|(1−α)p+αs̄�). Local strictness then implies that for each such s̄�, r� pair, there
is an arbitrarily close pair ŝ�, r̂� such that v(ŝ�|(1−α)p+αs̄�) > v(r̂�|(1−α)p+αs̄�).
By the representation, (1 − α)p + αr� ∈ c((1 − α)p + αD�) implies that for each r�,
∀s� ∈ D�, v(r�|(1 − α)p + αr�) ≥ v(s�|(1 − α)p + αr�); thus v(r̂�|(1 − α)p + αr̂�) ≥
v(ŝ�|(1−α)p+αr̂�). Thus v exhibits strict expectations-dependence. This proves the
first part of the proposition.

Now suppose c violates IIA. Then there are D,D� such that D� ⊂ D and c(D) ∩
D� �= ∅ but c(D�) �= c(D) ∩D�. This implies that either (a) or (b) holds:

(a) ∃p ∈ c(D�) such that p /∈ c(D). Then by the representation, this implies
that v(p|p) = v(q|q) for q ∈ c(D�), so for some r ∈ D, v(r|p) > v(p|p) ≥ v(q|p) but
v(q|q) ≥ v(r|q)

(b) ∃p ∈ c(D) ∩ D� with p /∈ c(D�). Since PE(D) ∩ D� ⊂ PE(D�), this implies
that there is a q ∈ c(D�) with v(q|q) > v(p|p). Thus q /∈ c(D) =⇒ q /∈ PE(D),
which implies that ∃r ∈ D\D� such that v(r|q) > v(q|q) ≥ v(p|q) but v(p|p) ≥ v(r|p).

In either case (a) or (b), by the first part of the proposition, c exhibits strict
expectations-dependence.

�
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Proof of Proposition 4

First prove that Kőszegi-Rabin preferences with linear loss aversion satisfy the limited-
cycle inequalities.

Start with a finite set X with |X| = n + 1 and assume (for now) that there is a
single hedonic dimension. Without loss of generality, assume m(x1) > m(x2) > ... >

m(xn+1)

Define the matrix V according to:

[V ]ij = m(xi) + η[m(xi)−m(xj)] + η[λ− 1]min[0, m(xi)−m(xj)] (9)

Observe that v(p|r) = pTV r. Let δ, � ∈ �n+1 denote vectors with
�

n+1
i=1 δi =

�
n+1
i=1 �i = 0. By matrix multiplication,

δTV � = η[λ− 1]×

[(m(x1)−m(x2))δ1�1 + (m(x2)−m(x3))(δ1 + δ2)(�1 + �2)+ (10)

...+ (m(xn)−m(xn+1))(
n�

i=1

δi)(
n�

i=1

�i)]

Take a cycle pi+1 = pi + �i with v(pi+1|pi) > v(pi|pi) for i = 0, ...,m. Then:
v(pm|pm)− v(p0|pm) = (p+

�
m

l=1 �
l)TV (p+

�
m

l=1 �
l)− pTV (p+

�
m

l=1 �
l)

= (
�

m

l=1 �
l)TV (

�
m

l=1 �
l) + (

�
m

l=1 �
l)TV p

Rearranging the second term,
= (

�
m

l=1 �
l)TV (

�
m

l=1 �
l)+(

�
m−1
l=1 �l)TV p+(�m)TV (p+

�
m−1
l=1 �l)−(�m)TV (

�
m−1
l=1 �l)

= (
�

m

l=1 �
l)TV (

�
m

l=1 �
l)+(

�
m−2
l=1 �l)TV p+(�m−1)TV (p+

�
m−2
l=1 �l)−(�m−1)TV (

�
m−2
l=1 �l)+

(�m)TV (p+
�

m−1
l=1 �l)− (�m)TV (

�
m−1
l=1 �l)

= ... = (
�

m

l=1 �
l)TV (

�
m

l=1 �
l) +

�
i
(�i)TV (p+

�
i−1
l=1 �

l)−
�

m

i=2 �
iV (

�
i−1
l=1 �

l)

By the definition of the cycle, (�i)TV (p+
�

i−1
l=1 �

l) > 0 for each i, thus:
> (

�
m

l=1 �
l)TV (

�
m

l=1 �
l)−

�
m

i=2 �
iV (

�
i−1
l=1 �

l)

By symmetry with respect to δ and � in (10), it can be shown that
�

m

i=2

�
i−1
l=1(�

i)TV �l =
�

m−1
j=1

�
m

l=j+1(�
j)TV �l. Returning to the previous expression, more algebra estab-

lishes:
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=
�

m

l=1(�
l)TV �l +

�
m

i=2

�
i−1
l=1(�

i)TV �l

= 1
2

�
m

l=1(�
l)TV �l + 1

2(
�

m

l=1 �
l)TV (

�
m

l=1 �
l)

> 0

This completes the proof for the case with the case of one hedonic dimension.
To extend the argument to K > 1, break up a lottery p into marginals p

k

in each

dimenion k, and define the matrix V
k

as the utility matrix corresponding to V in
dimension k. we can write vKR(p|r) =

�
k
p
k

TV
k

r
k

. Notice that all of the previously-

proven properties of V apply to V
k

; following through the previous steps yields the
desired result.

Second prove that Kőszegi-Rabin preferences with linear loss aversion dislike mix-
tures.

Suppose v(p|p) ≥ v(q|p) and v(q|q) ≤ max [v(p|p), v(p|q)].
Then,
v((1− α)p+ αq|(1− α)p+ αq)

= (1− α)2v(p|p) + α(1− α)v(p|q) + α(1− α)v(q|p) + α2v(q|q) (11)

by bilinearity of v under (3) and linear loss aversion.
If v(p|p) ≤ v(p|q), then two substitutions to (11) yield
≤ (1− α)2v(p|p) + α(1− α)v(p|q) + α(1− α)v(p|p) + α2v(p|q)
= v(p|(1− α)p+ αq) by bilinearity of v
= max [v(p|(1− α)p+ αq), v(p|p)]
If instead v(p|q) ≤ v(p|p), then two different substitutions to (11) yield
≤ (1− α)2v(p|p) + α(1− α)v(p|p) + α(1− α)v(p|p) + α2v(p|p)
= v(p|p)
= max [v(p|(1− α)p+ αq), v(p|p)]
This proves that v dislikes mixtures.
�

Proof of Proposition 5

Gul and Pesendorfer (2006) prove that on a finite set X there is an assignment of
hedonic dimensions such that any reference-dependent utility function v̂(x|y) can be
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written as a Kőszegi-Rabin preference as in (3). Extend v̂(x|y) to lotteries by setting
v(p|q) =

�
i

�
j
piqj v̂(x|y). The resulting representation over ∆ is thus consistent

with (3).
Kőszegi (2010, Example 3 and footnote 6) provides an example of v : ∆×∆ → �

in which the only personal equilibrium involves randomization among elements of a
choice set. Mapping the v from Kőszegi’s example to a Kőszegi-Rabin preference as
described provides an example of a Kőszegi-Rabin preference that does not satisfy
the limited-cycle inequalities.

�

Proof of Proposition 6

Take a continuous PPE representation corresponding to �L, {�p}p∈∆. Take p ∈ D.
Reference Lottery Bias implies that if p �L q ∀q ∈ D then p �p q ∀q ∈ D; thus,
p ∈ m(D,�L) =⇒ p ∈ PE(D), which jointly imply p ∈ PPE(D) = c(D). Since �L

is continuous and D is finite, it has a maximizer in D, thus there is a p ∈ m(D,�L);
by the previous argument, for any other q ∈ c(D) it follows from the representation
that q �L p thus q ∈ m(D,�L) as well. It follows that if �L, {�p}p∈∆ satisfies
Reference Lottery Bias, that c(D) = m(D,�L).

�

Proof of Proposition 7.

(i) ⇐⇒ (iii)

Let suppose c is induced by the continuous binary relation P .

Necessity of Expansion. p ∈ c(D) ⇐⇒ �q ∈ D such that qPp.
Thus, p ∈ c(D) and p ∈ c(D�)

⇐⇒ both �q ∈ D such that qPp and �r ∈ D� such that rPp.
⇐⇒ �q ∈ D ∪D� such that qPp

⇐⇒ p ∈ m(D ∪D�, P )

⇐⇒ p ∈ c(D ∪D�)
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Necessity of Sen’s α. p ∈ c(D) = m(D,P ) ⇐⇒ �q ∈ D such that qPp

=⇒ if D� ⊂ D, then �q ∈ D� such that qPp

⇐⇒ p ∈ m(D�, P ) = c(D�)

Necessity of UHC. By contradiction.
Suppose p� ∈ c(D�) = m(D�, P ) for a sequence D� → D such that dH(D�, D) < �.
If p /∈ c(D), then ∃q ∈ D such that qPp.
Then, since q has open better than and worse than sets, ∃� such that ∀p� ∈

N �

p
, ∀q� ∈ N �

q
, q�Pp�.

Since dH(D�, D) < �, it follows that ∀D� in the sequence, ∃q� ∈ D� such that
dE(q�, q) < �. Thus, ∃�̄ > 0 such that ∀� < �̄, q�Pp�. This contradicts that p� ∈
m(D�, P ) ∀D�. ♦

Sufficiency. Construct P̄ by:

pP̄ q if ∃Dpq such that p ∈ c(Dpq)

Define P as the asymmetric part of P̄ .
(I) show c(D) ⊆ m(D,P )

If p ∈ c(D), then p ∈ m(D,P ) by the definition of P .
(II) show m(D,P ) ⊆ c(D)

Suppose p ∈ m(D,P ). Then, ∀r ∈ D, ∃Dpr : p ∈ c(Dpr).
By Expansion, p ∈ c( ∪

r∈D
Dpr).

Since D ⊆ ∪
r∈D

Dpr, by Sen’s α, p ∈ c(D) as well.
(III) show P is continuous.
If p�P̄ q� for a sequence p�, q� → p, q then by steps (I) and (II), p� ∈ c({p�, q�}). By

UHC, this implies p ∈ c({p, q}) thus pP̄ q. Thus, P̄ has closed better and worse than
sets. Thus P has strictly open better and worse than sets.

�

Proof of Theorem 3.

Necessity. Necessity of Expansion, Sen’s α, and UHC follows from Proposition 7.
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Necessity of IIA Independence 2 and Transitive Limit are similar to Theorem 1.
To prove the necessity of Induced Reference Lottery Bias,
p ∈ c(D) = PE(D)

⇐⇒ v(p|p) ≥ v(q|p) ∀q ∈ D

⇐⇒ v(p|p) ≥ v((1− α)p+ αq|p) ∀q ∈ D since v(·|p) satisfies EU
⇐⇒ p ∈ PE((1− α)p+ αD) = c((1− α)p+ αD)

Thus the representation implies Induced Reference Lottery Bias.

Sufficiency.

Lemma 20. IIA Independence 2 implies Limit Consistency.

Proof. Suppose qRpp. Then ∃ᾱ > 0 such that ∀α ∈ (0, ᾱ), {(1 − α) + αq} = c((1 −
α)p+α{p, q}). By IIA Independence 2, it follows that ∀α ∈ (0, 1], ∀Dp, (1−α)p+αq that
p /∈ c(Dp, (1−α)p+αq). Thus Limit Consistency holds.

Take v from Lemma A.7 (from the proof of Theorem 1).
Define PE(D) := {p ∈ D : v(p|p) ≥ v(q|p) ∀q ∈ D}.
By Lemma A.13, the axioms for Theorem 3 imply Limit Consistency. Since v(·|p)

represents R̄p, Limit Consistency implies that c(D) ⊆ PE(D).
Suppose p /∈ c(D) - I will show that p /∈ PE(D).
If ∀q ∈ D, ∃Dpq such that p ∈ c(Dpq), then by Expansion, p ∈ c( ∪

q∈D
Dpq); by Sen’s

α, it follows that p ∈ c(D), a contradiction.
Thus ∃q ∈ D such that p /∈ c(Dpq) for any Dpq ⊇ {p, q}. It follows by IIA

Independence 2 that ∃� > 0 such that ∀α ∈ (0, 1), Dp, (1−α)p+αq, and ∀(p̂, q̂) ∈ N �

p
×N �

q
,

p /∈ c(Dp̂, (1−α)p̂+αq̂). This implies qRpp. Thus p /∈ PE(D). It follows that D\c(D) ⊆
D\PE(D), thus PE(D) ⊆ D.

This establishes that PE(D) = c(D).
�

Remark. The proof of Theorem 3 makes no use of Induced Reference Lottery Bias.
It follows that Induced Reference Lottery Bias is not independent of the remaining
axioms.
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Proof of Theorem 4.

Ok (2012, Chapters 5 and 9) proves that IIA and UHC hold if and only if c is induced
by a continuous preference relation, if and only if c has a utility representation (since
∆ is a separable metric space).17

For any continuous u : ∆ → �, we can take any v that satisfies v(p|p) = u(p);
conversely, for any v we can define u by u(p) := v(p|p). Under this mapping
CPE(D) = max

p∈D
v(p|p) = max

p∈D
u(p).

�

Proof of Proposition 8.

(i) ⇐⇒ (ii)
Assuming IRLB:
p ∈ c({p, q})
⇐⇒ p � q

=⇒ p ∈ c((1− α)p+ α{p, q}) by IRLB
⇐⇒ p � (1− α)p+ αq

which proves that IRLB implies quasiconvexity of �
Now assume quasiconvexity of �:
p ∈ c(D)

⇐⇒ p � q ∀q ∈ D

=⇒ p � (1− α)p+ αq ∀q ∈ D by quasiconvexity
⇐⇒ p ∈ c((1− α)p+ αD).
(ii) ⇐⇒ (iii)
comparing the CPE and preference maximization representations, we see that:
p � q ⇐⇒ v(p|p) ≥ v(q|q).
Thus the statement “p � q =⇒ p � (1 − α)p + αq” holds if and only if the

statement “v(p|p) ≥ v(q|q) =⇒ v(p|p) ≥ v((1− α)p+ αq|(1− α)p+ αq)” holds.
�

17Arrow (1959) shows that IIA holds if and only if there exists a complete and transitive binary
relation R such that c is induced by R.
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