On 2-separated excluded minors for the class of frame matroids

Daryl Funk

joint with

Matt DeVos Luis Goddyn Irene Pivotto

Simon Fraser University

37th Australasian Conference on Combinatorial Mathematics and Combinatorial Computing
The University of Western Australia
9th December, 2013
Theorem (DeVos, F.)

Let M be an excluded minor for the class of frame matroids, and suppose M has a 2-separation. Then either

1. M is a member of a finite list, or
2. M is the 2-sum of $U_{2,4}$ and a 3-connected frame matroid.
Theorem (DeVos, F.)

Let M be an excluded minor for the class of frame matroids, and suppose M has a 2-separation. Then either

1. M is a member of a finite list, or
2. M is the 2-sum of $U_{2,4}$ and a 3-connected frame matroid.

• excluded minor?
• frame matroid?
• 2-separation?
• 2-sum?

• $U_{2,4}$?
• 3-connected?
• what’s the list?
• so what?
Abstracting circuits

Let $E = \{e_1, e_2, \ldots, e_m\}$ be a set.
Let \mathcal{C} be a collection of subsets of E, called circuits, such that

- \emptyset is not a circuit
- no circuit is properly contained in another
- the circuit elimination axiom holds
Abstracting circuits: Matroids

Let $E = \{e_1, e_2, \ldots, e_m\}$ be a set.
Let C be a collection of subsets of E, called circuits, such that

- \emptyset is not a circuit
- no circuit is properly contained in another
- the circuit elimination axiom holds

Such an ordered pair (E, C) is called a matroid.
Abstracting circuits: Matroids

\[M = (E, \mathcal{C}) \]

- \(\emptyset \) is not a circuit
- no circuit is properly contained in another
- the \textit{circuit elimination axiom} holds

\textbf{Question:} When is \(\mathcal{C} \) the set of circuits of a graph?
Example: a non-graphic matroid

\(U_{r,n} \)

- ground set \(\{1, \ldots, n\} \)
- circuits \(C \) are all subsets of size \(r + 1 \)

- \(U_{2,4} \) is not graphic
Example: a non-graphic matroid

$U_{r,n}$

- ground set $\{1, \ldots, n\}$
- circuits C are all subsets of size $r + 1$

- $U_{2,4}$ is not graphic

Put $E = \{a, b, c, d\}$

<table>
<thead>
<tr>
<th>Graph</th>
<th>Circuits?</th>
</tr>
</thead>
<tbody>
<tr>
<td>${a, b, c}$</td>
<td></td>
</tr>
<tr>
<td>${a, b, d}$</td>
<td></td>
</tr>
<tr>
<td>${a, c, d}$</td>
<td></td>
</tr>
<tr>
<td>${b, c, d}$</td>
<td></td>
</tr>
</tbody>
</table>
Example: a non-graphic matroid

$U_{r,n}$
- ground set $\{1, \ldots, n\}$
- circuits C are all subsets of size $r + 1$

- $U_{2,4}$ is not graphic
 Put $E = \{a, b, c, d\}$

<table>
<thead>
<tr>
<th>Graph</th>
<th>Circuits?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>${a, b, c}$</td>
<td></td>
</tr>
<tr>
<td>${a, b, d}$</td>
<td></td>
</tr>
<tr>
<td>${a, c, d}$</td>
<td></td>
</tr>
<tr>
<td>${b, c, d}$</td>
<td>\times</td>
</tr>
</tbody>
</table>
Minors

- A *minor* is obtained by applying any sequence of *deleting* or *contracting* of elements
Minors

- deletion

\[G \rightarrow G \setminus e \]
Minors

- contraction

\[G \xrightarrow{f} \text{G} \]

\[\text{G} / f \]
Minor-closed families

- a family (of graphs, of matroids) is minor-closed if every minor of every member is in the family
Minor-closed families

- a family (of graphs, of matroids) is *minor-closed* if every minor of every member is in the family
- An *excluded minor theorem* characterises a minor-closed family by exhibiting a list of minimal (w.r.t. minors) graphs/matroids not in the family
 - matroid \in Family \iff no minor in list
An excluded minor theorem

Theorem (Wagner/Kuratowski)

A graph can be embedded in the plane if and only if it has no K_5 or $K_{3,3}$ as a minor.
When is \mathcal{C} the set of circuits of a graph?

Theorem (Tutte)

A matroid is graphic if and only if it has no $U_{2,4}$, F_7, F_7^*, $M^*(K_5)$, or $M^*(K_{3,3})$ minor.
When is \mathcal{C} the set of circuits of a biased graph?

A theorem we would like

A matroid (E, \mathcal{C}) is frame if and only if it has no minor in the list \{N, N', N'', \ldots\}.

Frame matroids

A *frame* matroid is a matroid which can be extended to posses a basis B_0 (a *frame*) such that every element is spanned by two elements of B_0.
Frame matroids

A frame matroid is a matroid which can be extended to possess a basis B_0 (a frame) such that every element is spanned by two elements of B_0.

• elements of $B_0 = \text{vertices}$
• element spanned by $u, v \in B_0 = uv \text{ edge}$
Frame matroids

A *frame* matroid is a matroid which can be extended to possess a basis B_0 (a *frame*) such that every element is spanned by two elements of B_0.

- elements of $B_0 = \text{vertices}$
- element spanned by $u, v \in B_0 = uv \text{ edge}$
- a minor closed class
Frame matroids - What do circuits look like?

- Forests are independent
- A leaf edge is not spanned by the elements remaining after removing its leaf; iterate
- \(k+1 \) edges on \(k \) vertices are dependent
- They are spanned by a set of rank \(k \)
- So a circuit \(C \) on \(k \) vertices has no leaf edge and \(k \) or \(k+1 \) edges w.m.a. connected.

\[\implies \]
- \(C \) is a cycle (if \(|C| = k \)), or
- \(C \) is a pair of cycles joined by a path, or
- \(C \) is a theta (if \(|C| = k+1 \)).

Daryl Funk

SFU
Frame matroids - What do circuits look like?

- forests are independent
 - a leaf edge is not spanned by the elements remaining after removing its leaf; iterate
Frame matroids - What do circuits look like?

- forests are independent
 - a leaf edge is not spanned by the elements remaining after removing its leaf; iterate
- \(k + 1 \) edges on \(k \) vertices are dependent
Frame matroids - What do circuits look like?

- forests are independent
 - a leaf edge is not spanned by the elements remaining after removing its leaf; iterate
- $k + 1$ edges on k vertices are dependent
 - they are spanned by a set of rank k
Frame matroids - What do circuits look like?

- forests are independent
 - a leaf edge is not spanned by the elements remaining after removing its leaf; iterate
- \(k + 1 \) edges on \(k \) vertices are dependent
 - they are spanned by a set of rank \(k \)
- so a circuit \(C \) on \(k \) vertices has no leaf edge and \(k \) or \(k + 1 \) edges
Frame matroids - What do circuits look like?

- forests are independent
 - a leaf edge is not spanned by the elements remaining after removing its leaf; iterate
- \(k + 1 \) edges on \(k \) vertices are dependent
 - they are spanned by a set of rank \(k \)
- so a circuit \(C \) on \(k \) vertices has no leaf edge and \(k \) or \(k + 1 \) edges

 w.m.a. connected
Frame matroids - What do circuits look like?

- forests are independent
 - a leaf edge is not spanned by the elements remaining after removing its leaf; iterate
- \(k + 1 \) edges on \(k \) vertices are dependent
 - they are spanned by a set of rank \(k \)
- so a circuit \(C \) on \(k \) vertices has no leaf edge and \(k \) or \(k + 1 \) edges
 - w.m.a. connected

\[\Rightarrow\]

- \(C \) is a cycle (if \(|C| = k \)), or
Frame matroids - What do circuits look like?

- forests are independent
 - a leaf edge is not spanned by the elements remaining after removing its leaf; iterate
- \(k + 1 \) edges on \(k \) vertices are dependent
 - they are spanned by a set of rank \(k \)
- so a circuit \(C \) on \(k \) vertices has no leaf edge and \(k \) or \(k + 1 \) edges

 w.m.a. connected

\[\Rightarrow \]

- \(C \) is a cycle (if \(|C| = k \)), or
- \(C \) is a pair of cycles joined by a path, or \(C \) is a theta (if \(|C| = k + 1 \)).

![Diagram](image-url)

- tight handcuffs
- loose handcuffs
- odd theta
Biased graphs

A *biased graph* is a pair \((G, \mathcal{B})\)

- a graph \(G\)
- together with a collection of distinguished cycles \(\mathcal{B}\)
 - called *balanced*
Biased graphs

A *biased graph* is a pair \((G, \mathcal{B})\)

- a graph \(G\)
- together with a collection of distinguished cycles \(\mathcal{B}\)
 - called *balanced*
 - obeying the *theta property*:

\[
\text{contains two balanced cycles} \quad \Rightarrow \quad \text{all three cycles balanced}
\]
Biased graphs

A *biased graph* is a pair \((G, B)\)

- A graph \(G\)
- Together with a collection of distinguished cycles \(B\)
 - Called *balanced*
 - Obeying the theta property:

 \[
 \text{contains two balanced cycles} \implies \text{all three cycles balanced}
 \]

- Zaslavsky: this yields a frame matroid \(M(G, B)\)
- We say \((G, B)\) represents \(M(G, B)\)
Example: Graphs on surfaces

Given a graph embedded on a surface

- put $\mathcal{B} = \{ \text{contractible cycles} \}$
Example: Signed graphs

Given a graph

- label each edge with $+1$ or -1
- put $\mathcal{B} = \{ \text{cycles with product of edge labels} = +1 \}$
Example: Signed graphs

Given a graph

- label each edge with $+1$ or -1
- put $\mathcal{B} = \{ \text{cycles with product of edge labels} = +1 \}$

- giving every edge label -1 we get $\mathcal{B} = \{ \text{even cycles} \}$
Graphs are biased graphs

- put $\mathcal{B} = \{ \text{all cycles} \}$
$U_{2,4}$ is frame

e_1 \ e_2 \ e_3 \ e_4

tight handcuffs
loose handcuffs
odd theta
$U_{2,4}$ is frame

- there are three biased graphs whose circuits are the circuits of $U_{2,4}$

- all cycles unbalanced
$U_{2,4}$ is frame

- there are three biased graphs whose circuits are the circuits of $U_{2,4}$

- all cycles unbalanced
$U_{2,4}$ is frame

- there are three biased graphs whose circuits are the circuits of $U_{2,4}$

- all cycles unbalanced

Daryl Funk SFU
Theorem (DeVos, F.)

Let M be an excluded minor for the class of frame matroids, and suppose M has a 2-separation. Then either

1. M is a member of a finite list, or
2. M is the 2-sum of $U_{2,4}$ and a 3-connected frame matroid.
2-sum \iff 2-separation - Graphs

G

e

G

H

e'

H

G

ee'

H

Daryl Funk

SFU
2-sum \iff 2-separation - Graphs

$G \oplus_2 H$

Daryl Funk
SFU
2-sum \iff 2-separation - Graphs

$G \oplus_2 H$
2-sum \iff 2-separation - Graphs

$G \oplus_2 H$
2-sums of matroids

- Matroids M, N
- choose $e \in E(M), e' \in E(N)$
- $M \oplus_2 N$ on elements e, e' is the matroid with

\[
G \oplus_2 H
\]
2-sums of matroids

- Matroids M, N
- choose $e \in E(M), \ e' \in E(N)$
- $M \oplus_2 N$ on elements e, e' is the matroid with
2-sums of matroids

- Matroids M, N
- choose $e \in E(M)$, $e' \in E(N)$
- $M \oplus_2 N$ on elements e, e' is the matroid with
2-sum \iff 2-separation - Matroids

Suppose M has 2-separation (A, B)

Then $M = Ab \oplus_2 Ba$

- where the 2-sum is taken on elements a and b
2-sums of biased graphs

balanced

handcuffs

odd theta

balanced G e

unbalanced H e'

$G \oplus_2 H$

Daryl Funk

SFU
2-sums of biased graphs

balanced
handcuffs
odd theta

balanced
\(G\)

unbalanced
\(H\)

\(e\)

\(e'\)

\(G \oplus_2 H\)

Daryl Funk
SFU
2-sums of biased graphs

balanced

handcuffs

odd theta

balanced

G ⊕ H

balanced unbalanced

G ⊕₂ H

Daryl Funk

SFU
2-sums of biased graphs

balanced

handcuffs

odd theta

$G \oplus_2 H$
Not all 2-sums of frame matroids are frame

- all cycles unbalanced

- is a perfectly good matroid

- cannot be represented by a biased graph

\[U_{2,4} \oplus_2 U_{4,6} \]
2-separated excluded minors for the class of frame matroids

Let $M = (E, C)$ be an excluded minor for the class of frame matroids, i.e.

- there is no biased graph (G, B) with $M = M(G, B)$
2-separated excluded minors for the class of frame matroids

Let $M = (E, C)$ be an excluded minor for the class of frame matroids, i.e.

- there is no biased graph (G, B) with $M = M(G, B)$
- for every $e \in E$, there is a biased graph representing $M \setminus e$ and a biased graph representing M/e
2-separated excluded minors for the class of frame matroids

Let $M = (E, C)$ be an excluded minor for the class of frame matroids, i.e.

- there is no biased graph (G, B) with $M = M(G, B)$
- for every $e \in E$, there is a biased graph representing $M \setminus e$ and a biased graph representing M/e

Suppose M has 2-separation (A, B)
2-separated excluded minors for the class of frame matroids

Then \(M = Ab \oplus_2 Ba \)
2-separated excluded minors for the class of frame matroids

Then $M = Ab \oplus_2 Ba$

- each of Ab and Ba is frame
- so each must be non-graphic
When is C the set of circuits of a graph?

Theorem (Tutte)

A matroid (E, C) is graphic if and only if it has no $U_{2,4}$, F_7, F_7^*, $M^*(K_5)$, or $M^*(K_{3,3})$ minor.

$dashed edges are signed −1$
2-separated excluded minors for the class of frame matroids

\[M = Ab \oplus_2 Ba \]

\[M = \begin{array}{c}
 M \\
 = \\
 ?? \\
 M =
\end{array} \begin{array}{c}
 M^* (K_{3,3}) \\
 U_{2,4} \\
 b \oplus_2 a
\end{array} \begin{array}{c}
 M^* (K_5) \\
 U_{2,4} \\
 a
\end{array} \begin{array}{c}
 M^* (K_5) \\
 U_{2,4}
\end{array} \]
On the list: $M = Ab \oplus_2 Ba$
On the list: \(M = Ab \oplus_2 Ba \)
Not on the list

\[\emptyset \oplus 2 \cup 2, 4 = \emptyset \]

- \(U_{2,4} \oplus_2 U_{2,4} \) is frame
Let $M = (E, C)$ be an excluded minor for the class of frame matroids, and suppose M has a 2-separation (A, B), and M is not one of the previous slides. Then

- one of $A \cup B$ contains $U_{2,4} \oplus_2 U_{4,6}$
- while the other contains $U_{2,4}$ as a proper minor.

$U_{2,4} \oplus_2 U_{4,6}$ is not frame
Proposition (DeVos, F.)

Let $M = (E, C)$ be an excluded minor for the class of frame matroids, and suppose M has a 2-separation (A, B), and M is not on one of the previous slides. Then

- one of $Ab, Ba \cong U_{2,4}$
- while the other contains $U_{2,4}$ as a proper minor.
\mathcal{L}-excluded minors

Daryl Funk SFU
\mathcal{L}-excluded minors
\mathcal{L}-excluded minors
\mathcal{L}-excluded minors
\mathcal{L}-excluded minors

$U_{2,4} \setminus e = U_{2,3}$
\(L \)-excluded minors
The rest of the list

• we find nine more excluded minors:
$|\mathcal{L}| \geq 3$
$|\mathcal{L}| \geq 3$
The rest of the list: $|\mathcal{L}| \geq 3$

- the 2-sum of $U_{2,3}$ with 3 $U_{2,4}$'s, one on each element
The rest of the list: $|\mathcal{L}| \geq 3$

- the 2-sum of $U_{2,3}$ with 3 $U_{2,4}$'s, one on each element of $U_{2,3}$
The rest of the list: $|\mathcal{L}| = 2$

- Each l_i gets 2-summed with a $U_{2,4}$
The rest of the list: \(|\mathcal{L}| = 2\)

- \(\mathcal{W}^3\)
 - \(B = \{l_2 cd\}\)

- \(Q_6\)
 - \(B = \emptyset\)

- \(M(W_4)\)
 - \(B = \{l_2 ac, l_2 bd\}\)

- each \(l_i\) gets 2-summed with a \(U_{2,4}\)

Daryl Funk
SFU
$|\mathcal{L}| = 1$

- Any other excluded minor not in our list having a 2-separation looks like this:

$$U_{2,4} \oplus_2 3\text{-connected}$$
\(|L| = 1\)

- Any other excluded minor \(\notin \) our list having a 2-separation looks like this:

![Diagram](image)

Theorem (DeVos, F.)

Let \(M \) be an excluded minor for the class of frame matroids, and suppose \(M \) has a 2-separation \((A, B)\). Then either

1. \(M \in \) our list, or
2. \(M \) is the 2-sum of \(U_{2,4} \) and a 3-connected frame matroid.*
...or this?

![Diagram with text](image-url)
\[|\mathcal{L}| = 1 \]

- we know 20 excluded minors of this form (so far)
- these all have rank 3 or 4

\[U_{2,4} \oplus 2 \]

3-connected