
Introduction 

Serial data (also known as 

longitudinal data) are produced 

when we measure the same 

subjects repeatedly. The unique 

feature of serial data is that the 

data points are not independent of 

each other. The value of any data 

point is dependent upon the value 

of the previous data point in the 

series. It is this dependency that is 

made use of in the procedures 

described here.  Examples of the use of serial data are in a growth study are illustrated in 

Figure 2-12.1, or in an intervention study where there is pre- and post-intervention testing often 

with testing at more than two time points. Another form of serial data are produced when 

electronic signals are sampled at a fixed frequency and saved as digital information in the 

computer (A/D - Analog to Digital Data Conversion). Data collected in this way have the same 

characteristics as the growth data described above. They are discrete data points at each point 

in time that are interdependent.  

Earlier we discussed the use of the paired t test for simple pre-post (2 measurement 

occasions) evaluation of the difference between means. With more than two occasions the 

repeated measures ANOVA can be employed. Serial data opens itself up to more than just 

testing differences between means, however. Whether, the data are collected manually or by 

A/D, a common feature is that of noise. In A/D, that noise is a signal superimposed upon the 

real signal as a consequence of poor setup or even a feature of the acquisition hardware. In 

manually collected data it is a consequence of measurement error on each occasion. Either 

way you have sequential data that is less smooth than the real data for the underlying 

phenomenon. The next section addresses methods that can be used to smooth serial data. 
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Figure 2-12.1: Serial data – growth in height of a boy 

chapter 2-12 
Mathematical Modeling of Serial Data 



2-12.2                                                                  Modeling  
  

There are various tactics available to smooth serial data. We will deal with: 

 Moving “Running” Averages 

 Weighted Moving Averages 

 Fitting Mathematical Equations 

 Mathematical Modeling 

Moving Averages 

One method used in digital conditioning 

is to carry out moving (or running) 

averaging to smooth data.  The 

challenge is to smooth the data without 

distorting the biological meaning of the 

data. The concept of a moving average 

acknowledges that serial data points 

are not independent of each other and 

in fact makes the points more 

dependent on each other because of 

the averaging process. 

In carrying out moving averages you simply average adjacent data points to give an estimate 

to the central point of that group of points. You may choose 3-point, 10-point or indeed any 

number of points. The number of points however is usually an odd number so that there is an 

easily identifiable central point. Fig. 2-12.2 shows the result of 3-point moving averaging of 

data. The black line represents the original data. The red line represents the result of the 

averaging. The moving average in addition to smoothing the data, results in a reduction in the 

amplitude. The intention however, is that the averaging minimizes noise whilst maintaining the 

true phenomenon of the data. This will not be the case if the amplitude is reduced substantially. 

This problem of moving averages is shown in the four plots in Figure 2-12.3.  

A simple sinusoid is our initial data, shown in the first plot. To this data was added a random 

error term to produce the second plot. This now represents a signal we have collected from 

some device. It is a sinusoid but it is contaminated with some noise, the effect of which we will 

try to overcome with a moving average smoothing technique. The third and fourth plots show 

the results of 5-point and 7-point moving averages. Notice that the amount of noise has been 

reduced and that the waveform still looks similar to the original sinusoid. The last plot resulted 

from a 21-point average, which resulted in a smoother curve but unfortunately at the sacrifice 

of the original sinusoidal information. Although the result is a sinusoid with the same frequency, 

the resultant curve has about half the amplitude of the original curve; thus, the smoothing has 

altered the original data as well as smoothing out the noise. This exemplifies the problem of 
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Fig. 2-12.2: 3-point Moving Average. Black line is the 
original data. Red line is the result of a 3-point 
moving average tactic. 
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moving averages, in that it smoothes out the peaks 

or valleys in your data, which might be noise but it 

also might be your valuable signal.  

A weighted average is an alternative, in that points 

closer to the middle are weighted more.  

e.g.  5 data points    10, 9, 13, 12, 1 

average = 12 

with a weighting scheme of     1 3 5 3 1 

             weighted average = 11.8 

[(1x10)+(3x9)+(5x13)+(3x12)+(1x16)]/13 

This will tend not to flatten the peaks and valleys 

quite so much, since more importance is given to 

the central points. In the end the decision as to 

what is the appropriate weighting scheme is based 

on which scheme will smooth the data but not 

distort the meaningful part of the signal. 

Fitting Mathematical Equations 
A method often used to smooth noisy data is to fit 

an equation to the data. For instance, a power 

curve might look like the shape of the data, so that 

is used to smooth through the data. This, however, 

imposes quite a restrictive shape to the data, and 

this might not actually be the best fit to the 

underlying phenomenon.  

A 5th order polynomial is often used because it can 

fit the most complex of curves (see Figure 2-12.4), 

but obviously has the restriction that it has no 

biological relevance. As will be discussed later, the 

better approach is to use a model (an equation 

with a theoretical basis) to smooth the data. In this 

way a smoothing occurs but the shape of the true phenomenon is preserved. The major 

assumption here, however, is that your model truly reflects the underlying phenomenon.  
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Simple Sinusoid + Random Error 
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Figure 2-12.3: Comparison of moving 
averaging tactics on a noisy sinusoid 
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Estimating Missing Values (Imputation) 

Another reason to fit a curve to your data 

can be to estimate missing values in 

serial data. This process is called 

imputation. In this process, a curve is fit 

to your data, and then a prediction can 

be made based upon any value of the 

independent variable. There is a high 

degree of confidence associated with 

such predictions, since they rely heavily 

on information from adjacent points. This 

confidence is enhanced if the curve is fit by a mathematical model that truly represents the 

shape of the curve of the true phenomenon. 

Mathematical Modeling 

A real biological phenomenon can be modeled with one or more mathematical equations. 

There are many reasons why one might embark on modeling, with the most obvious being a 

desire to show understanding of a phenomenon in an attempt to explain the course of events. 

Modeling is common in kinesiology and you will no doubt encounter models for systems such 

as muscle function and temperature regulation etc. A good model can be used as evidence for 

underlying mechanisms, however, a poor model that “works” under certain conditions can 

actually serve to mislead as much as it illuminates.  

One of the main reasons to use mathematical modeling is to explain a phenomenon. However, 

models are also often used to predict events, such as local weather forecasts. Models are 

often less perfect in their predictions than we would like. The key to this type of modeling is 

how precise does the prediction need to be? This question will be discussed later.  

In this chapter we will present two models. First, we will present a model describing the growth 

of height of an individual, which can be used to smooth real data for the production of growth 

norms. Later, we will show a mechanical model of dynamic skinfold compression where the 

aim was to try to explain, in mechanical terms, the shape of the dynamic compression of a 

skinfold over the first 2 seconds of compression. This served to give understanding to the 

elastic and viscous nature of the skinfold under compression.  
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Figure 2-12.4: 5th order Polynomial Curve Fit 
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Deterministic and Probabilistic Models 

There are two basic forms of mathematical models, deterministic and probabilistic. 

Deterministic models make precise predictions. An example of a deterministic model would be 

Newton’s law of motion relating the force of a moving body to its mass and acceleration: 

Force = Mass x Acceleration 

A precise prediction does not mean an exact prediction but a prediction with a very small error 

that can be regarded as negligible. When the error is not small enough to be regarded as 

negligible we have a probabilistic model. 

In house design, models can be developed to predict what size of wooden beam should be 

used to support the weight of any given roof. However, there would be considerable error in 

this prediction because of the variable nature of wood itself. It would therefore not be a safe 

procedure to predict the minimum size of wood to use. Rather, a safety allowance is added to 

the predicted value in order to accommodate the variability of wood and also additional variable 

unknown loads on the roof such as heavy snow fall.  

As in linear regression, we are relating a response, y to a variable x based upon the results of 

n experiments (the number of subjects). In fitting a straight line through the observations we 

have chosen a model of the form, 

y = αx +β 
where α =  slope and β = intercept 

The model, y = αx + β, is a deterministic mathematical model for the relationship between y 

and x. Given a value of x, the model predicts a single value of y which is unique and thus 

determined. A requirement of our deterministic models is that they predict with an error that is 

negligible for practical purposes.  A model can still be useful even when there is large error, as 

long as the size of the expected error in prediction is known and is taken into in application of 

the results. In making predictions we must take into account the size of the Standard Error of 

Estimate (S.E.E.). By way of example, regression analysis was carried out on young university 

men and women to produce equations to predict standing height from tibial height 

(perpendicular distance from the floor to the superior border of the lateral surface of the tibia). 

Tibial height is used as an estimate of lower leg length.  

The result of modeling this relationship is the production of the following two regression 

equations.  

Men:   Height = (2.34 x Tibial Height) + 67.72 

r = 0.88  S.E.E. = 3.04 cm 
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Women:  Height = (2.37 x Tibial Height) + 62.26 

r = 0.88  S.E.E. = 3.74 cm 

In men, height can be predicted from tibial height with an S.E.E. of 3.04 cm and in women the 

S.E.E. equals 3.74 cm. Our first question is do we have a good model? The answer is based 

on our judgment of whether the S.E.E. is small enough to be an acceptable margin of error 

when predicting height? When Sitting Height is added via stepwise regression to produce the 

multiple regression equations below, the standard error of estimate is reduced to 2.33 cm for 

men and 2.03 cm for women. 

Men:   Height = (1.68 x Tibial Height) +(0.90 x Sitting Height) +  14.45 

r = 0.93  S.E.E. = 2.33 cm 

Women:  Height = (2.34 x Tibial Height) +(2.34 x Sitting Height) +  5.92 

r = 0.97  S.E.E. = 2.03 cm 

When predicting with such an equation one has to bear in mind this margin of error, and 

decide, based upon practical considerations, whether this is precise enough for the task at 

hand.  

We have actually now moved to a probabilistic model for y. In a probabilistic model there are 

one or more random components that are present to try to account for the random variability of 

y for a given value of x. Our straight line probabilistic model could be represented as: 

Height = mtTibial height + c + ε 

Where: mt
  is the regression coefficient for tibial height, c is a constant (the intercept of 

Height when Tibial Height  = 0) and ε is a random variable representing the variability 
of Y about the straight line relationship 

This description of the error variable (ε) is generally in the form of assumptions about the 

nature of the random variable ε. A simple form is to state that ε has some specific probability 

distribution with expected value and variance, and that repeated values of ε are independent of 

one another in repeated sampling. The assumed nature of error about the straight line is: 

• For each value of X there is a normal distribution of Y from which the sample 
value of Y is drawn 

• The population of values of Y corresponding to a selected X has a mean that 
lies on the straight line, such that the mean error = 0 

• In each population the standard deviation of Y about its mean has the same 
value (SEE) 

Thus, the error term is a random value from a normal distribution with mean = 0, and standard 

deviation = standard error of estimate of the regression line.  
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Ideal Characteristics of a Model 

A mathematical model is considered accurate if it is able to predict some variable and do so 

with an error that will be negligible for practical purposes. Many mathematical models of 

phenomena in physics predict with errors that are often extremely small, sometimes so small 

as to be unobservable by the measuring instrument. Many other models employed in 

engineering, the physical sciences, business, and the social and the biological sciences predict 

with a much larger error. Whatever purpose you have for modeling, there are basic ideal 

qualities that you strive for in your model. 

1. Simple form; 

2. Good fit to experimental data; 

3. Biologically meaningful parameters. 

It does not matter what system you are working with, the basic steps in the modeling process 

are the same.  These steps are outlined in Figure 2-12.5. The researcher generally goes into 

this process with a firm foundation of the underlying physiology or mechanisms at play and with 

evidence or intuition for promoting a given model. The hardest and most important part of all 

however, is this initial determination of the basis for the model. What are the underlying 

mechanisms or relationships that will determine the structure of your model, and its ability to 

predict the dependent variable? The success of the model is determined by the depth of your 

knowledge of the answers to this question. Once the system is understood then the task is 

then to translate this into mathematical expressions. 

In essence, a model is nothing 

more than one or more 

mathematical equations describing 

the phenomenon. What 

distinguishes it from simple fitting 

of mathematical equations is that 

the parameters in the model have 

some biological meaning, and 

therefore explanation. Once any 

model has been developed it must 

be tested on real data. Select a 

sample with characteristics 

appropriate for your model. You 

may need to restrict subjects by age, sex, or some other characteristics that are important to 

 

Figure 2-12.5: Steps in the Modeling Process 
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control for in application of your model, if you are unable to include them as predictive variables 

in you model. One you have decided upon the sample, collect data on the dependent variable 

that you are predicting and the predictive independent variables. You can now embark on the 

most exciting phase of modeling, and that is, comparing real data with predictions from your 

model. The tough task is working out what those modifications should be. If your model fits 

reasonably, then you probably have a handle on the underlying mechanisms and have made a 

contribution. After further modifications are made, your new model must be tested against 

more real data, and so on until you settle upon the model that serves your needs.  

Using SOLVER for Least Sum of Squares Curve Fitting 

Earlier, SOLVER was briefly introduced 

as an EXCEL function that allowed a 

value for a target cell to be found based 

upon changing values in cells that are 

linked to the target cell via formulae. This 

is one of the so-called “What If” functions 

in EXCEL. If you only had EXCEL 

available to you, you could still do some 

very complex modeling using the 

SOLVER function.  

In EXCEL under the TOOLS menu there 

is the DATA ANALYSIS package that 

contains many statistical tests. One of these tests is the linear regression analysis. If you need 

linear regression analysis this is the best way to do it in EXCEL. However, in order to illustrate 

the use of SOLVER in EXCEL, we will start our modeling by considering a linear regression 

analysis without using the Data Analysis Package. Earlier the process of least sum of squares 

curve fitting was explained using Figure 2-12.6, where the sum of squared deviations (d) is 

used as the criterion of best fit. This can be reproduced in EXCEL using SOLVER. 

In our example below (Figure 2-12.7), we have measures of some variable X and associated Y 

values for a group of 9 subjects. These are not real data, and a high correlation coefficient is 

not expected. However, our aim is to find out the equation of the best fitting straight line to 

predict Y from X, and in turn find out how good this equation is at prediction.  

The process starts by entering the formula for a straight line, Y = mX + c, where m = slope & c 

= intercept, into the work sheet. A column of predicted Y values (Yp) is calculated by entering 

the formula =(A2*$G$1) + $G$2, into cell C2 and filling down the column. G1 and G2 are the 

cells containing the values assigned to the slope and intercept respectively. The $ signs 

d

Y

X  

Figure 2-12.6: Least Sum of Squares Curve Fitting 



Measurement & Inquiry in Kinesiology                                                               2-12.9 
 

 
 

indicate the absolute referencing required for each of these cells. The values in these cells are 

set at some initial estimated values, however, these values will change to appropriate values 

automatically when we run SOLVER. Next, calculate the squared differences between Y 

predicted and Y observed (the residuals or d values), by entering into cell D2 the formula =(B2 

- C2)^2. Fill down the column.  

The best fitting line is the one where the sum of squared deviations is the smallest. Therefore, 

we now calculate the sum of the squared deviations by entering the formula =SUM(D2:D18) 

into cell G3. At this point, if you change the value of either the slope or the intercept, the 

predicted values of Y will change, and hence the sum of squares. You could laboriously go 

through various combinations of values for slope and intercept, until you found the values that 

gave you the minimal value for the sum of squares, and hence was the best fitting straight line 

through the data. Fortunately, the EXCEL option called SOLVER will do this for you.  

 A B C D E F G 

1 X 
Y  

Observed 
Y 

Predicted d^2  Slope 15.49 
2 2 15.8 53.8 1445.22  Intercept 22.81 
3 3 74.5 69.3 27.15  Sum Squares 29901.45 

4 4 61.3 84.8 549.42  r 0.875 

5 5 181.1 100.3 6528.87    
6 6 130.0 115.7 204.40    
7 7 186.0 131.2 3004.75    
8 8 115.5 146.7 972.28    
9 9 135.5 162.2 714.62    
10 10 124.7 177.7 2810.71    
11 11 238.9 193.2 2091.67    
12 12 117.6 208.7 8290.16    
13 13 247.4 224.2 540.49    
14 14 271.5 239.7 1014.51    
15 15 257.9 255.1 7.55    
16 16 277.6 270.6 48.53    
17 17 256.3 286.1 889.79    
18 18 329.2 301.6 761.32    

Figure 2-12.7: EXCEL Spreadsheet of SOLVER set up for fitting a straight line 

Look under the TOOLS menu and you will see SOLVER listed. Select it, and after a slight 

delay for loading, the SOLVER dialogue box will appear. You have to select a target cell, which 

in our case is the sum of squares cell (G3). Then you have to indicate the target value. In our 

case we select minimum. Next, SOLVER needs to know which cell or cells it is allowed to 

change in order to minimize G3. The cells to be used are those of the slope and intercept 
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(G1:G2). Click the Solve button and SOLVER will go through a series of iterations and come 

up with a solution that fits your criteria. SOLVER simply goes through a process of changing 

slope and/or intercept and checking whether the sum of squares has got smaller. When it can 

no longer get the sum of squares any smaller, it reports that it has been minimized. The cells 

for slope and intercept now contain values for the best fitting line through the data. Figure 2-

12.7 shows the results of the SOLVER analysis with the values of slope = 15.49 and intercept 

= 22.81 being returned for the best fitting straight line. Note that cell G4 contains the correlation 

coefficient between predicted and observed Y scores. This was achieved by entering the 

equation =CORREL(B2:B18,C2:C18), which returns the correlation coefficient between the two 

columns of data. 

Goodness of Fit of Models 

Once you have collected real data, the test of 

your model is how well it fits that data. The 

question is how do we judge how well that 

data has been fit? When dealing with the 

common situation of predicting a dependent 

variable, the sum of squares between real 

and predicted values is a good measure of 

fit. In addition the shape of the predicted 

curve in comparison to the real data is 

important to consider. It is possible to have 

similar sum of squares for two models fit to 

the same data but that one has some shape 

fitting characteristics that are superior to the 

other model. 

Often in complex curves, a residual plot is 

used to determine if there is some pattern or 

systematic way in which the model fails to fit 

the data (Figure 2-12.8). In our example the 

residual plot is not necessary to show that the straight line does not reflect the shape of this 

data. In more complex models, the residual plot should appear to have no pattern with 

residuals oscillating around zero. If there is a pattern in the residual plot, then this indicates that 

your model fails in some systematic way and must be modified. 

 

 
Figure 2-12.8: Line fit plot (top) and Residual plot 
(bottom) for straight line fit of curvilinear data. 
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Modeling Height Growth Curves using SOLVER (an MS EXCEL function) 

Our first example of modeling is the Preece-Baines model 1 (1978) that was developed to 

explain the complex curve of growth of humans. The curve of human growth is a complex s-

shaped curve. Over the years many have tried to describe this in mathematical terms. To date 

this has best been achieved by the work of Preece and Baines in their production of a double 

exponential equation: 

Preece-Baines Model 1           h h
h h

e et
q

s t q s t q= !
!

+! !1
12

0 1

( )
[ ( )] [ ( )]  

 
where:   ht is height at time t,  

h1 is final height,  

s0 and s1 are rate constants,   

q is a time constant and  

hq is height at t =  q. 

The basic concept that we will be using in this modeling process, is that of calculating the best 

fitting equations to describe real data, based on the criterion of the Least Sum of Squares. 

Previously the SOLVER setup for least sum of squares linear curve fitting was described. Once 

you have set up the spreadsheet you can fit very complex equations by simply changing the 

equation in the predicted Y column. This is how the complex Preece-Baines model 1 shown 

above can be fit to real data easily with EXCEL.  

The result of using SOLVER and this equation on height growth data is shown in Figure 2-12.9. 

The differences between this and the set up for the straight line in Figure 2-12.8 are that the 

equation in column C is different and that there are 5 unknown’s (cells G1:G5) rather than the 

two unknown’s (slope and intercept) in the straight line example. The equation typed into cell 

C2 and then copied down the column was: 

=$G$1-((2*($G$1-$G$2))/((EXP($G$3*(A2-$G$4)))+(EXP($G$5*(A2-$G$4))))) 

The graph shows how similar the observed values for height (bullets) and the predicted values 

of height (line) are. 
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 A B C D E F G   

1 Age 
Observed 

Height 
Predicted 

Height d^2  Final Ht (h1) 163.58   
2 2 80 80.1 0.01  Peak Ht 150.91   
3 3 88 87.7 0.07  So 0.10   
4 4 94.5 94.7 0.04  theta 14.43   
5 5 101 101.0 0.00  S1 0.87   
6 6 106.8 106.8 0.00      
7 7 112.1 112.1 0.00  Sum Squares 0.3   
8 8 117 116.9 0.00 
9 9 121.5 121.5 0.00 
10 10 126 126.0 0.00 
11 11 130.5 130.7 0.02 
12 12 136 135.8 0.04 
13 13 141.8 141.7 0.01 
14 14 148 148.2 0.04 
15 15 154.2 154.2 0.00 
16 16 158.8 158.6 0.03 
17 17 161.2 161.2 0.00 
18 18 162.5 162.5 0.00 

 

 

Figure 2-12.9: EXCEL Spreadsheet of SOLVER set up for fitting Preece-Baines model to 
Height Growth Data 

 

Modeling Height Growth Curves using SPSS 

Although SOLVER can be used effectively 

to find out your model parameter estimates, 

it is limited to analysis of one curve at a 

time. However, if you have SPSS available, 

then you can carry out multiple curve fitting 

and also receive the more detailed report of 

model statistics and parameter estimates.  

To carry out modeling with SPSS you use 

the nonlinear regression option of the 

analyze menu shown in Figure 2-12.10. 

Once nonlinear regression has been 

selected, the model definition dialog box appears (Figure 2-12.11 - top). This requires that you 

define the parameters of the model. In the case of our Preece-Baines model these are final ht, 

peak ht, theta and the rate constants s0 and s1. 

 
Figure 2-12.10: SPSS analyze menu for selection of 
nonlinear regression 
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As with the use of SOLVER, this is an iterative procedure that requires initial starting values for  

each parameter. The data being used in this 

example are a file of anthropometric data 

from the Saskatchewan Growth Study 

kindly made available by Dr. Don Bailey. In 

this dataset, height and other 

anthropometric measures were collected 

annually on boys from age 7 to 18 years. 

The data file is organized such that each 

subject has several lines of data, one for 

each measurement occasion. When running 

nonlinear regression on longitudinal data 

you should turn on a Split File by subject ID 

#, such that the model will then be fit for 

each individual subject sequentially. The 

bottom panel of Figure 2-12.11 shows the 

completed model definition for fitting the 

Preece-Baines model to the longitudinal 

Saskatchewan data. Initial parameter 

estimates of FINALHT = 170, PEAKHT = 

155, SO = 0.1, THETA = 14 and S1 = 1 

were used. There is nothing magical about these values, other than they are ballpark estimates 

of the expected values. However, sometimes SPSS fails to find a solution to the nonlinear fit 

because the initial parameter estimates are not close enough. This can be cured by changing 

one or more initial values to allow a solution to be found.  

Figure 2-12.12 shows the SPSS output for the model defined in Figure 2-12.11 and run on 

subject #3 of the Saskatchewan data.  The output reports the parameter estimates for each 

iteration. Notice that it took 14 iterations until the solution was found. A solution was declared 

when the residual sum of squares failed to decrease by the accepted tolerance. Note that the 

final solution had a residual sum of squares of 1.60796 with an associated r squared of 

0.99944. It gave final estimates of the parameters as: 

FINALHT 182.3 

PEAKHT 171.94 

SO  0.13 

THETA   14.34 

 

 
Figure 2-12.11: SPSS nonlinear regression dialog 
box for definition of model parameters (top) and 
the dialog box showing the completely defined 
Preece-Baines model (bottom) 
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S1  13 

Non-linear Regression 
SUBJ#:   3.0 
 Iteration  Residual SS     FINALHT      PEAKHT          SO       THETA 
                                 S1 
     1      2750.379534  170.000000  155.000000  .100000000  14.0000000 
                         1.00000000 
     1.1    24.76460563  182.618873  172.330440  .131556135  14.3330856 
                         1.08144292 
     2      24.76460563  182.618873  172.330440  .131556135  14.3330856 
                         1.08144292 
     2.1    1.614926667  182.455552  171.985610  .135573756  14.3509246 
                         1.12599347 
     3      1.614926667  182.455552  171.985610  .135573756  14.3509246 
                         1.12599347 
     3.1    1.607987874  182.396122  171.948522  .135743790  14.3426556 
                         1.13308354 
     4      1.607987874  182.396122  171.948522  .135743790  14.3426556 
                         1.13308354 
     4.1    1.607960619  182.386708  171.945145  .135817339  14.3419360 
                         1.13452404 
     5      1.607960619  182.386708  171.945145  .135817339  14.3419360 
                         1.13452404 
     5.1    1.607959635  182.384746  171.944345  .135831626  14.3417675 
                         1.13480182 
     6      1.607959635  182.384746  171.944345  .135831626  14.3417675 
                         1.13480182 
     6.1    1.607959599  182.384368  171.944194  .135834394  14.3417354 
                         1.13485531 
     7      1.607959599  182.384368  171.944194  .135834394  14.3417354 
                         1.13485531 
     7.1    1.607959597  182.384297  171.944165  .135834910  14.3417294 
                         1.13486529 
Run stopped after 14 model evaluations and 7 derivative evaluations. 
Iterations have been stopped because the relative reduction between successive 
residual sums of squares is at most SSCON = 1.000E-08 
 
Nonlinear Regression Summary Statistics     Dependent Variable HT 
  Source                 DF  Sum of Squares  Mean Square 
  Regression              5   241471.61204    48294.32241 
  Residual                5        1.60796         .32159 
  Uncorrected Total      10   241473.22000 
  (Corrected Total)       9     2894.30400 
 
  R squared = 1 - Residual SS / Corrected SS =     .99944 
                                           Asymptotic 95 % 
                          Asymptotic     Confidence Interval 
  Parameter   Estimate    Std. Error     Lower         Upper 
 
  FINALHT   182.38429707  1.523467472 178.46809926 186.30049488 
  PEAKHT    171.94416514  1.028414497 169.30054152 174.58778877 
  SO          .135834910   .010217585   .109569771   .162100049 
  THETA     14.341729435   .202010828 13.822444071 14.861014800 
  S1         1.134865287   .174165533   .687158532  1.582572042  

 
Figure 2-12.12: SPSS Output for nonlinear regression of Preece-Baines height prediction model 
on male subject #3 from the Saskatchewan Growth study 
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Mechanical Modeling of Skinfold Compression 

Our second example of modeling is the mechanical modeling of dynamic skinfold compression. The 

measurement of subcutaneous adipose tissue with skinfold calipers is a routine laboratory and field 

technique used in the assessment of body composition and nutritional status. Because skinfold 

calipers are spring operated, they exert a finite pressure on the tissue. Skinfold measurements 

therefore represent the measured compressed thickness of a double fold of skin and underlying 

adipose tissue. In an ideal situation, however, skinfold thickness would be measured at zero 

pressure without tissue compression.  

Dynamic compressibility 

refers to the exponential 

decline in caliper reading 

after the initial application of 

the caliper to the skinfold. 

In order to investigate 

dynamic compression, 

Ward et al. modified a 

simple Slim Guide skinfold 

caliper with the addition of 

a potentiometer, which 

provided an analogue 

signal proportional to 

caliper jaw opening (Chapter 3-3). This was used to collect compression data at three sites in 8 men 

and 8 women. The data were then modeled with a combination of spring and viscous elements, 

producing coefficients representing the elasticity and viscosity of the modeled components of 

individual skinfolds. The modified skinfold caliper used for this data collection is described in 

chapter 3-3 as an example of a simple A/D set up. 

A skinfold is composed of a double layer of skin plus subcutaneous adipose tissue. The characteristics 

of the skinfold under compression by a skinfold caliper exerting a constant pressure are determined 

by the biophysical properties of the component tissues. These biophysical properties are dependent 

upon both the properties of the skin and the underlying subcutaneous adipose tissue. Under 

compression there appears to be a two component curve (2-12.9): 

1. The initial fast decline phase influenced by the properties of the skin; elasticity and resting 
tension 
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Figure 2-12.9: Typical dynamic skinfold compression curve using modified 
slim guide caliper 
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2. The slower second phase of compression of skin plus underlying adipose tissue 

A mechanical model comprised of a spring and dashpot (viscous element) has been successfully 

used to model the response of a tissue to stretch and compression. There is an reorientation of the 

fibres in the initial phase followed by a stretching of the elastic components, each phase being 

modified by the hydration (viscosity) of the tissues, with the resultant displacement curve being 

similar to that of a damped spring. The hypothesized model is that there is a damped spring 

representing the response of the skin to initial compression, the characteristics of this displacement 

curve being determined by skin elasticity, original tension and hydration. Then, in series with that is 

another damped spring representing the response of the skin plus adipose tissue to compression in 

the second slower phase of the displacement curve. Even though our initial intention was to collect a 

diverse sample of individuals to evaluate our model, it was still possible to show significant 

differences between the sexes in the model coefficients despite the small sample sizes. The above 

observations from the literature predict that women have more elastic and less viscous tissues, 

observations confirmed by the direction of the differences in the elasticity and viscosity coefficients of 

the model. 

Having determined that a two component model was the most appropriate a mechanical model based 

upon two tissues with both elastic and viscous elements was developed. The model, shown 

diagramatically in Figure 2-12.10 is comprised of a spring and viscous element in parallel which is in 

series with another parallel spring and viscous element (dashpots). k1 and k2 are the spring 

constants and b1 ad b2 are the coefficients of viscosity of the two dashpots. This model is 

represented by the following equation:  
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Figure 2-12.11 Shows the result of signal 

averaging 10 trial curves, with superimposed 

the results of the least sum of squares curve 

fitting of the two component mechanical model. 

The two curves are virtually identical, the sum of 

squares being 1.417 with a standard error of 

estimate of 0.084 mm.  

Figure 2-12-10: Mechanical model of skinfold 
compression 
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Table 2-12.1 shows the mean coefficients for 

the males and females when all three sites 

are combined. Using an independent T-test 

significant differences (p<0.05) were found 

between the sexes in each of the viscosity and 

elasticity coefficients, although no significant 

difference was found in Tinit the estimated 

thickness at zero compression. The 

ccoefficients indicated that females were more 

elastic and less viscous than males in the dynamic compression of their skinfold tissues. 

Table 2-12.1 shows the means and standard errors of mean for values of model coefficients k1, k2, 

b1, b2 and Tinit for females (n=8) and males (n=8) at three skinfold sites. This shows a significant 

difference in model coefficients between males and females. This difference is depicted in the 

average curves for males and females in Figure 2-12.12, where female skinfolds are seen to be 

more elastic and less viscous. 

 

 
 

 

 

 

 

 

 

 

 

 

Women Mean -1.275 -6.276 -0.077 -7.738 27.255 

 S.E.M. 0.251 0.970 0.010 1.672 3.684 

Men Mean -2.499* -11.362* -0.135* -14.59* 24.692 

 S.E.M. 0.883 3.618 0.039 5.796 7.807 

    * = significantly different from Women mean  
          using independent T-test (p<0.05) 

Table 2-12.1: Means and standard errors of mean for 
values of model coefficients k1, k2, b1, b2 and Tinit for 
women (n=8) and men (n=8) all three skinfold sites 
combined. 
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Figure 2-12.11: Predicted skinfold thickness (red line) 
superimposed upon actual skinfold thicknesses (black 
bullets) 
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Figure 2-12.12:  Predicted skinfold thickness (red line) 
superimposed upon actual skinfold thicknesses (black bets) 
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