
 

Introduction 

In the previous chapters we discussed a variety of descriptive statistics which assume that the 

data are normally distributed. This chapter focuses upon testing if a distribution is normally 

distributed and then possible ways of transforming the data in order to have a distribution that 

better approximates the normal distribution. The two most common deviations from normality, 

skewness and kurtosis will be discussed here. Figure 2-3.1 shows the typical shapes of 

skewed distributions in comparison to the normal distribution. Positively skewed data has a long 

tail towards the positive or higher scores side of the distribution. This is because there are a few 

very high scores that are “skewing” the distribution in this direction. In Biomedical Physiology 

and Kinesiology it is not uncommon to find positively skewed variables. Variables such as 

skinfold thicknesses and weight are usually positively skewed. Even muscle girths tend to be 

positively skewed as a few people tend to want to go into the gym and train excessively to 

produce very large muscles. Negative skewness is not as common in the types of variables we 

might encounter in Biomedical Physiology and Kinesiology. An obvious example is the height of 

basketball players in the NBA. There are very few short players in the leagues. Some do exist 

however, and because there are only a few of them and they are extremely small in comparison 

to the rest of the players, they cause the distribution to be skewed towards the small side. 

 
 

  

Figure 2-3.1: Normal, Positively Skewed and Negatively Skewed distributions 

 
Another form of deviation from normality is Kurtosis. Figure 2-3.2 shows different kurtic 

distributions. The normal distribution is referred to as Mesokurtic. Rather than asymmetry as 

described by skewness, kurtosis is a measure of how centrally located the data are within the 

distribution. In a leptkurtic distribution the data is bunch more towards the centre causing the 

distribution to look thinner and more peaked. In the Platykurtic distribution, the shape looks 
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more flattened as the data are more spread out around the centre. Kurtosis is often the 

forgotten deviation from normality. Researchers will concern themselves with skewness before 

they will consider kurtosis. That said, skewness is also often overlooked. Weight and skinfold 

measures are usually skewed, but rarely will researchers correct the problem before applying 

parametric statistics. You can find thousands of papers in the scientific literature where 

parametric statistics have been applied to skinfold and weight data, regardless of the skewness. 

The good news, however, is that although skewness is a violation of the assumption of 

normality in these parametric tests, the significance of findings is not profoundly affected. 

 

 
 

  

Figure 2-3.2: Mesokurtic (Normal), Platykurtic and Leptokurtic distributions 

 

Coefficient of Skewness 

A normal distribution, by definition is symmetrical; that is, the distribution looks the same either 

side of the centre line. Positive and negatively skewed distributions are asymmetrical. The 

Coefficient of Skewness quantifies this asymmetry.  
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where X  is the mean, s is the standard deviation, and N is the number of data points. 

If the data are normally distributed the coefficient of skewness is zero. Infact, any symmetric 

data will have a coefficient of skewness near zero. The sign of the coefficient tells the type of 

skewness. A positive coefficient of skewness means positive skewness, and the opposite for 

negative skewness. A coefficient greater than 1 is regarded as significant positive skewness, 

whereas a coefficient less than -1 is regarded a significant negative skewness. The coefficient 

of skewness is an option for selection on the SPSS Descriptive statistics dialog box. Figure 2-

3.3 shows the SPSS histogram of the Sum of 5 Skinfolds (S5SF) in 5,362 women from the 

Canada Fitness Survey (CFS) of 1981. The red bars show the distribution of the data whereas a 

superimposed black line shows a normal distribution with the same mean and standard 

deviation as the S5Sf data. This superimposed line allows you to visually appraise how deviant 

from the normal distribution your data are. In these data the distribution is positively skewed. A 

Mesokurtic (Normal) Platykurtic Leptokurtic 
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quantification of the degree of skewness is seen in the coefficient of skewness listed in the 

SPSS Descriptive Statistics output for Weight (WT), Height (HT) and Sum of 5 Skinfolds (S5SF) 

in the same data, also shown in Figure 2-3.3. The coefficient of skewness for S5SF is 1.043 

(significantly skewed). Interestingly Height (HT) is not skewed (0.09) but Weight (WT) is more 

skewed than S5SF with a coefficient of 1.297. The standard error of the coefficient (Std. Error in 

output) gives your measure of confidence in the coefficient. Coefficient of Skewness ±1.96 x 

Standard Error of the Coefficient gives the 95% confidence interval of the coefficient. For weight 

the 95% confidence interval for the coefficient of Skewness would therefore be: 

1.297 ±(1.96 x 0.032) = 1.234 to 1.360 

 

  

Figure 2-3.3: SPSS Histogram of Sum of 5 Skinfolds (S5SF) in 5362 Females from the Canada Fitness 
Survey (1981) and SPSS Descriptive Statistics output for Weight (WT), Height (HT) and Sum of 
5 Skinfolds (S5SF) in the same data. 
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Coefficient of Kurtosis 

As illustrated in Figure 2-3.2 a Platykurtic distribution is more flattened, while a Leptokurtic 

distribution is more peaked than the Mesokurtic or Normal distribution. The degree of Kurtosis is 

quantified by the Coefficient of Kurtosis 
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where X  is the mean, s is the standard deviation, and N is the number of data points. 

Normalizing Data 

Many statistical tests are based on the 

assumption of normally distributed data. As 

discussed previously, many real data sets are in 

fact not approximately normal. However, an 

appropriate transformation of a data set can 

often yield a transformed data set that does 

follow approximately a normal distribution. This 

increases the applicability and usefulness of 

statistical techniques based on the normality 

assumption. A simple data transformation 

applicable to moderately positive or right skewed 

data is the log10 transformation. Figure 2-3.4 

shows the frequency distribution for Triceps 

Skinfold (TPSF) for the CFS data set of 1,765 

women aged 20-30 years. The coefficient of 

skewness shows significant skewness at 1.17 

and the histogram illustrates this positive 

skewness. The lower panel of Figure 2-3.4 

shows the distribution of the log10 transform of 

the data. A new variable was produced 

(log10TPSF) by calculating the log10 of each TPSF measure. The new distribution is more 

normally distributed with a coefficient of skewness of 0.02. In this case the transformation 

worked well; however, it is not perfect for all situations. It tends to work better in moderately 

rather than extremely skewed data. A better but more complex transform is the Box-Cox 

transform, which will be described later in this chapter. 

TPSF: µ = 16.4 σ= 5.7 Skewness = 1.17 
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Log10TPSF: µ = 1.19 σ= 0.15 Skewness = 0.02 
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Figure 2-3.4: SPSS Histograms of Triceps 

Skinfold (TPSF) and log10TPSF in 1,765 
females aged 20-30 years from the 
Canada Fitness Survey (1981) 
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Normal Probability Plots 

  

Figure 2-3.5: SPSS Expected Cumulative Probability vs Observed Cumulative Probability Plots for Height 
(HT) and Weight (WT) in women of data depicted in Figure 2-3.3 

The normal probability plot is a useful tool in determining how normal your distribution is. In the 

normal probability plot, the cumulative probability for the data (observed) is plotted against the 

cumulative probability of the data if it were 

normally distributed (expected), as shown 

for weight (WT) and height (HT) in Figure 

2-3.5. The approximately normally 

distributed variable, height, can be seen to 

have a linear relationship between 

observed and expected values. If the two 

sets of values agreed perfectly (a 

correlation of 1) then height would be 

perfectly normal. The correlation between 

observed and expected is therefore a 

measure of normality of the observed scores. 

The skewed variable, weight, can be seen to have divergent observed scores of cumulative 

probability as shown by the bend in the normal probability plot for weight. The normal probability 

plots can be called up in SPSS by using the P-P option of the GRAPH menu. Figure 2-3.6 

shows the dialog box for this option. The variables to be tested for normality are moved over to 

the Variables box. Ensure that Normal is selected in the Test Distribution box. SPSS can 

produce plots to test more than the normal distribution.    

 

Figure 2-3.6: SPSS P-P Plots option of the GRAPH 
menu to produce normal probability plots 
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Box-Cox Transformation 

The Box-Cox transformation is a family of transformations, being defined as:  

!! /)1()( "= XXT  

where Y is the response variable and is the transformation parameter.  

For = 0, the natural log of the data is taken instead of using the above formula. 

As discussed earlier, the normal 

probability plot gives us an appreciation 

of the degree of normality of the 

distribution as the values of observed 

cumulative frequency distribution are 

plotted against the expected normal 

cumulative frequency distribution of a 

variable with the same mean and 

standard deviation. The correlation 

between the expected and observed 

values is a measure of agreement of 

the observed data to the normal 

distribution. This correlation coefficient 

can be used as the criterion for 

judgement of the value of λ that best 

normalizes the distribution. Figure 2-3.7 

shows a typical curve of the correlation coefficients found for different values of λ. In this case -

0.6 was the value of λ that gives the highest correlation (0.91) between the observed and 

expected values of the cumulative frequency. -0.6 would therefore be chosen as the value of λ 

to best transform the data to a normal distribution. Unfortunately SPSS does not carry out the 

Box-Cox analysis, but we can find the best value of λ using MS EXCEL, as described below. 

Calculating the Box-Cox λ using MS EXCEL 

Rather than using the correlation between expected and observed cumulative frequency values 

as the criterion of normality, we will use the coefficient of skewness, which will approach 0 the 

closer the distribution is to normal. Figure 2-3.8 shows an EXCEL set up for the calculation of 

the best value of λ using the SOLVER function. The data being analysed are the Sum of 5 

Skinfolds on 273 women, aged 18 to 19 years from the Canada Fitness Survey data set. The 

coefficient of skewness for this variable is 1.19; therefore, the data are significantly skewed and 

a Box-Cox transformation would be in order. 
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Figure 2-3.7: Plot of correlations of expected and 

observed values of cumulative probability 
curve for different values of λ . Maximum 
correlation found for λ=-0.6. 

Net Admin � 12/12/11 9:48 PM
Comment: Richard, is T(X) the same as Y, the 
response variable?  
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The first steps in calculating the best fitting value of λ are as follows: 

• Calculate the column of transformed scores for Sum5SF based upon the value of λ 

entered in cell E1. The value in cell E1 can be any number. Choose a small number 

similar to the likely answer for λ. In this case 1 was used. It matters little exactly what 

this number is since it is only a starting point for SOLVER. The equation entered in B2 

is =((A2^$E$1)-1)/$E$1, which is the Box-Cox transform equation shown earlier in the 

chapter but written in EXCEL computational form including specific cell references. 

 
Figure 2-3.7: MS EXCEL SOLVER set up for Box-Cox transformation calculation. 

• Calculate the coefficient of skewness for the transformed scores. In Figure 2-3.8 this 

was placed in cell E2. This is achieved using the SKEW() function of EXCEL which 

returns the coefficient of skewness of the data in the selected range of cells. In Figure 

2-3.8 the equation typed in E2 was =SKEW(B2:B274). 

• Choose the SOLVER function from the TOOLS menu. Figure 2-3.8 shows the SOLVER 

dialog box. SOLVER requires you to give the address of the target cell. In this case we 

give the cell address of the coefficient of skewness E2. Now you need to check whether 

you want SOLVER to seek a maximum, minimum or value closest to 0. In this case we 

want the coefficient of skewness to get closest to 0. SOLVER needs to change one or 

more cells that change the target cell E2. Thus E1 (the cell containing the value of λ) is 

entered in the ‘by changing cells’ box. SOLVER is now set up. If you click solve now, 

SOLVER will go through a high speed process of changing the value of λ in cell E1, 

checking on the value of E2, changing E1 again until E2 reaches the closest possible 
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value to 0. In this case the value of -0.245 brought the coefficient of skewness closest 

to 0. Therefore λ = -0.245 would be used to transform the sum of 5 skinfold data to best 

approximate a normally distributed variable. 

 

 


