
 

 

Introduction 

One of the most frequently asked questions in inferential statistics is whether or not there is a 

relationship between two variables. When data are normally distributed, the linear relationship 

between two variables can be described by the Pearson Product Moment Correlation 

Coefficient (r). Few people have trouble understanding the concept of the correlation coefficient; 

however, it is probably also the most misused and misinterpreted of all statistics. The purpose 

of this chapter is to illustrate the meaning of the correlation coefficient and how it can be derived 

using EXCEL or SPSS. Importantly, this chapter will also point out the possible pitfalls in the 

use of the correlation coefficient. 

Correlation Coefficient (r) 

The Pearson Product Moment correlation coefficient (r) assesses the degree of linear 

association between two variables. The coefficient can vary from -1 through 0 to +1. Figure 2-

5.1 depicts various values for the correlation coefficient according to scatterplots of the data. A 

perfect straight line relationship is present when the correlation coefficient is 1. The + or - sign 

merely indicates the direction of the slope. If the correlation coefficient is positive, then as one 

variable gets bigger, so too does the other; if it is negative, then as one gets bigger the other 

gets smaller, as illustrated by the r = +1 and r = -1 graphs. The linear correlation coefficient is a 

ratio of the variability in Y relative to X when the best fitting straight line is determined. A 

freehand ellipse has been drawn around the boundaries of the data points in the other graphs, 

in order to show the shape of data expected for any given value of r. It should be noted than an 

ellipse is not the expected shape of the data since the variability in Y is expected to be the same 

for all values of X, but it does provide a convenient way of displaying differences in shape of the 

distributions and therefore the ratio of variances typical of various correlation coefficients. It can 

be seen that the higher the correlation coefficient the slimmer the associated ellipse.  
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Figure 2-5.1: Illustration of various values of the correlation coefficient 

 

Limited to a Linear Fit: Figure 2-5.2 shows 

a plot of data where there was a statistically 

significant correlation coefficient of 0.906 (p 

< 0.05) between two variables. An r =.906 

seems high, but a quick look at the plot 

clearly shows that a straight line is not the 

best fit to the data. A curvilinear relationship 

would fit better. You should always plot out 

your data and look for nonlinearity, or test 

for a better fit with other nonlinear 

equations. We will be discussing nonlinear curve fitting in chapter 2-7 on modeling. 

 

 

 

Figure 2-5.2: Scatterplot of data where there was a 
statistically significant correlation coefficient of 
0.906 (p < 0.05) 
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Calculation of the Correlation Coefficient (r)  

Below is the equation to calculate the correlation coefficient, which is essentially a ratio of 

variances. This is typically a function on most calculators and is certainly included in all types of 

statistical analysis software, so you would rarely have to calculate it by hand. 
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18.6 17.9 -0.22 -0.86 0.05 0.73 0.19 

17.9 17.3 -0.92 -1.46 0.84 2.12 1.34 

19.4 19.4 0.58 0.64 0.34 0.41 0.37 

18.1 18.6 -0.72 -0.16 0.52 0.02 0.11 

17.3 17.1 -1.52 -1.66 2.31 2.75 2.52 

17.6 17.8 -1.22 -0.96 1.49 0.92 1.17 

18.4 18.2 -0.42 -0.56 0.18 0.31 0.23 

17.7 17.7 -1.12 -1.06 1.25 1.12 1.18 

20.1 20.2 1.28 1.44 1.64 2.08 1.85 

20 19.5 1.18 0.74 1.39 0.55 0.88 

18.1 18.3 -0.72 -0.46 0.52 0.21 0.33 

20.7 20 1.88 1.24 3.54 1.54 2.34 

19.4 19.8 0.58 1.04 0.34 1.09 0.61 
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Table 2-5.1: Calculation of the Correlation Coefficient of Right Hand Length versus Left Hand Length 
in University Men (n = 21) 
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Significance of the Correlation Coefficient (r)  

While it is understood that the correlation coefficient is a measure of the degree of association 

of two variables, the question is, how confident are we that the degree of association in the 

sample reflects that in the population from which the sample was drawn? Just as with all 

inferential statistics, the correlation coefficient has an associated probability distribution. The 

statistical significance of the correlation coefficient is determined by the sample size (n) and the 

preset level of acceptance (p). Table 2-5.2 shows the critical values of the correlation coefficient 

for two levels of acceptance p = 0.05 (95%) and p = 0.01 (99%). The degrees of freedom are 

calculated as n – 1. Obviously a higher correlation coefficient is needed for statistical 

significance at p = 0.01 than p = 0.05. If we refer back to Figure 2-5.1, it can be seen that there 

are 21 data points in each graph. This gives us n – 1 = 20 degrees of freedom and hence 

critical values of r of 0.423 (p = 0.05), and 0.537 (p = 0.01). If we had preset our acceptance 

level at p = 0.01, then all of the relationships shown in figure 2-5.1 would have been statistically 

significant except for r = +0.13. However, if the sample size had been 401 (therefore degrees of 

freedom = 400), then the +0.13 would have been a statistically significant value for r since the 

critical value is 0.128 for 400 degrees of freedom at p = 0.01.  

Degrees Probability Degrees Probability 
of 

Freedom 0.05 0.01 of 
Freedom 0.05 0.01 

1 .997 1.000 24 .388 .496 
2 .950 .990 25 .381 .487 
3 .878 .959 26 .374 .478 
4 .811 .917 27 .367 .470 
5 .754 .874 28 .361 .463 
6 .707 .834 29 .355 .456 
7 .666 .798 30 .349 .449 
8 .632 .765 35 .325 .418 
9 .602 .735 40 .304 .393 
10 .576 .708 45 .288 .372 
11 .553 .684 50 .273 .354 
12 .532 .661 60 .250 .325 
13 .514 .641 70 .232 .302 
14 .497 .623 80 .217 .283 
15 .482 .606 90 .205 .267 
16 .468 .590 100 .195 .254 
17 .456 .575 125 .174 .228 
18 .444 .561 150 .159 .208 
19 .433 .549 200 .138 .181 
20 .423 .537 300 .113 .148 
21 .413 .526 400 .098 .128 
22 .404 .515 500 .088 .115 
23 .396 .505 1,000 .062 .081 

Table 2-5.2: Critical Values of the Correlation Coefficient 
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This highlights the difference between statistically significance and practical significance 

discussed in chapter 2-4. Although +0.13 is a weak relationship, it is statistically significant, 

meaning that if we kept sampling from the population 99 times out of 100 we would expect to 

see this degree of association in the data. Note that a statistically significant correlation 

coefficient does not mean a strong relationship between variables, merely that we are confident 

enough that this degree of relationship exists in the population.  

Range of the Data affects the Correlation Coefficient 

 Figure 2-5.3 shows data for 

university men (n =20) and 

women (n = 23) for maximum grip 

strength versus skinfold-adjusted 

forearm girth. The correlation 

coefficient r for men was found to 

be +0.78 and for women was 

+0.75. When the two groups were 

combined to calculate a new 

correlation coefficient a value of 

+0.91 was found.  

Combination of data from A 
and B results in a larger 
correlation coefficient

A

B

 

Combination of data from A 
and B results in a smaller 

correlation coefficient

A B

 

Figure 2-5.4: Diagramatic representation of correlation coefficients resultant from a combination of data 
from two groups A and B. 

 Figure 2-5.3 shows the data for this analysis. Since men are bigger and stronger their data 

points tend to be higher on both the X and Y axes. If you eyeball the best line fits through the 

men and women’s data respectively you will see that they are very similar in slope and in fact a 

single line could fit through them. This results in the r value increasing in the combined data. 

The Y axis variability is similar in the new group but the X axis variability is increased due to the 

smallness of the females and the greater size of the males. This is not always the case when 

two groups are combined. Figure 2-5.4 illustrates this situation where the r increases after 

combination (left chart) and another scenario where the r would decline in comparison to the r 
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Figure 2-5.3: Maximum Grip Strength vs Skinfold-adjusted Arm 
Girth. University men (n=22) and women (n=21) 
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values for the two groups prior to combination. This is because the groups are not nicely 

aligned. There are no quick and easy rules for combination of r values. This stresses the need 

to always visualize your data by plotting such charts. 

Coefficient of Determination (r2) 

A useful statistic is the Coefficient of Determination (r2), which is merely the correlation 

coefficient squared. The r2 value quantifies the proportion of the variance in one variable 

explained by the other. Figure 2-5.5 is a Venn diagram illustrating this concept. The circles 

can be thought of as depicting the total variance (variability) in each of the three variables, 

weight, arm girth and calf girth within the sample.  

 

Weight 
vs 

Arm Girth 
r = 0.5 r2 = 0.25 

Weight 
vs 

Calf Girth 
r = 0.6 r2 = 0 .36 

Arm Girth 
vs 

Calf Girth 
r = 0.4 r2  = 0 .16 

 

Figure 2-5.5: Venn diagram illustrating proportions of variance explained by each variable 

 

The overlap of the circles represents the proportion of the variance of one explained by the 

other variable, this can be turned into a percentage explained variance by multiplying by 100: 

% Explained Variance = 100 x r2 

The other portion of the variance is referred to as the error or residual variance:  

% Error (Residual) Variance = (100 – (100 x r2)) 

By example, the correlation coefficient between weight and arm girth is 0.5, r2 is therefore 0.25. 

If you multiply this by 100 you get 25%. We therefore interpret r2 = 0.25 as 25% of the variance 

in weight is explained by arm girth (or similarly, 25% of the variance in arm girth is explained by 

weight). Hence, a 25% overlap in the circles for weight and arm girth. The unexplained or 

residual variance is 100% – 25% or 75%. Calf girth has a 0.6 correlation with weight; therefore, 

36% of the variance in weight is explained by this variable and the residual variance is 64%. It 

should be noted that the 25% of weight variance explained by arm girth is not totally contained 
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within the variance explained by arm girth. The reason for this is that arm girth and calf girth are 

not perfectly correlated themselves, but have only a 0.4 correlation therefore only 16% of 

common variance explained and 84% residual variance. We will discuss this concept again in 

chapter 2-5 when discussing multiple regression equations. 

Correlation Using MS EXCEL 

The calculation of the correlation coefficient performed earlier in this chapter was to allow the 

reader to have a better understanding of the meaning of r. The active researcher typically uses 

some form of computer calculation. In MS EXCEL the correlation coefficient can be calculated 

within a cell using the function =CORREL(), where the cell addresses of the two columns of 

data to be correlated are typed within the parentheses.  

Correlation coefficients can also be calculated using the DATA ANALYSIS package listed in the 

TOOLS menu. Figure 2-5.6 shows the set up and results of using this on the grip strength data. 

When selected, the DATA ANALYSIS dialog box will be displayed and you can scroll down to 

find the Correlation item. Click OK and the Correlation dialog box will be displayed. The input 

range is the cell addresses of the two columns of data. If you have labels as the first entry in the 

column this selection needs to be checked off. The output can go to either the same sheet or a 

new sheet based upon your selection. In the example shown, nine columns of data with 21 men 

in each were selected. The output shown in Figure 2-5.6 illustrates what is known as a 

correlation matrix, with each variable correlated with every other variable. Only the half below 

the diagonal has values since the half above the diagonal would merely be a mirror image of the 

lower half. The diagonal is always composed of 1s, since this represents the correlation of a 

variable with itself, which by definition would be perfect, or r=1. Note the number of decimal 

places given for r. In reporting these values, be sure to round them down to an appropriate 

number of significant decimal places (1 or 2 is usually appropriate). 

A correlation matrix is often a very valuable first look at a multivariable scenario. It can reveal a 

very low r between two variables that you might ordinarily expect to be correlated with each 

other. These low values can often be due to one or more extreme values in your data, thus 

highlighting you to possible errors in data entry. A correlation matrix is also a valuable tool for 

selecting variables for multivariable analysis and to avoid co-linearity. A multivariable analysis is 

adversely affected by independent variables that are highly correlated (see Chap 2-6). 
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     Data Analysis – Test selection dialog box                                    Correlation - Set up dialog box 

  gripR gripL HLR HLL FASFR FASFL FAGR FAGL SAFAGR SAFAGL 

gripR 1          

gripL 0.854597 1         

HLR 0.499165 0.507521 1        

HLL 0.593716 0.571354 0.93761 1       

FASFR -0.55379 -0.50556 -0.33931 -0.41879 1      

FASFL -0.50959 -0.43246 -0.39214 -0.46046 0.950324 1     

FAGR 0.616308 0.697226 0.574923 0.584657 -0.04922 
-

0.03157 1    

FAGL 0.553192 0.691243 0.496687 0.498774 -0.07575 
-

0.06611 0.95942 1   

SAFAGR 0.778533 0.830347 0.652368 0.694138 -0.46049 
-

0.42411 0.909252 0.884246 1  

SAFAGL 0.691667 0.786612 0.596157 0.624007 -0.42945 
-

0.43965 0.875612 0.925267 0.957166 1  

Figure 2-5.6: Correlation using MS EXCEL,  
Correlation matrix (bottom) produced from dialog boxes shown (top) 

gripR = right grip strength, gripL = left grip strength, HLR = right hand length, HLL = left hand length,  
FASFR = right forearm skinfold, FASFL = left forearm skinfold, FAGR = right forearm girth, FAGL = left forearm girth, 
SAFAGR = right skinfold-adjusted forearm girth, SAFAGL = left skinfold-adjusted forearm girth 

 

Correlation Using SPSS 

Using SPSS, a correlation matrix can be produced by selecting the CORRELATE option from 

the ANALYZE menu (Figure 2-5.7). The BIVARIATE choice is then made from the options 

provided. This will bring up the BIVARIATE CORRELATIONS dialog box. In this dialog box you 

can select any of your defined variables and move them over to the variables list. Any variable 

included in this list will be included in the correlation matrix. There are three options for 

correlation coefficients provided. For continuous variables you should select PEARSON. The 

other two options are nonparametric coefficients and will be dealt with in Chapter 2-9. The 

resultant correlation matrix shown in Figure 2-5.7 has more information than the MS EXCEL 

output. In addition to the correlation coefficients, you are provided with the probability level of a 

significant relationship and the sample size on which the correlation coefficient is based.  

Pairwise & Listwise Exclusion of Cases: In the data set that was used for this example there 

were no missing values for any of the variables. Thus, the sample size (N) for every cell in the 

correlation matrix is 23. If however, one or more variables had some missing values then you 
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would have to make a decision on how to deal with the missing values in calculating the 

correlation coefficients.  

  

       

                       Analyze – Correlate - Bivariate                          Bivariate Correlations - Set up dialog box 

 

Bivariate Correlations - Options dialog box 

 
Figure 2-5.7: SPSS Correlation. Analyze – Correlate - Bivariate dialog box (top left) Bivariate Correlations 
dialog box (top right), Bivariate Correlations - Options dialog box (middle), Correlation Matrix for all 
variables in Grip strength data (Women) 
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Figure 2-5.7 shows the BIVARIATE CORRELATIONS dialog box. In it you can choose to select 

missing values being excluded pairwise, or listwise. The distinction between these two is 

important in terms of the resulting correlation matrix. If listwise exclusion is chosen then if 

missing values are encountered for any subject (case) then all of the data for that case will be 

excluded from calculation. The matrix will therefore have the same number of cases (N) in each 

cell, but it will be less than the total sample size, depending upon the number of missing values 

found. If pairwise exclusion is chosen, then as each pair of variables is used to calculate the 

correlation coefficient, any cases with either variable having missing values will be excluded. 

What this means is that if different variables have different cases with missing values then the 

number of cases (N) used in each cell of the matrix may be different. It all depends upon which 

cases have missing values.  

This will affect the comparability of coefficients between variables. One coefficient in the matrix 

may have a smaller N than another, which may or may not dramatically affect the coefficient. If 

the sample size was in the thousands, 10 cases different between cells would have minimal 

effect on the correlation coefficient. However, if as in the example here, the sample size is only 

23, and it was 18, 19, or 20 for different cells in the matrix, because of the missing values, this 

could have a profound effect on comparability. The safest method is to use listwise exclusion, 

thus ensuring similar numbers of cases. Unfortunately, you may have to use pairwise exclusion, 

if there are many missing values spread around different variables and cases. This is just one 

example of how multiple missing values can hinder your analysis. The best tactic therefore is to 

strive as hard as possible to ensure that there are minimal missing values in your data set. 

Statistical Significance of r: The exact probability of a significant r is provided in each cell in 

the matrix. These can be compared to predetermined acceptance levels such as p < 0.05, in 

order to assign statistical significance. A default option is to have SPSS flag significant 

correlations (p < 0.05) with an asterisk in the cell. This can be deselected if desired in the 

BIVARIATE CORRELATIONS, OPTIONS dialog box (Figure 2-5.7 middle). 

Summary of Pitfalls in the Use of the Correlation Coefficient (r) 

The Pearson Product-Moment Correlation Coefficient (r), is a very useful statistic; however 

there are several pitfalls to its use, which one must be wary of: 

It provides a linear fit to the data: Because you get a statistically significant, even high value 

of r, does not mean that there is a linear relationship. A curvilinear relationship may fit 

better. Always plot your data and look for nonlinearity, or preferably, test for a better fit 

with other equations. Another possibility is transforming one or both variables with a 

transformation such as log10, in order to make the relationship linear.  
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Correlation does not mean causation: Two variables may be related because of a 

relationship to a third variable. A correlation coefficient is insufficient evidence to 

ascribe causality. 

Statistical significance of r does not infer practical significance: A statistically significant r 

means that you are confident at a certain level (often 95%) that the degree of 

association you see in the sample, actually exists in the population sampled from. It 

does not mean that there is a strong association (high r) or that you can predict one 

variable from the other. 

The range of the data will affect the correlation coefficient: If you inadvertently sample 

individuals with smaller values for the tested variables you would find that correlation 

coefficients would tend to lower than if the whole range of size of scores had been 

sampled. Conversely a very large range can give very high values of r. 

 


