Simple Linear Regression & Multiple Linear Regression

Introduction

In the previous chapter the correlation coefficient was discussed as a measure of association
between two variables. The next step is to determine the equation of the best fitting straight line
through the data, a process called Linear Regression analysis. Linear regression analysis
allows you to find out how well you can predict one variable (dependent) from another
(independent) variable. With multiple regression there is more than one independent variable
used in the equation (note that in this case, the variables may not be completely independent
from each other). As well as serving a predictive function, multiple regression allows for
adjustment for the effects of other independent variables (also called confounders). The
correlation coefficient is generated in the analysis, as discussed earlier is the measure of the
association between variables, but it does not tell how well the equation can predict the
dependent variable. The ability to predict is determined by the size of the standard error of

estimate (S.E.E.). The calculation and interpretation of the S.E.E. will be discussed later.

Linear Regression

Linear regression analysis provides us with the best fitting straight line (Y =b, + b+X, where b, =
slope and b, = intercept) through our data points. The Y variable is the one that is being
predicted and is referred to as the dependent variable. The X variable is the one being used to
make the prediction and is referred to as the independent variable, (or explanatory or predictor

variable). The analysis provides the best estimates for by and b.

Figure 2-6.1 is a diagrammatic representation of how the best fitting regression line is
calculated. The best fitting line is determined by consideration of the deviations between the
observed data point and the predicted value of Y for all given values of X. In the diagram, the
vertical distance labeled d is the error or difference between predicted and observed data.
Differences (d) are calculated for all data points. These values of d are then squared and
summed (Zd2 - Sum of squared deviations). The best fitting line through the data points is
defined as the line that has the smallest or least sum of these squared deviations. Hence this
method is called “least sum of squares curve fitting.” These d’s are called residuals (observed -
predicted) and their importance will be discussed later, particularly in chapter 2-12, where

residual analysis will be used as part of the modeling process.
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Figure 2-6.1: Linear Regression using least sum of squares line fitting.

The basic equation for the prediction of the dependent variable (Y’) from the independent

variable (X), requires the calculation of a slope (b;) and intercept (by).
Y'=b X +b,

Figure 2-6.2 shows the data on right and left hand lengths from university men used to
demonstrate the calculation of the correlation coefficient, r, in the previous chapter in Table 2-
5.1. It is now used to illustrate the calculation of the regression coefficients for the equation of
left hand length predicting right hand length.

Therefore, in this example shown in Figure 2-6.2, the dependent variable (Y) is the right side
hand length, which is predicted by the

22
independent variable (X), left side hand
length. The equations for the calculation of — 21
: . 5
the regression coefficients more =
- 20 =€
commonly termed the slope (m or b;) and g
the intercept (c or by) are: § 19 +
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bo =Y - b1X Figure 2-6.2: Regression line of Left side Hand
Length predicting Right side Hand Length in
university men (n=20). Dotted line is the line of
identity.
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Hand
Length Hand Length
Right Side Left Side
Y X XY X’
18.6 17.9 332.94 320.41
17.9 17.3 309.67 299.29
19.4 19.4 376.36 376.36
18.1 18.6 336.66 345.96
17.3 171 295.83 292.41
17.6 17.8 313.28 316.84
18.4 18.2 334.88 331.24
17.7 17.7 313.29 313.29
201 20.2 406.02 408.04
20 19.5 390 380.25
18.1 18.3 331.23 334.89
20.7 20 414 400
19.4 19.8 384.12 392.04
19.6 19.1 374.36 364.81
20.8 20.7 430.56 428.49
18.5 18.8 347.8 353.44
17.3 17.5 302.75 306.25
18.2 18.4 334.88 338.56
18.7 19 355.3 361
19 18.9 359.1 357.21
Sy > x > xy S’
375.4 374.2 7043.03 7020.78
Y X
18.77 18.71
AN =0T
| =
b, n(X*)-(Y X)?
(slope) p _ 20(7043.03) - (374.2)(3754) _ o
! 20(7020.78)(374.2%) '
by c=Y -mX
(intercept) b, =18.77-0.99(18.71) = 0.254
Equation r=0.94 S.E.E. =0.38cm
Table 2-6.1: Calculation of Regression Coefficients for the prediction
of Right Hand Length from Left Hand Length in university men
(n=20).
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Using these equations, it was found that the equation Right Hand Length = 0.99 Left Hand
Length + 0.254 was the best fitting straight line to predict Right Hand Length from Left Hand
Length (Table 2-6.1). Figure 2-6.2 shows this line plotted through the data points. The points
seem quite uniformly scattered around the line, showing that a straight line is a good description
of the relationship. The dotted line is the line of identity, where b; = 1 and by = 0. Since in the
analysis m was found to be 0.99, the two lines are virtually coincident, although the regression
line is shifted slightly upwards by the intercept of 0.254cm, inferring that right hands are slightly
longer than left hands. It should be noted that despite this shift, paired t-test analysis showed

that there was in fact no significant difference in right and left hand lengths in this data.

The results of the regression analysis give us two important statistics in addition to the slope
and intercept of the best fitting straight line through the data. The first one is the correlation
coefficient (r) along with its associated probability level. With respect to the linear regression
analysis for the slope and intercept to have any meaning, there must first be a significant
(p<0.05) correlation coefficient indicating that relationship exists. The correlation coefficient
quantifies the degree of association between the two variables and the interpretation of r was
discussed in chapter 2-5. Unfortunately, many people will use the correlation coefficient as their
indicator of how well the equation can predict. This is wrong! The r tells you the degree of

association, not how well the equation can predict.

Standard Error of Estimate

The statistic that does tell you how well the equation predicts is the Standard Error of Estimate
(S.E.E.). The S.E.E. describes the variability about the line with respect to the dependent

variable Y.

In linear regression there are three main assumptions made about the relationship between Y

and X with respect to the variability of Y about the line, illustrated in Figure 2-6.3:

1. For any value of X, there is a normal distribution of Y values from which the sample

value of Y is drawn.

2. For any given value of X, the corresponding population of Y values has a mean of u that
lies on the straight line y = a + B(X - X) = a + Bx, where a and 8 are parameters.

3. In each population, the standard deviation of Y about its mean has the same value,
often denoted by oy, This is referred to as homoscedasticity. If the variability of Y about

the line varied with different values of X then this would be termed heteroscedasticity.

The S.E.E. is the standard deviation of this normal distribution of Y about the regression line
and therefore has the same units as Y. If you remember back to the properties of the normal

distribution, 68.26% of scores lie between -1 and +1 standard deviations from the mean. This
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can be applied to interpretation of the S.E.E. in that when predicting with a regression equation
we will be within plus or minus one S.E.E. of the true score 68.26% of the time. It is the S.E.E.
therefore, and not the correlation coefficient, that tells you how well an equation can predict.
There are no tables that tell you how “good” a S.E.E. should be. Each calculated S.E.E. must be

evaluated in relation to the application required for the equation.

Table 2-6.2 shows the results of regression
analysis on our samples of university men and
women in order to produce regression
equations to predict Standing Height from
Tibial Height (Knee Height). The rationale for
this type of equation is that it could be used to
estimate height in individuals who are
confined to a wheelchair. Are the prediction

equations good enough? Both equations are

significant (p<0.05), with correlation
coefficients of 0.79 and 0.84 for men and  Figure 2-6.3: Distribution of error about a

. regression line
women, respectively.

The S.E.E.s however, are 3.89 cm for men and 4.27 cm for women. Thus, height can be
predicted with an error of approximately plus or minus 4cm, 2 out of 3 times (68.26%). The
decision as to whether this is good enough lies solely with the user of the equation. Is this
margin of error small enough for the purpose required of the equation? Possibly, it depends
upon the situation. Interestingly, the equation for women has the poorer S.E.E., yet the higher

correlation coefficient, which further illustrates how r can be misleading.

Another example is the prediction of %body Se b b S.E.E
X 4 0 r .E.E. P

fat from skinfold measures. The S.E.E. of

these equations is in the order of 3.7% of | Male | 1.78 | 10.74 | 0.79 | 3.89cm | 0.00

body fat (Jackson & Pollack 1985), indicating | Female | 1.74 | 12.55 | 0.84 | 4.27cm | 0.00

that when the equation is used to predict the
o L . Table 2-6.2: Linear regression of Tibial height
body fat of an individual, the prediction in  predicting Height in University Males (N=49) and
approximately 2 out of 3 (actually 68.3%) Females (N=67)
times will be within plus or minus 3.7% body fat of the correct value. Thus, if a prediction of
15% body fat is made then the confidence in that prediction would be that on 2 out of 3
occasions, the body fat actually lies between 11.3 - 18.7% body fat of the correct value.
Obviously the usefulness of a methodology carrying this degree of error is limited in individual

assessments. So be wary of regression equations being reported only with r. Find out the
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S.E.E. for any equation you use to predict with, and satisfy yourself that it is good enough for

the use you have for it.

Multiple Regression

Multiple regression is an extension of linear
regression where more than one
independent variable is used. Figure 2-6.4
is a conceptualization of how multiple
regression works. In this venn diagram, the
circles represent the variance of the four
variables. As  discussed  previously
(Chapter 2-5), the degree of overlap of the
circles represents the percentage of
variance explained as quantified by R? (the

coefficient of determination). In this

example, shown in figure 2-6.4, X; has the  Ffigure 2-6.4: Venn diagram illustrating explanation
it of variance in dependent variable (Y) by 3

highest correlation with Y, therefore independent variables (X1, X2, Xs).

would be the first variable included in the

regression equation based upon least sum of squares fitting. The next question is which is the
next best independent variable to add into a multiple regression equation? X3 has a higher
correlation with Y than X;; however, X, would be a better choice than X; to include in an
equation with X4 to predict Y. Although, X; has a lower correlation with Y than X3 in combination

with X it explains more of the variance in Y than the X; X3 combination.
The model of the multiple regression looks like:
Y =b, + biXs + boXo + bsX ... biXi

The coefficient by represents the unit change in Y per unit change in X; taking into account the
association between X, and Y etc. and is referred to as a partial regression coefficient. There
are as many regression coefficients (b,) as there are independent variables. The regression
coefficients are estimated using the criterion of least sum of squares. These coefficients are
called unstandardized regression coefficients. The magnitude of these coefficients does not tell
us directly how predictive the variable is because the units of the independent variables might
be very different. If however, you convert all the variables into standard scores (mean =0, s.d. =
1) and then run the regression you produce standardized regression coefficients or beta
weights. The resulting coefficients can be then compared directly, and give relative importance

of the variable.
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Multiple Regression Predictor Variables

The following examples show regression of continuous and binary predictor variables on a
continuous dependent variable as illustrated in a study of the forced expiratory volume (amount
of air breathed out in one second, FEV,) of children aged 7 to 11 years. As shown in the output

in Table 2-6.3, the regression equation is:
FEV = -2.2075 + 0.0853 Age + 0.0246 Height.

Note that because of the additive nature of the equation, the regression coefficients are smaller
than they would be if age alone, or height alone, were modelled in a simple linear regression

equation. The t statistics and

corresponding P-values for age
FEV1 Coeff. b | Std Errorb | Beta t P>t
and height test the null

hypotheses that there is no
association of FEV; with age Age 0.0853 0.0154 0.8801 [ 5.607 |0.000

(or height) after controlling for
its association with height (or Height 0.0246 0.0016 0.7945( 13.77 |0.000

age). In this case the null

hypothesis was rejected at the
level of <0.001.

(Constant) | -2.2075 0.1811 -12.632 |0.000

Table 2-6.4 shows the analysis Table 2-6.3: Predicting FEV,(litres/sec) in children aged 7 to 11
of variance table which shows |fromage (yrs) and height (cm)

how the joint effects of age and
height explain the variation in |Source of Var. SS d.f MS F p
FEV,. Sum of squares are

divided into two components: Regression 256383 | 2 12.8192 |244.30.0000

*  Sum of squares due to the

regression of FEV; on both |Residual 33.2201 633 | 0.05248
age and height
. Residuals Sum Of Squares Total 588584 635 009269

The 2 degrees of freedom are . . o
Table 2-6.4: Analysis of variance table for the predicting of FEV,

due to the two independent | (litres/sec) in children aged 7 to 11 from age (yrs) and height (cm)

variables. The mean square is
calculated as the corresponding sum of squares divided by the degrees of freedom (25.6383 / 2
=12.8192). The F statistic is calculated by dividing MS regression by the MS residuals (12.8192
/ 0.05248 = 244.3). The square root of the residual mean square (MS residual) is the S.E.E. for

the multiple regression. Therefore S.E.E.=+/0.05248 = 0.229 litres/sec. The coefficient of
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determination R? is the proportion of the total variability in Y attributable to the dependence of Y
on all the X; as defined by the regression model fit to the data, and in this example equals SS
regression/SS total) = 25.6383/58.8584 = 0.4356. This indicates that the regression accounts

for 43.56% of the total variance in FEV,. The multiple correlation coefficient R therefore is equal

to +/.4356 = 0.66.

Indicator Variables

An indicator variable is binary and coded as 0 or 1. Generally O indicates a lack of the
characteristic or is the reference condition. The code of 1 is used to indicate that an individual
has the specific characteristic. An example is sex, with 1 = female and 0 = male. In this case the
regression coefficient for the indicator variable is the difference between the mean in girls to the
mean of boys. (Note that if there was a regression only with this indicator variable the t statistic
and corresponding P-value would be the same as derived from a t-test.). Using the previous
example, if we added the indicator variable of sex to the previous equation, then the regression
coefficient for the variable sex estimates the difference in mean FEV, in girls compared to boys,

having allowed for the effects of age and height.

Figure 2-6.5 illustrates the interaction between a binary variable “Asthmatic Status”, and a
continuous independent variable Height. The relationship of height of children to lung function
(deadspace) measurements takes into account their asthmatic status. In this case, whether the
person has asthma or not makes an important difference in the relationship of height to
deadspace. Predictor variables (one binary and one continuous) can be tested for interaction by

creating a multiple of the two variables (in this case asthmatic status x height).

Where an indicator variable has more than 2 categories (e.g. age groups of 1-4, 5-9, 10-14, 15-
19; level of exposure as low, medium and high) then dummy variables must be used. A baseline
group is chosen which is usually the lowest coded value) and dummy variables are created
such that k-1 indicator variables are needed for k levels. One such example is the variable
“Smoking Status” with categorical values of 0 = never; 1 = ex-smoker; 2 = current smoker. This
can be recoded to new variables, labeled as “es” and “cs”. The dummy variable “es” has the
value of 1 if smoking status = 1 (everything else = 0); cs = 1 if smoking status = 2 (everything
else=0). The comparison group then is never smoker: (cs = 0 and es = 0), with comparisons
made to es and cs, entered together in the regression analysis. Note that to interpret dummy
variables so that they have the same comparison group, all dummy variables must be entered
into the equation together. This is important when stepwise regression or other selection

approaches are used, as will be described later.
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0 Non-asthmatics

+  Asthmatics

Deadspace (ml)
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Figure 2-6.5: Regreesion analysis of Height predicting Deadspace for
Non-asthmatic and Asmatic subjects

Figure 2-6.6 illustrates such an analysis. A 10% random sample was selected from the Canada
Fitness Survey data, resulting in a sample of 1077 subjects. Waist to Hip Girth Ratio (Waist
Girth / Hip Girth) is known to be related to age and sex and is also associated with smoking
status of the individual. A regression analysis was carried out to predict Waist to Hip Girth Ratio
from Age (years), Sex (Male = 1, Female = 2), an ExSmoker Dummy Variable (1 = ExSmoker, 0
= Others), a Current Smoker Dummy Variable (1 = Smoker, 0 = Others). An Age-Sex
Interaction term calculated as Age multiplied by Sex (the ExSmoker and Smoker Dummy
variables were calculated from a Smoking Status variable coded as 1 = Never Smoked, 2 =

Current Smoker and 3 = Quit Smoking).

Using the p<0.05 criterion, only the ExSmoker Dummy variable was found to be not statistically
significant. The conclusions therefore are (1) there is a relationship of Waist to Hip Girth Ratio
with Age, and (2) that this relationship is different for the two sexes and between Smokers and
NonSmokers. However, there is no difference in relationship for ExSmokers. This is not an
unexpected finding in that an ExSmoker is defined in this study as someone who has quit
smoking without information on the duration prior to the study. The interaction term for sex and
age being significant indicates that the relationship of age to waist to hip girth ratio differs for
men and women. If it were of interest, interaction terms for both of the smoking status dummy

variables with age could have been created and evaluated in the same way.
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Descriptive Statistics

Mean Std. Deviation N
Wait to Hip Girth Ratio .8307 .09005 | 1077
Age in years 38.364 13.4030 | 1077
Sex of Subject 1.546 4981 | 1077
ExSmoker Dummy Variable 2145 41066 | 1077
Current Smoker Dummy Variable 4011 49035 | 1077
Age Sex Interaction 59.6760 29.81264 | 1077

Model Summary

Regression

Model

R

R Square

Adjusted R Square

Std. Error of the Estimate

1

749(a)

.561

559

.05979

a Predictors: (Constant), Age Sex Interaction, ExSmoker Dummy Variable, Current Smoker
Dummy Variable, Sex of Subject, Age in years

ANOVA (b)
Model Sum of Squares df Mean Square F Sig.
1 Regression 4.897 5 979 273.962 | .000(a)
Residual 3.828 1071 .004
Total 8.725 1076

(a) Predictors: (Constant), Age Sex Interaction, ExSmoker Dummy Variable, Current Smoker
Dummy Variable, Sex of Subject, Age in years

(b) Dependent Variable: Wait to Hip Girth Ratio

Coefficients (a)

Unstandardized Standardized .
Coefficients Coefficients t Sig.

Model B Std. Error Beta B Std. Error
1 (Constant) .880 .018 48.273 .000

Age in years .004 .000 .540 7.971 .000

Sex of Subject -.085 .011 -.468 -7.596 .000

ExSmoker

Dummy Variable .006 .005 .026 1.115 .265

Current Smoker

Dummy Variable .01 .004 .060 2.627 .009

Age-Sex -.001 000 350 | -3.818 000

Interaction

(a) Dependent Variable: Waist to Hip Girth Ratio

Figure 2-6.6: Regression analysis of Waist to Hip Girth Ratio predicted from Age (yrs), Sex (Male = 1,
Female = 2), ExXSmoker Dummy Variable (1 = ExSmoker, 0 = Others), Current Smoker Dummy Variable
(1 = Smoker, 0 = Others), Age-Sex Interaction (Age x Sex).
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Procedures for Selecting Variables

Typically there are many variables to choose from when attempting to create the best prediction
equation. There are three common approaches for selecting the best predictors. These include
forward selection, backward selection, and stepwise selection. All three methods are generally

considered as forms of stepwise regression.

Forward selection — This approach begins with a simple regression model. The first variable
entered has the largest positive or negative correlation with the dependent variable, followed by
one with the next largest partial correlation. The default criterion for selection is the probability of

F-to-enter is 0.05. This method is not a typical choice due to theoretical difficulties.

Backwards elimination - This is the opposite approach in that all variables are entered first
and then sequentially removed (probability of F-to-remove = 0.10).

Stepwise selection — This is essentially a combination of forward and backwards selection. In
this process the best linear regression equation using one independent variable is determined.
Then each other possible independent variable is tested to find out which, in combination with
the first included independent variable, contributes most to the explanation in the variance of the
dependent variable. The equation with these two independent variables is now produced with its
associated r and S.E.E. The process is then repeated with a third independent variable, and on
to the fourth etc. Each time a regression equation is produced with one more independent
variable. Critical to this decision is the S.E.E. The S.E.E. may drop dramatically over the
inclusion of the first 3 variables but then differ little with further inclusions. The choice here
would be to use the equation with three independents, since the inclusion of more variables
adds little to the predictive power.

The argument against using stepwise regression is the choices are made by a computer. In
each successive step the next independent variable is chosen based upon F tests of all
available variables. The argument is that when so many F tests are carried out, some of the
variables included pass their F test purely by chance and that this would then be a result that
could never be repeated in another sample. To guard against this, one should be careful about
which variables are put into the inclusion list to be selected from by stepwise regression. Do not
include variables that are not intuitively appropriate as predictors. In addition you might want to
pare down variables to those that make practical sense. You might produce an equation that
predicts a dependent score from anthropometric measures. It might seem inappropriate to have
users of your equation, trained to use and provided with skinfold callipers. In this case it would
make sense not to put skinfolds in the inclusion list, even though they might make good
predictors for your equation. Be wary of using too many independent variables. Such equations

are clumsy.
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Pitfalls in the Use of Regression Equations

Large Sample Size: As with all statistics with very large sample sizes, statistical significance
loses all relationship to clinical significance. Even very weak relationships (small r) and very
poorly predicting equations (high SEE) can be statistically significant, such that statistical

significance has little value in the interpretation of a regression equation.

Sample Size vs Number of Independent Variables: Be careful when carrying out multiple
regression on small sample sizes. By including many independent variables, it is easy to obtain
correlations that are very large but could not be replicated in another sample. As a general rule
the sample size should be at least 5 times the number of independent variables you use in the

equation.

Restricted by the Range of Data: Regression equations are fit to the data in the sample,
therefore they are only justified within the range of that data. You have no knowledge of the
relationship outside of that; therefore, if you use the equation on data outside of that range you
have no measure of confidence about the predicted values. Regression equations should not be

used outside the range of the originating data.

Sample Specificity: The regression equation will fit best on the data it was originated on.
It can never perform as well on another data set. However, cross-validation studies entail
predicting on a different sample in order to test how valid and sample specific the

equation is.

Spurious Correlation: Using a predictor variable that is contained within the calculation
of the dependent variable. E.g. predicting BMI from body weight when weight is in the
calculation of BMI. You will get a spuriously high correlation between the two.

Multicollinearity: Another consideration is whether independent variables are highly
correlated. An example is in time series or longitudinal data in which an exposure
variable (e.g. cat ownership) is measured at age one and two years. As a result the
parameter estimates will be correlated and the regression equation will have a significant
R’ and a low tolerance (defined as 1-R% even though none of the coefficients are
significantly different than zero.

Nonlinearity: Multiple regression generally is robust and slight deviations from the
assumptions are not a problem. Non-linearity can occur in the relationship of two variables and

there are a number of options.

1. The predictor variable can be categorized, typically in 2 to 5 groups instead, and analysis is

done using dummy variables.

2. The predictor variable can be transformed, e.g. using logarithmic transformation. Other

common transformations are X>and 1/X. If an X? term added to the X term is significant, this
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would indicate nonlinearity.

3. Both the predictor and dependant variables can be transformed. A more common approach
is quadratic transformation involving X?and Y* An example is the relationship of age2 to
height®.

Model Sensitivity: This refers to how estimates are affected by a single data point or
subgroups of the data. A large residual (difference between the observed and fitted data) is an
outlier, and can be observed in a scatter plot. Plotting residuals against fitted values should
show a similar spread with increasing fitted values (if it is increasing, one solution may be to log
transform outcome Y). Leverage typically occurs when a data point is isolated far away from the
cluster of points, but the regression line goes near or on it. An influential point has a large effect
on the estimate (the Cook’s D statistic can indicate this). With sensitivity analysis, the question

posed is: do conclusions change if influential data are removed?

Linear Regression Analysis with MS EXCEL

In EXCEL, regression analysis can be carried out in two ways. Firstly, using paste functions,
along with the CORREL function already mentioned, there are INTERCEPT, SLOPE and

STEYX functions. This is useful if you wish to refer to these cells in equations entered in other

cells.
The other option is to use the full 21|
. . rInput
regression analysis. Under the Tools Trect Y Range: sz o |
. . . - Cancel I
menu you will find the Data Analysis Input X Range: o =
option. Select this and you will be [V Labels [~ Constant is Zero M

. . I Confidence Level: |95 %
presented with a dialogue box where you

rOutput options

can scroll down and select the regression P — — =
package. If you select this option then you & New Worksheet Ply: |

" New Workbook

will see the dialogue screen shown in ikl

. . v I” Residual Plot
Figure 2-6.7. You must enter the location ’1 ed Residuals ru_::'F'fmof:
of the X and Y data in terms of the range jormal Probabilty

I~ mormal Probability Plots

of cell addresses in which they are

located. This can be done by either

Lo . . Figure 2-6.7: Regression Analysis dialog box
pointing and dragging with the mouse or
actually typing in the addresses. If you have labels at the top of the columns then there is a
labels check box to select. You can ask for the line to be fit to have zero intercept. It sometimes
makes biological sense to have a zero intercept, in which case select the “Constant is Zero”

check box. Then select a cell for the top left hand corner of the summary report and enter it as
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the “Output Range”. In addition several graphs can be selected. In this example the simple Line

Fit Plot was selected. The resultant output is shown below:

70

65 +

60 +

55 +

50 +

45 1+

Max. Grip Strength (lbs)

40 1

35 |

r=0.78 S.E.E.=5.06lbs

Y =3.07 X-26.93

220 230

240 250 260

270 280

290 300 310 320

Skinfold-adjusted Arm Girth (cm)

Figure 2-6.8: Plot of Regression Analysis of Skinfold-

adjusted Arm Girth Predicting Maximum Grip
Strengths in University Males

Figure 2-6.8 shows a plot of the Regression
Analysis of Skinfold-adjusted Arm Girth
Predicting Maximum Grip Strengths in a
group of University men. Figure 2-6.9 shows
the MS EXCEL output for this analysis. The
red boxes highlight the most important parts
of the results. The correlation coefficient =
0.78 (Multiple R — EXCEL labels it this way
even though there might only be one
independent variable). The SEE is 5.06Ibs.
The significance of F must be less than 0.05

for us to state that there is a significant

relationship at the 95% level, which it is in this case.

SUMMARY
OUTPUT

Males

Regression Statistics

Multiple R

0.778533284 |

R Square
Adjusted R

Scoulare

0.606114075

0.584231523

Standard
Error

5.057299904

Observations 20
ANOVA
df ss MS Signifli:cance
Regression 1 708.4249182 708.4249182 27.69851026 5.27385E-05
Residual 18 460.3730818 25.57628232
Total 19 1168.798
Coefficients StaEr;rtiarrd t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -26.92995672 15.09863073 -1.78360258 0.091357898  -58.65102735 4.791113903  -58.65102735 4.791113903
SAFAGR 3.071244728 0.583560944 5.262937417 5.27385E-05 1.84522773 4.297261726 1.84522773 4.297261726
RESIDUAL
OUTPUT
Observation Pred'lcted Residuals
gripR
1 49.85730396 -5.85730396
2 44.59933299  -2.499332987

Figure 2-6.9: Output for MS EXCEL Regression Analysis of Skinfold-adjusted Arm Girth Predicting Maximum
Grip Strengths in Males (n = 20)
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The intercept is -26.93 and slope for skinfold-adjusted forearm girth is 3.07. The equation is

therefore:

Max. Grip Strength = 3.07 skinfold-adjusted forearm girth — 26.93

r=0.78

Simple Linear Regression.

SEE = 5.06lbs

p<0.05

Regression Analysis with SPSS

M Linear Regression
The linear regression analysis is found as [ Son ol Subect il Dependent:
P [} Dominant Hand [domh E] @ Max Grip Strength Rigt
the REGRESSION listing under the @ Max Giip Steength Lef ~_Paste
@ Hand Length Right [hir ; Next Reset
ANALYZE menu. Choose the LINEAR | |Shmciomnim | ot sekion _tet | |
@ Foreamm Skinfold Right Independent(s): ﬂ,
1 I I @ Foreamm Skinfold Left [ @ Skinfold Adiusted F Hel
option and you will be presented with the b Sy |I] @ Skinfold Adjusted Fore elp
. . . . @ Foreamm Girth Left [fagl
dialog box shown in Figure 2-6.10. As with @ Skinold Adusted Fore P—
. . @ Skinfold Adjusted Fore —
other SPSS dialog boxes the variables are F—
sent over to selection boxes. In this case e Lo [
Lase LaDels:
Grip strength was sent to the Dependent
variable box and skinfold-adjusted forearm | > | || W | e | s

girth was sent to the independent(s) box.
This  will

regression. If a multiple regression equation

Figure 2-6.10: SPSS ANALYZE — REGRESSION —
LINEAR — Dialog box for Regression Analysis of
Skinfold-adjusted Arm Girth Predicting Maximum
Grip Strengths in Males and Females Separately
(Split File ON)

produce the simple linear
is required, multiple independent variables
are sent to the independent(s) box and the METHOD is changed to STEPWISE from ENTER.
This will result in a series of equations being produced as discussed earlier. Figure 2-6.11
shows the SPSS output for the regression analysis called for in the dialog box in Figure 2-6.10.
Since SPLIT FILE by SEX was on, there is a regression output for each of the sexes. The red
boxes highlight the most important parts of the output: the r, SEE, significance, and the
coefficients of the equation. Not surprisingly, the values for the men are exactly the same as the

EXCEL output shown earlier. For the women the results are:

Max. Grip Strength = 3.53 skinfold-adjusted forearm girth — 40.13

r=0.75 SEE =4.63lbs p<0.05
Noticeably although the correlation coefficient is lower for the females the SEE is lower, which
means the prediction equation for women is better than the prediction equation for men. An
interesting question would be is it necessary to have separate equations for the two sexes. You
could run a combined sex equation and see how the resultant equation would predict. However,

if you wanted a test of the difference in the regression equations you would run an Analysis of
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Covariance (ANCOVA). This will be dealt with in depth in the next chapter on tests of
differences between means. The test would be an analysis of variance with Grip strength as the
dependent, Sex as a grouping factor and skinfold-adjusted forearm girth as a covariate. If it was
shown that Sex was not a significant factor then the two regression lines for the sexes are not

significantly different from each other, and hence you do not need to have separate equations.

Regression

Regression
Sex of Subject = Male
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Figure 2-6.11: SPSS Output for Regression Analysis of Skinfold-adjusted Arm Girth Predicting Maximum Grip Strength
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Figure 2-6.6 showed the regression
analysis of Waist to Hip Girth Ratio M Linear Regression
redicted from Age, Sex, ExSmoker & Subject Identity Nu A | Dependent: (o)
g g & Ageinyears [age]
. . aste
Dummy Variable, Current Smoker %geffvj‘f":f[‘kkﬁ Block 1 of 1 =
ody Weig g Previou: - -@
; & Stetch Stature (i = =
Dummy Variable, and the Age-Sex @ Ticwns SKniokdn !T;penden,[s]:
; . : & Subscapular Skinf Age in years [age] A
Interaction (Age x Sex). This is an p/Semminombiv & Ser of Subiect [se]
. . , & liac Crest Skinfold & ExSmoker Dummy Varial ¥
example of a multiple regression analysis gMedia‘.;ansmm Moot [stprise V]
. . . Sum of 5 Skinfolds E
and was achieved using the same dialog gHumerus (Elbow] Se,ecﬁm\,
Femur (Knee) Widt = emove
box as for the simple linear regression. & Relaed Am Gith :ESﬁQfS'd
& Chgst Girth [cm) [ Case Labels:
The only difference being that a list of g;af*ﬁ':hicgllm
uteal 1pJ it
i i i i f Thigh Girth (cm) [tk WLS Weight:
independent variables is provided for use & Cat Gith oy oo
in the analysis. In the case of the smoking [statston. ] [ Plows. ] [ Saven. ] [(Qptons. ]
analysis it was required that all the
independent  variables be entered  Figure 2-6.12: SPSS ANALYZE — REGRESSION —

LINEAR — Dialog box for Multiple Regression Analysis
of Waist to Hip Girth Ratio predicted from Age, Sex,
ExSmoker Dummy Variable, Current Smoker Dummy
Variable, and the Age-Sex Interaction (Age x Sex)

simultaneously into one equation. Thus,
the ENTER method was
However, the STEPWISE method would

be selected if the researcher required a series of equations to be produced as described earlier

selected.

and illustrated in Figure 2-6.12.

Reporting the Results of Regression Analysis

The relevant details to report following simple linear regression with one predictor variable are
the regression equation, the correlation coefficient, the S.E.E., and the p-value (significance
level). Following multiple linear regression (more than one predictor variable) report the
regression equation, the coefficient of determination (Rz, total variance in the dependent
variable that is explained by the independent variables), the S.E.E., and the p-values

(significance levels) associated with predictor variables of interest.



