
Introduction 

In the previous chapter the correlation coefficient was discussed as a measure of association 

between two variables. The next step is to determine the equation of the best fitting straight line 

through the data, a process called Linear Regression analysis. Linear regression analysis 

allows you to find out how well you can predict one variable (dependent) from another 

(independent) variable. With multiple regression there is more than one independent variable 

used in the equation (note that in this case, the variables may not be completely independent 

from each other). As well as serving a predictive function, multiple regression allows for 

adjustment for the effects of other independent variables (also called confounders). The 

correlation coefficient is generated in the analysis, as discussed earlier is the measure of the 

association between variables, but it does not tell how well the equation can predict the 

dependent variable. The ability to predict is determined by the size of the standard error of 

estimate (S.E.E.). The calculation and interpretation of the S.E.E. will be discussed later.  

Linear Regression 

Linear regression analysis provides us with the best fitting straight line (Y =b0 + b1X, where b1 = 

slope and bo = intercept) through our data points. The Y variable is the one that is being 

predicted and is referred to as the dependent variable. The X variable is the one being used to 

make the prediction and is referred to as the independent variable, (or explanatory or predictor 

variable). The analysis provides the best estimates for b0 and b1.  

Figure 2-6.1 is a diagrammatic representation of how the best fitting regression line is 

calculated. The best fitting line is determined by consideration of the deviations between the 

observed data point and the predicted value of Y for all given values of X. In the diagram, the 

vertical distance labeled d is the error or difference between predicted and observed data. 

Differences (d) are calculated for all data points. These values of d are then squared and 

summed (∑d2 - Sum of squared deviations). The best fitting line through the data points is 

defined as the line that has the smallest or least sum of these squared deviations. Hence this 

method is called “least sum of squares curve fitting.” These d’s are called residuals (observed - 

predicted) and their importance will be discussed later, particularly in chapter 2-12, where 

residual analysis will be used as part of the modeling process. 

chapter 2-6 
Simple Linear Regression & Multiple Linear Regression 
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Figure 2-6.1: Linear Regression using least sum of squares line fitting. 

The basic equation for the prediction of the dependent variable (Y’) from the independent 

variable (X), requires the calculation of a slope (b1) and intercept (b0). 

01 bXbY +=!  

Figure 2-6.2 shows the data on right and left hand lengths from university men used to 

demonstrate the calculation of the correlation coefficient, r, in the previous chapter in Table 2-

5.1.  It is now used to illustrate the calculation of the regression coefficients for the equation of 

left hand length predicting right hand length.  

Therefore, in this example shown in Figure 2-6.2, the dependent variable (Y) is the right side 

hand length, which is predicted by the 

independent variable (X), left side hand 

length. The equations for the calculation of 

the regression coefficients more 

commonly termed the slope (m or b1) and 

the intercept (c or b0) are: 
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Figure 2-6.2: Regression line of Left side Hand 
Length predicting Right side Hand Length in 
university men (n=20). Dotted line is the line of 
identity. 

d = Observed - Predicted 
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Hand 
Length 

Right Side 
Hand Length 

Left Side   
Y  X  XY  2X  

18.6 17.9 332.94 320.41 
17.9 17.3 309.67 299.29 
19.4 19.4 376.36 376.36 
18.1 18.6 336.66 345.96 
17.3 17.1 295.83 292.41 
17.6 17.8 313.28 316.84 
18.4 18.2 334.88 331.24 
17.7 17.7 313.29 313.29 
20.1 20.2 406.02 408.04 
20 19.5 390 380.25 

18.1 18.3 331.23 334.89 
20.7 20 414 400 
19.4 19.8 384.12 392.04 
19.6 19.1 374.36 364.81 
20.8 20.7 430.56 428.49 
18.5 18.8 347.8 353.44 
17.3 17.5 302.75 306.25 
18.2 18.4 334.88 338.56 
18.7 19 355.3 361 
19 18.9 359.1 357.21 
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(intercept) 

XmYc !=  

254.0)71.18(99.077.180 =!=b  

Regression 
Equation 

Right Hand L. = 0.99 Left Hand L. + 0.254 

r = 0.94            S.E.E. = 0.38cm 

Table 2-6.1: Calculation of Regression Coefficients for the prediction 
of Right Hand Length from Left Hand Length in university men 
(n=20). 
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Using these equations, it was found that the equation Right Hand Length = 0.99 Left Hand 

Length + 0.254 was the best fitting straight line to predict Right Hand Length from Left Hand 

Length (Table 2-6.1). Figure 2-6.2 shows this line plotted through the data points. The points 

seem quite uniformly scattered around the line, showing that a straight line is a good description 

of the relationship. The dotted line is the line of identity, where b1 = 1 and b0 = 0. Since in the 

analysis m was found to be 0.99, the two lines are virtually coincident, although the regression 

line is shifted slightly upwards by the intercept of 0.254cm, inferring that right hands are slightly 

longer than left hands. It should be noted that despite this shift, paired t-test analysis showed 

that there was in fact no significant difference in right and left hand lengths in this data.  

The results of the regression analysis give us two important statistics in addition to the slope 

and intercept of the best fitting straight line through the data. The first one is the correlation 

coefficient (r) along with its associated probability level. With respect to the linear regression 

analysis for the slope and intercept to have any meaning, there must first be a significant 

(p<0.05) correlation coefficient indicating that relationship exists. The correlation coefficient 

quantifies the degree of association between the two variables and the interpretation of r was 

discussed in chapter 2-5. Unfortunately, many people will use the correlation coefficient as their 

indicator of how well the equation can predict. This is wrong! The r tells you the degree of 

association, not how well the equation can predict.  

Standard Error of Estimate 

The statistic that does tell you how well the equation predicts is the Standard Error of Estimate 

(S.E.E.). The S.E.E. describes the variability about the line with respect to the dependent 

variable Y.  

In linear regression there are three main assumptions made about the relationship between Y 

and X with respect to the variability of Y about the line, illustrated in Figure 2-6.3: 

1. For any value of X, there is a normal distribution of Y values from which the sample 

value of Y is drawn. 

2. For any given value of X, the corresponding population of Y values has a mean of µ that 

lies on the straight line µ = α + β(X - X) = α + βx, where α and β are parameters. 

3. In each population, the standard deviation of Y about its mean has the same value, 

often denoted by σy’x’ This is referred to as homoscedasticity. If the variability of Y about 

the line varied with different values of X then this would be termed heteroscedasticity. 

The S.E.E. is the standard deviation of this normal distribution of Y about the regression line 

and therefore has the same units as Y. If you remember back to the properties of the normal 

distribution, 68.26% of scores lie between -1 and +1 standard deviations from the mean. This 
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can be applied to interpretation of the S.E.E. in that when predicting with a regression equation 

we will be within plus or minus one S.E.E. of the true score 68.26% of the time. It is the S.E.E. 

therefore, and not the correlation coefficient, that tells you how well an equation can predict. 

There are no tables that tell you how “good” a S.E.E. should be. Each calculated S.E.E. must be 

evaluated in relation to the application required for the equation.  

 

Table 2-6.2 shows the results of regression 

analysis on our samples of university men and 

women in order to produce regression 

equations to predict Standing Height from 

Tibial Height (Knee Height). The rationale for 

this type of equation is that it could be used to 

estimate height in individuals who are 

confined to a wheelchair. Are the prediction 

equations good enough? Both equations are 

significant (p<0.05), with correlation 

coefficients of 0.79 and 0.84 for men and 

women, respectively. 

The S.E.E.s however, are 3.89 cm for men and 4.27 cm for women. Thus, height can be 

predicted with an error of approximately plus or minus 4cm, 2 out of 3 times (68.26%). The 

decision as to whether this is good enough lies solely with the user of the equation. Is this 

margin of error small enough for the purpose required of the equation? Possibly, it depends 

upon the situation. Interestingly, the equation for women has the poorer S.E.E., yet the higher 

correlation coefficient, which further illustrates how r can be misleading. 

Another example is the prediction of %body 

fat from skinfold measures. The S.E.E. of 

these equations is in the order of 3.7% of 

body fat (Jackson & Pollack 1985), indicating 

that when the equation is used to predict the 

body fat of an individual, the prediction in 

approximately 2 out of 3 (actually 68.3%) 

times will be within plus or minus 3.7% body fat of the correct value.  Thus, if a prediction of 

15% body fat is made then the confidence in that prediction would be that on 2 out of 3 

occasions, the body fat actually lies between 11.3 - 18.7% body fat of the correct value.  

Obviously the usefulness of a methodology carrying this degree of error is limited in individual 

assessments. So be wary of regression equations being reported only with r. Find out the 

 
Figure 2-6.3: Distribution of error about a 
regression line 

Sex b1 b0 r S.E.E. p 

Male 1.78 10.74 0.79 3.89cm 0.00 

Female 1.74 12.55 0.84 4.27cm 0.00 

Table 2-6.2: Linear regression of Tibial height 
predicting Height in University Males (N=49) and 
Females (N=67) 
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S.E.E. for any equation you use to predict with, and satisfy yourself that it is good enough for 

the use you have for it. 

Multiple Regression 

Multiple regression is an extension of linear 

regression where more than one 

independent variable is used.  Figure 2-6.4 

is a conceptualization of how multiple 

regression works. In this venn diagram, the 

circles represent the variance of the four 

variables. As discussed previously 

(Chapter 2-5), the degree of overlap of the 

circles represents the percentage of 

variance explained as quantified by R2 (the 

coefficient of determination). In this 

example, shown in figure 2-6.4, X1 has the 

highest correlation with Y, therefore it 

would be the first variable included in the 

regression equation based upon least sum of squares fitting. The next question is which is the 

next best independent variable to add into a multiple regression equation? X3 has a higher 

correlation with Y than X2,; however, X2 would be a better choice than X3 to include in an 

equation with X1 to predict Y. Although, X2 has a lower correlation with Y than X3, in combination 

with X1 it explains more of the variance in Y than the X1 X3 combination.  

The model of the multiple regression looks like: 

Ŷ = bo + b1X1 + b2X2 + b3X3 ….. bkXk 

The coefficient b1 represents the unit change in Y per unit change in X1 taking into account the 

association between X2 and Y etc. and is referred to as a partial regression coefficient. There 

are as many regression coefficients (bk) as there are independent variables. The regression 

coefficients are estimated using the criterion of least sum of squares. These coefficients are 

called unstandardized regression coefficients. The magnitude of these coefficients does not tell 

us directly how predictive the variable is because the units of the independent variables might 

be very different. If however, you convert all the variables into standard scores (mean = 0, s.d. = 

1) and then run the regression you produce standardized regression coefficients or beta 

weights. The resulting coefficients can be then compared directly, and give relative importance 

of the variable.   

 

Figure 2-6.4: Venn diagram illustrating explanation 
of variance in dependent variable (Y) by 3 
independent variables (X1, X2, X3). 
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Multiple Regression Predictor Variables 

The following examples show regression of continuous and binary predictor variables on a 

continuous dependent variable as illustrated in a study of the forced expiratory volume (amount 

of air breathed out in one second, FEV1) of children aged 7 to 11 years. As shown in the output 

in Table 2-6.3, the regression equation is: 

FEV1= -2.2075 + 0.0853 Age + 0.0246 Height.  

Note that because of the additive nature of the equation, the regression coefficients are smaller 

than they would be if age alone, or height alone, were modelled in a simple linear regression 

equation. The t statistics and 

corresponding P-values for age 

and height test the null 

hypotheses that there is no 

association of FEV1 with age 

(or height) after controlling for 

its association with height (or 

age). In this case the null 

hypothesis was rejected at the 

level of <0.001.  

Table 2-6.4 shows the analysis 

of variance table which shows 

how the joint effects of age and 

height explain the variation in 

FEV1. Sum of squares are 

divided into two components: 

• Sum of squares due to the 

regression of FEV1 on both 

age and height  

• Residuals Sum of Squares 

The 2 degrees of freedom are 

due to the two independent 

variables. The mean square is 

calculated as the corresponding sum of squares divided by the degrees of freedom (25.6383 / 2 

= 12.8192). The F statistic is calculated by dividing MS regression by the MS residuals (12.8192 

/ 0.05248 = 244.3). The square root of the residual mean square (MS residual) is the S.E.E. for 

the multiple regression. Therefore litres/sec 0.22905248.0... ==EES . The coefficient of 

FEV1 Coeff. b Std Error b Beta t P>t 

Age 0.0853 0.0154 0.8801 5.607 0.000 

Height 0.0246 0.0016 0.7945 13.77 0.000 

(Constant) -2.2075 0.1811  -12.632 0.000 

Table 2-6.3: Predicting FEV1(litres/sec) in children aged 7 to 11 
from age (yrs) and height (cm) 

Source of Var. SS d.f MS F p 

Regression 25.6383 2 12.8192 244.3 0.0000 

Residual 33.2201 633 0.05248   

Total 58.8584 635 0.09269   

Table 2-6.4:  Analysis of variance table for the predicting of FEV1 
(litres/sec) in children aged 7 to 11 from age (yrs) and height (cm) 
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determination R2 is the proportion of the total variability in Y attributable to the dependence of Y 

on all the Xi as defined by the regression model fit to the data, and in this example equals SS 

regression/SS total) = 25.6383/58.8584 = 0.4356. This indicates that the regression accounts 

for 43.56% of the total variance in FEV1. The multiple correlation coefficient R therefore is equal 

to 66.0.4356 = . 

Indicator Variables 

An indicator variable is binary and coded as 0 or 1. Generally 0 indicates a lack of the 

characteristic or is the reference condition. The code of 1 is used to indicate that an individual 

has the specific characteristic. An example is sex, with 1 = female and 0 = male. In this case the 

regression coefficient for the indicator variable is the difference between the mean in girls to the 

mean of boys. (Note that if there was a regression only with this indicator variable the t statistic 

and corresponding P-value would be the same as derived from a t-test.). Using the previous 

example, if we added the indicator variable of sex to the previous equation, then the regression 

coefficient for the variable sex estimates the difference in mean FEV1 in girls compared to boys, 

having allowed for the effects of age and height.   

Figure 2-6.5 illustrates the interaction between a binary variable “Asthmatic Status”, and a 

continuous independent variable Height. The relationship of height of children to lung function 

(deadspace) measurements takes into account their asthmatic status. In this case, whether the 

person has asthma or not makes an important difference in the relationship of height to 

deadspace. Predictor variables (one binary and one continuous) can be tested for interaction by 

creating a multiple of the two variables (in this case asthmatic status x height).  

Where an indicator variable has more than 2 categories (e.g. age groups of 1-4, 5-9, 10-14, 15-

19; level of exposure as low, medium and high) then dummy variables must be used. A baseline 

group is chosen which is usually the lowest coded value) and dummy variables are created 

such that k-1 indicator variables are needed for k levels. One such example is the variable 

“Smoking Status” with categorical values of 0 = never; 1 = ex-smoker; 2 = current smoker. This 

can be recoded to new variables, labeled as “es” and “cs”. The dummy variable “es” has the 

value of 1 if smoking status = 1 (everything else = 0); cs = 1 if smoking status = 2 (everything 

else=0). The comparison group then is never smoker: (cs = 0 and es = 0), with comparisons 

made to es and cs, entered together in the regression analysis. Note that to interpret dummy 

variables so that they have the same comparison group, all dummy variables must be entered 

into the equation together. This is important when stepwise regression or other selection 

approaches are used, as will be described later. 
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Figure 2-6.5: Regreesion analysis of Height predicting Deadspace for 
Non-asthmatic and Asmatic subjects 

Figure 2-6.6 illustrates such an analysis. A 10% random sample was selected from the Canada 

Fitness Survey data, resulting in a sample of 1077 subjects. Waist to Hip Girth Ratio (Waist 

Girth / Hip Girth) is known to be related to age and sex and is also associated with smoking 

status of the individual. A regression analysis was carried out to predict Waist to Hip Girth Ratio 

from Age (years), Sex (Male = 1, Female = 2), an ExSmoker Dummy Variable (1 = ExSmoker, 0 

= Others), a Current Smoker Dummy Variable (1 = Smoker, 0 = Others). An Age-Sex 

Interaction term calculated as Age multiplied by Sex (the ExSmoker and Smoker Dummy 

variables were calculated from a Smoking Status variable coded as 1 = Never Smoked, 2 = 

Current Smoker and 3 = Quit Smoking).  

Using the p<0.05 criterion, only the ExSmoker Dummy variable was found to be not statistically 

significant. The conclusions therefore are (1) there is a relationship of Waist to Hip Girth Ratio 

with Age, and (2) that this relationship is different for the two sexes and between Smokers and 

NonSmokers. However, there is no difference in relationship for ExSmokers. This is not an 

unexpected finding in that an ExSmoker is defined in this study as someone who has quit 

smoking without information on the duration prior to the study. The interaction term for sex and 

age being significant indicates that the relationship of age to waist to hip girth ratio differs for 

men and women. If it were of interest, interaction terms for both of the smoking status dummy 

variables with age could have been created and evaluated in the same way. 
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Descriptive Statistics 
  Mean Std. Deviation N 
Wait to Hip Girth Ratio .8307 .09005 1077 
Age in years 38.364 13.4030 1077 
Sex of Subject 1.546 .4981 1077 
ExSmoker Dummy Variable 

.2145 .41066 1077 

Current Smoker Dummy Variable 
.4011 .49035 1077 

Age Sex Interaction 59.6760 29.81264 1077  

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 
1 .749(a) .561 .559 .05979 

a  Predictors: (Constant), Age Sex Interaction, ExSmoker Dummy Variable, Current Smoker 
Dummy Variable, Sex of Subject, Age in years 

ANOVA (b) 

Model   Sum of Squares df Mean Square F Sig. 
1 Regression 4.897 5 .979 273.962 .000(a) 

  Residual 3.828 1071 .004   
  Total 8.725 1076    

(a)  Predictors: (Constant), Age Sex Interaction, ExSmoker Dummy Variable, Current Smoker 
Dummy Variable, Sex of Subject, Age in years 

(b)  Dependent Variable: Wait to Hip Girth Ratio 

Coefficients (a) 
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

Model   B Std. Error Beta B Std. Error 
(Constant) .880 .018   48.273 .000 
Age in years .004 .000 .540 7.971 .000 
Sex of Subject -.085 .011 -.468 -7.596 .000 
ExSmoker 
Dummy Variable .006 .005 .026 1.115 .265 

Current Smoker 
Dummy Variable .011 .004 .060 2.627 .009 

1 

Age-Sex 
Interaction -.001 .000 -.350 -3.818 .000 

(a)  Dependent Variable: Waist to Hip Girth Ratio 

Figure 2-6.6: Regression analysis of Waist to Hip Girth Ratio predicted from Age (yrs), Sex (Male = 1, 
Female = 2), ExSmoker Dummy Variable (1 = ExSmoker, 0 = Others),  Current Smoker Dummy Variable 
(1 = Smoker, 0 = Others), Age-Sex Interaction (Age x Sex). 
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Procedures for Selecting Variables 

Typically there are many variables to choose from when attempting to create the best prediction 

equation. There are three common approaches for selecting the best predictors. These include 

forward selection, backward selection, and stepwise selection. All three methods are generally 

considered as forms of stepwise regression. 

Forward selection – This approach begins with a simple regression model. The first variable 

entered has the largest positive or negative correlation with the dependent variable, followed by 

one with the next largest partial correlation. The default criterion for selection is the probability of 

F-to-enter is 0.05. This method is not a typical choice due to theoretical difficulties. 

Backwards elimination - This is the opposite approach in that all variables are entered first 

and then sequentially removed (probability of F-to-remove = 0.10). 

Stepwise selection – This is essentially a combination of forward and backwards selection. In 

this process the best linear regression equation using one independent variable is determined. 

Then each other possible independent variable is tested to find out which, in combination with 

the first included independent variable, contributes most to the explanation in the variance of the 

dependent variable. The equation with these two independent variables is now produced with its 

associated r and S.E.E. The process is then repeated with a third independent variable, and on 

to the fourth etc. Each time a regression equation is produced with one more independent 

variable. Critical to this decision is the S.E.E. The S.E.E. may drop dramatically over the 

inclusion of the first 3 variables but then differ little with further inclusions. The choice here 

would be to use the equation with three independents, since the inclusion of more variables 

adds little to the predictive power.  

The argument against using stepwise regression is the choices are made by a computer. In 

each successive step the next independent variable is chosen based upon F tests of all 

available variables. The argument is that when so many F tests are carried out, some of the 

variables included pass their F test purely by chance and that this would then be a result that 

could never be repeated in another sample. To guard against this, one should be careful about 

which variables are put into the inclusion list to be selected from by stepwise regression. Do not 

include variables that are not intuitively appropriate as predictors. In addition you might want to 

pare down variables to those that make practical sense. You might produce an equation that 

predicts a dependent score from anthropometric measures. It might seem inappropriate to have 

users of your equation, trained to use and provided with skinfold callipers. In this case it would 

make sense not to put skinfolds in the inclusion list, even though they might make good 

predictors for your equation. Be wary of using too many independent variables. Such equations 

are clumsy.  
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Pitfalls in the Use of Regression Equations 

Large Sample Size: As with all statistics with very large sample sizes, statistical significance 

loses all relationship to clinical significance. Even very weak relationships (small r) and very 

poorly predicting equations (high SEE) can be statistically significant, such that statistical 

significance has little value in the interpretation of a regression equation. 

Sample Size vs Number of Independent Variables: Be careful when carrying out multiple 

regression on small sample sizes. By including many independent variables, it is easy to obtain 

correlations that are very large but could not be replicated in another sample. As a general rule 

the sample size should be at least 5 times the number of independent variables you use in the 

equation. 

Restricted by the Range of Data: Regression equations are fit to the data in the sample, 

therefore they are only justified within the range of that data. You have no knowledge of the 

relationship outside of that; therefore, if you use the equation on data outside of that range you 

have no measure of confidence about the predicted values. Regression equations should not be 

used outside the range of the originating data. 

Sample Specificity: The regression equation will fit best on the data it was originated on. 
It can never perform as well on another data set. However, cross-validation studies entai l 

predicting on a different sample in order to test how valid and sample specific the 

equation is.  

Spurious Correlation: Using a predictor variable that is contained within the calculation 
of the dependent variable. E.g. predicting BMI from body weight when weight is in the 

calculation of BMI. You will get a spuriously high correlation between the two. 

Multicollinearity: Another consideration is whether independent variables are highly 

correlated. An example is in time series or longitudinal data in which an exposure 
variable (e.g. cat ownership) is measured at age one and two years.  As a result the 

parameter estimates will be correlated and the regression equation will have a significant 

R2 and a low tolerance (defined as 1-R2) even though none of the coefficients are 

significantly different than zero. 

Nonlinearity: Multiple regression generally is robust and slight deviations from the 

assumptions are not a problem. Non-linearity can occur in the relationship of two variables and 

there are a number of options. 

1.  The predictor variable can be categorized, typically in 2 to 5 groups instead, and analysis is 

done using dummy variables. 

2. The predictor variable can be transformed, e.g. using logarithmic transformation. Other 

common transformations are X2 and 1/X. If an X2 term added to the X term is significant, this 
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would indicate nonlinearity. 

3. Both the predictor and dependant variables can be transformed. A more common approach 

is quadratic transformation involving X2 and Y2.  An example is the relationship of age2 to 

height2.  

 
Model Sensitivity:  This refers to how estimates are affected by a single data point or 

subgroups of the data. A large residual (difference between the observed and fitted data) is an 

outlier, and can be observed in a scatter plot. Plotting residuals against fitted values should 

show a similar spread with increasing fitted values (if it is increasing, one solution may be to log 

transform outcome Y). Leverage typically occurs when a data point is isolated far away from the 

cluster of points, but the regression line goes near or on it. An influential point has a large effect 

on the estimate (the Cook’s D statistic can indicate this). With sensitivity analysis, the question 

posed is: do conclusions change if influential data are removed? 

Linear Regression Analysis with MS EXCEL 

In EXCEL, regression analysis can be carried out in two ways. Firstly, using paste functions, 

along with the CORREL function already mentioned, there are INTERCEPT, SLOPE and 

STEYX functions. This is useful if you wish to refer to these cells in equations entered in other 

cells.  

The other option is to use the full 

regression analysis. Under the Tools 

menu you will find the Data Analysis 

option. Select this and you will be 

presented with a dialogue box where you 

can scroll down and select the regression 

package. If you select this option then you 

will see the dialogue screen shown in 

Figure 2-6.7. You must enter the location 

of the X and Y data in terms of the range 

of cell addresses in which they are 

located. This can be done by either 

pointing and dragging with the mouse or 

actually typing in the addresses. If you have labels at the top of the columns then there is a 

labels check box to select. You can ask for the line to be fit to have zero intercept. It sometimes 

makes biological sense to have a zero intercept, in which case select the “Constant is Zero” 

check box. Then select a cell for the top left hand corner of the summary report and enter it as 

 

Figure 2-6.7: Regression Analysis dialog box 
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the “Output Range”. In addition several graphs can be selected. In this example the simple Line 

Fit Plot was selected. The resultant output is shown below: 

Figure 2-6.8 shows a plot of the Regression 

Analysis of Skinfold-adjusted Arm Girth 

Predicting Maximum Grip Strengths in a 

group of University men. Figure 2-6.9 shows 

the MS EXCEL output for this analysis.  The 

red boxes highlight the most important parts 

of the results. The correlation coefficient = 

0.78 (Multiple R – EXCEL labels it this way 

even though there might only be one 

independent variable). The SEE is 5.06lbs. 

The significance of F must be less than 0.05 

for us to state that there is a significant 

relationship at the 95% level, which it is in this case.  

SUMMARY 
OUTPUT 

Males        

Regression Statistics        

Multiple R 0.778533284        

R Square 0.606114075        
Adjusted R 
Square 0.584231523        

Standard 
Error 5.057299904        

Observations 20        

ANOVA         

  df SS MS F Significance 
F    

Regression 1 708.4249182 708.4249182 27.69851026 5.27385E-05    

Residual 18 460.3730818 25.57628232      

Total 19 1168.798          

  Coefficients Standard 
Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept -26.92995672 15.09863073 -1.78360258 0.091357898 -58.65102735 4.791113903 -58.65102735 4.791113903 

SAFAGR 3.071244728 0.583560944 5.262937417 5.27385E-05 1.84522773 4.297261726 1.84522773 4.297261726 

RESIDUAL 
OUTPUT         

Observation Predicted 
gripR Residuals       

1 49.85730396 -5.85730396       

2 44.59933299 -2.499332987        
Figure 2-6.9: Output for MS EXCEL Regression Analysis of Skinfold-adjusted Arm Girth Predicting Maximum 
Grip Strengths in Males (n = 20) 
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Figure 2-6.8: Plot of Regression Analysis of Skinfold-
adjusted Arm Girth Predicting Maximum Grip 
Strengths in University Males 
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The intercept is -26.93 and slope for skinfold-adjusted forearm girth is 3.07. The equation is 
therefore: 

Max. Grip Strength = 3.07 skinfold-adjusted forearm girth – 26.93 

r = 0.78       SEE = 5.06lbs    p<0.05 

 

Regression Analysis with SPSS 

 
Simple Linear Regression.  

The linear regression analysis is found as 

the REGRESSION listing under the 

ANALYZE menu. Choose the LINEAR 

option and you will be presented with the 

dialog box shown in Figure 2-6.10. As with 

other SPSS dialog boxes the variables are 

sent over to selection boxes. In this case 

Grip strength was sent to the Dependent 

variable box and skinfold-adjusted forearm 

girth was sent to the independent(s) box. 

This will produce the simple linear 

regression. If a multiple regression equation 

is required, multiple independent variables 

are sent to the independent(s) box and the METHOD is changed to STEPWISE from ENTER. 

This will result in a series of equations being produced as discussed earlier. Figure 2-6.11 

shows the SPSS output for the regression analysis called for in the dialog box in Figure 2-6.10. 

Since SPLIT FILE by SEX was on, there is a regression output for each of the sexes. The red 

boxes highlight the most important parts of the output: the r, SEE, significance, and the 

coefficients of the equation. Not surprisingly, the values for the men are exactly the same as the 

EXCEL output shown earlier. For the women the results are: 

Max. Grip Strength = 3.53 skinfold-adjusted forearm girth – 40.13 

r = 0.75       SEE = 4.63lbs    p<0.05 

Noticeably although the correlation coefficient is lower for the females the SEE is lower, which 

means the prediction equation for women is better than the prediction equation for men. An 

interesting question would be is it necessary to have separate equations for the two sexes. You 

could run a combined sex equation and see how the resultant equation would predict. However, 

if you wanted a test of the difference in the regression equations you would run an Analysis of 

 

Figure 2-6.10: SPSS ANALYZE – REGRESSION – 
LINEAR – Dialog box for Regression Analysis of 
Skinfold-adjusted Arm Girth Predicting Maximum 
Grip Strengths in Males and Females Separately 
(Split File ON) 
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Covariance (ANCOVA). This will be dealt with in depth in the next chapter on tests of 

differences between means. The test would be an analysis of variance with Grip strength as the 

dependent, Sex as a grouping factor and skinfold-adjusted forearm girth as a covariate. If it was 

shown that Sex was not a significant factor then the two regression lines for the sexes are not 

significantly different from each other, and hence you do not need to have separate equations. 

 
 
Figure 2-6.11: SPSS Output for Regression Analysis of Skinfold-adjusted Arm Girth Predicting Maximum Grip Strength 
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Multiple Linear Regression.  
Figure 2-6.6 showed the regression 

analysis of Waist to Hip Girth Ratio 

predicted from Age, Sex, ExSmoker 

Dummy Variable, Current Smoker 

Dummy Variable, and the Age-Sex 

Interaction (Age x Sex). This is an 

example of a multiple regression analysis 

and was achieved using the same dialog 

box as for the simple linear regression. 

The only difference being that a list of 

independent variables is provided for use 

in the analysis. In the case of the smoking 

analysis it was required that all the 

independent variables be entered 

simultaneously into one equation. Thus, 

the ENTER method was selected. 

However, the STEPWISE method would 

be selected if the researcher required a series of equations to be produced as described earlier 

and illustrated in Figure 2-6.12. 

 

Reporting the Results of Regression Analysis 

The relevant details to report following simple linear regression with one predictor variable are 

the regression equation, the correlation coefficient, the S.E.E., and the p-value (significance 

level). Following multiple linear regression (more than one predictor variable) report the 

regression equation, the coefficient of determination (R2, total variance in the dependent 

variable that is explained by the independent variables), the S.E.E., and the p-values 

(significance levels) associated with predictor variables of interest. 

 

 

Figure 2-6.12: SPSS ANALYZE – REGRESSION – 
LINEAR – Dialog box for Multiple Regression Analysis 
of Waist to Hip Girth Ratio predicted from Age, Sex, 
ExSmoker Dummy Variable, Current Smoker Dummy 
Variable, and the Age-Sex Interaction (Age x Sex) 


