
Introduction 

Parametric statistics such as ANOVA and regression carry the underlying assumption that the 

data are normally distributed. When the data are not normally distributed, it opens up a whole 

new set of statistical tests that are called non-parametric statistics. One of the most commonly 

used non-parametric statistic is the percentile. Unlike the z-score, no assumption is made about 

the distribution of the data. Percentiles work equally well describing normal or non-normal 

distributions. The purpose of this chapter is not to review all non-parametric tests, but to provide 

insight into three commonly used tests that are examples of the 3 main types of hypothesis 

testing for which inferential statistics are used, as discussed in chapter 2-4. 

Is There a Difference? 

Chi-square: Analogous to ANOVA, it tests differences in the frequencies of 

observations of categorical data. A 2x2 table is equivalent to z test between two 

proportions. 

Wilcoxson signed rank test: Analogous to paired t-test. 

Wilcoxson rank sum test: Analogous to independent t-test. 

Is there a Relationship? 

Rank Order Correlation: Analogous to the correlation coefficient tests for relationships 

between ordinal variables. Both the Spearman’s Rank Order Correlation (rs) & 

Kendall’s Tau (τ) will be discussed 

Can we predict? 

 Logistic Regression:  Analogous to linear regression, it assess the ability of variables 

to predict a dichotomous (0/1) variable. 

Chi-square   

Previously in chapter 2-8, on testing differences between means, the t test was discussed as a 

way to test for differences in means of two continuous variables. When categorical variables are 

involved, a Chi-square ( 2! ) analysis can be carried out. A categorical variable is a qualitative 
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variable in which cases are classified or categorized into one (and only one) of the possible 

multiple levels of the variable. For example we often use sex of the subject as a variable that is 

classified into one of two possible levels, men or women.  The chi-square is a test of a 

difference in the proportion of observed frequencies in categories versus the expected 

proportions. Figure 2-9.1 shows the results of an analysis on the handedness data in the Grip 

Strength data set (see Appendix A). Subjects reported they were either right or left hand 

dominant (fortunately, nobody in this sample reported they were ambidextrous). By default, 

when a chi-square test is run, the null hypothesis is that there is no difference in the numbers in 

the categories, or in other words, that there are an equal number of right and left handers. 
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In our example there were 44 subjects, 6 of whom reported that they were left handers. The 

observed frequencies are therefore 6 and 38 for left and right handers, respectively. If we are 

testing whether there are equal numbers of right and left handers then the expected frequencies 

to be tested against would be 22 and 22. The value of Chi-square would therefore be calculated 

as 
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As with any other test statistic we have discussed, there is a specific probability associated with 

any given value of that test statistic. As you can see in Figure 2-9.1, a 2!  is associated with a 

probability of 0.000 when reported to 3 significant figures. In the table (Asymp. Sig.). the number 

is a little larger than 0, so what it means is that you are more than 99.9% confident that there is 

a difference in proportion of right and left handers in the population from which this sample was 

drawn. From the literature however, we know that sample usually contain 10% to 15% of left 

handers. We can test this by asking for different expected frequencies to be assumed in the 

test. If for instance we want to test if there are 15% left handers in the sample, then the 

expected frequencies out of a sample of 44 for left handers would be 6.6 and for right handers 

37.4 (do not worry that you can not have 0.6 of a person in reality). The analysis in the right 

hand column of Figure 2-9.1 shows the results of this analysis. The value of Chi-square ( 2! ) 

would therefore be calculated as 
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This value of 2!  is associated with a probability of 0.8; therefore we are only 20% confident 

that the observed and expected frequencies are different, in other words we do not reach our 
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95% confidence criterion and therefore accept the null hypothesis that there is no difference in 

proportions. So our sample does conform to the expectation that there are 15% left handers in 

the population. 

 

 
Figure 2-9.1: Chi-square analysis of handedness in the Grip Strength Data set. 

 

Two-way Chi-square 

 A Chi-square analysis can also be 

applied when two categorical variables 

are considered simultaneously. In this 

case, the Chi-square test is a test of 

independence between the two 

categorical variables. Chi-square is used 

to determine if there is a significant 

difference in the frequency of 

observations in the categories of the two 

variables. The null hypothesis set up is 

that there is no difference in the 

frequency of observations found in each cell of one variable with respect to the other. If the 

  Male Female Total 

Ex-Smoker Observed 14 14 28 

 Expected 12.6 15.4  

Current 
Smoker Observed 12 18 30 

 Expected 13.4 16.6  

 Total 26 32 58 

Table 2-9.2: Frequency of subjects by smoking and sex 
categories in Smoking data set. 
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observed and expected frequencies are similar within each variable, the chi-square test will not 

be significant. If the observed frequencies deviate considerably from the expected frequencies 

in one or more categories, the chi-square test will be significant. A significant chi-square test 

suggests that there is likely to be a real difference across the categories in the population from 

which the sample was drawn.  By example, Table 2-9.2 shows the frequency of observation of 

smoking category by sex in the Smoking data set (see Appendix A). 

There were actually three categories of smokers; Non-Smokers, Ex-Smokers and Current 

Smokers, although only the latter two groups are considered in this analysis. There were 14 

male and 14 female Ex-Smokers and 12 male and 18 female Current Smokers for a total 

sample size of 58. The expected values are calculated based upon the hypothesis that there is 

no difference in the proportion of males and females within each smoking category. The 

expected value for Male Ex-Smokers would therefore be the proportion of males in the total 

sample (26/58) multiplied by the total number of Ex-Smokers (28). 

 Expected Number of Male Ex-Smokers   = 26/58 x 28 = 12.6 

Using the same logic: 

 Expected Number of Female Ex-Smokers   = 32/58 x 28 = 15.4 

 Expected Number of Male Current Smokers  = 26/58 x 30 = 13.4 

 Expected Number of Female Current Smokers  = 32/58 x 30 = 16.6 

Now Chi-square is calculated using the squared differences between observed and expected 

divided by expected, summed over all four combinations of sex and smoker category. For 

instance, for male Ex-Smokers the calculation is (14-12.6)2 / 12.6. The result when this is 

summed for all four combinations as shown in figure 2-9.2, is a chi-square value of 0.587 with 

an associated probability of 0.444. Thus, the conclusion is made that there is no significant 

difference in the distribution of males and females with respect to smoking status. 

The second analysis in figure 2-9.3, shows a similar chi-square analysis for smoking status by 

report of the answer to the question “Do you regularly have itchy eyes? Yes or no?”. Here there 

appears to be a greater proportion of Ex-Smokers reporting itchy eyes in comparison to Current 

Smokers. When the results of the Chi-square test are reviewed it shows a calculated Chi-

square of 3.807 with an associated probability of 0.051. The numerical value of the probability is 

interesting. To accept the hypothesis that there is a difference we often use 95% confidence or 

p = 0.05 as our cut off, thus p should be less than 0.05. Here p = 0.051, so we can not actually 

say it is less than 0.05, but it is heartbreakingly close. We are 94.9% confident there is a 

difference in proportions by smoking group and therefore, that Ex-Smokers report itchy eyes, 

more often than Current Smokers, which incidentally is not an unexpected result, based upon 

literature in this area. 
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Figure 2-9.3: SPSS Cutput for CROSSTABS of Smoking Status and Sex in the Smoking data set. 

 

Chi-square using SPSS 

One Way Chi-square is found as an option under the Nonparametric Tests option of the 

Analyze menu as shown in Figure 2-9.4. When the option is selected a chi-square dialog box 

comes up (also in Figure 2-9.5), where the variable or variables chosen to be analyzed can be 

selected.  

Note also that there is an “Expected Values” option on this dialog box. By default the “All 

categories equal“ selection will be checked. But, if you want to specify exact values for expected 

values these can also be entered. Remember in the earlier example of there being 15% left 

handers (6.6 out of 44) in the grip strength data set, this is the dialog box that was used to 
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produce that analysis. Note that under “Expected Values” the “Values” button is checked and 

the values 37.4 and 6.6 have been entered. To enter a value type it in the box to the right of  

 “Values” then click on Add. The value 

will be added into the list below. In 

this example 37.4 and 6.6 represent 

85% and 15% of the sample size of 

44, which are the expected values to 

use for right handers and left 

handers, respectively. This sets up for 

Chi-square to test the hypothesis that 

the predicted counts are significantly 

different than 15% left handers in the 

population. This was indeed found 

not to be the case as the null 

hypothesis was accepted (Figure 2-

9.3). You can put any values you 

want in, as long as they make sense 

for your hypothesis. In this case, 

there was previous literature that 

stated that the proportion of left 

handers in a population tends to be 

10% to 15%. Many times, however, 

you want simply to test the hypothesis 

that the counts are different, so go with the default  “All categories are equal” option. 

Two-way Chi-square is found by using the “Crosstabs” option under the “Descriptives” option 

of the “Analyze” menu (Figure 2-9.5). Crosstabs is short for crosstabulation, which simply 

means that data is put into tables with rows and columns representing categories of the 

categorical variables. The entries in the cell are summaries in the form of counts or 

percentages. Multiple comparisons can be specified in the dialog box. In Figure 2-9.5, the 

Smoking data is used and the analysis is specified as smoking category as the rows and the 

sex of the subject and the response to the “do you regularly have itchy eyes” question as the 

columns. This will set up two Chi-square analyses Smoking Category * Sex of Subject and 

Smoking Category * “Do you regularly have itchy eyes?” The results of these analyses were 

reported in Figure 2-9.3 earlier.  Note that we had a Select Cases in place so that only Ex-

Smokers and Current Smokers were included in the analysis.  You can see that this appears as 

a Smokegrp < 1 (FILTER) listed at the bottom of the variable list on the CROSSTABS dialog 

box. 

 

 

Figure 2-9.4: SPSS dialog boxes for One-way Chi-square 
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Before clicking the “OK” button, you will need to click the “Statistics” button to bring up the 

Crosstabs: statistics dialog box. On that dialog box check the Chi square option, in order to 

have chi- 

square calculated for both comparisons. Click 

“OK” and return to the Crosstabs dialog box 

and click on the “Cells” button. As shown in 

Figure 2-9.5 the Cells dialog box allows a 

choice of information to be displayed in each 

cell. The Observed count is a default selection 

but if you wish to display the expected values 

that are being used for hypothesis testing 

select Expected. A useful feature is to be able 

to include various total, row and column 

percentages since in reporting results we often 

talk about the percentage of one category or 

another. Figure 2-9.3 discussed earlier shows 

what the output looks like with all percentages 

selected. 

Wilcoxson’s Signed Rank Test 

The Wilcoxson’s Signed Rank test is the 

nonparametric equivalent of the paired t test 

where the hypothesis tested is whether the 

median of the differences between pairs is 

zero in the population sampled from.  

Table 2-9.1 shows the results of this test on 

data used previously to illustrate the paired t-

test (chapter 2-7). The data is the right and left 

grip strength for the males in the Grip Strength 

data set (Appendix A).  

 

 

 

Figure 2-9.5: Crosstabs (two-way Chi-square) 
dialog boxes 
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 The steps in calculating 

Wilcoxson’s Signed Rank test 

are as follows: 

• calculate the difference 

between right and left grip 

strengths for each subject. 

• rank the differences from 

lowest to highest irrespective of 

sign and ignoring the zero 

differences.  

• sum the ranks of the negative 

differences (T-) and the positive 

differences (T+).  

• T is then the smaller value of T- 

or T+. 

• Count the number of non-zero 

differences (n). 

• Look up the critical value of T at 

p=0.05 (Crit T0.05). In order to 

save space, the table of critical 

values of T have not been 

reproduced in this text. 

However, this is not a problem since SPSS and other statistical software will give the exact 

probability of T for your hypothesis testing. 

The test is then whether T is greater or smaller than Crit T0.05. In chapter 2-4 when discussing 

inferential statistics is was mentioned that almost always the calculated statistic needs to be bigger 

than the critical value of the test statistic for there to be a significant difference or relationship. This 

however, is one of the few cases where that is not true, because T needs to be smaller than Crit 

T0.05 in this Wilcoxson’s signed rank test. Therefore, in the example in Table 2-9.1, having T = 75 

and Crit T0.05 = 40, there is no significant difference (p<0.05) between right and left grip strengths. 

Wilcoxson’s Rank Sum Test 

This is the non-parametric equivalent of the independent t-test; the hypothesis being tested is 

whether the difference between medians of the two samples is zero. Table 2-9.2 shows the 

Right max 
Grip Strength 

Left max 
 Grip Strength Difference Rank 

45 53 -8 16 
55.5 61 -5.5 15 
41.5 46.5 -5 13 
44 48 -4 11 
65 68 -3 9 
60 61.5 -1.5 7 
51 52 -1 3 

42.1 43 -0.9 1 
40 40 0  
66 66 0  
60 59 1 2 
54 53 1 4 
54 52.9 1.1 5 
43 41.9 1.1 6 
59 57 2 8 

58.1 54.2 3.9 10 
48 44 4 12 
54 49 5 14 
52 44 8 17 
54 45 9 18 

Sum of ranks of negative differences T- 75 

Sum of ranks of positive differences T+ 96 

T = smaller of T- and T+ T 75 

n = number of non-zero differences n 18 

Critical value of T at p = 0.05 Crit T0.05 40 

T is not less than Crit  T0.05 therefore no significant difference 

Table 2-9.1:  Wilcoxson’s Rank Sum Test results for difference 
in left and right grip strength (N = 20)  
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results of this test on data used previously to illustrate the independent t-test (chapter 2-7). The 

data is the right grip strength for the males and females in the Grip Strength data set (Appendix 

A). In order to reduce sample size a random sample of 22 of the subjects was taken, resulting in 

9 males and 13 females.  

The steps in calculating 

the Wilcoxson’s Rank 

Sum Test are as 

follows: 

• Rank the scores from 

the two groups 

combined from lowest to 

highest. Any ties receive 

the average ranking, 

e.g. ranking 8th through 

11th all were 40 lbs, 

therefore, the average 

ranking of 9.5 was 

assigned to 40 lbs. 

• Add up the ranks of the 

group with the smallest 

sample size (T). 

• Look up the critical range of T at p=0.05 (Crit T0.05) for sample sizes of 9 and 13. In order to 

save space, the table of critical ranges of T have not been reproduced in this text. However, this 

is not a problem since SPSS and other statistical software will give the exact probability of T for 

your hypothesis testing. 

The test is then whether T is above or below the critical range of T for p = 0.05. In chapter 2-4 

when discussing inferential statistics is was mentioned that almost always the calculated 

statistic needs to be bigger than the critical value of the test statistic for there to be a significant 

difference or relationship. This however, is one of the few cases where that is not true; in fact 

the T needs to be smaller or bigger than a critical range of T for the Wilcoxson’s rank sum test. 

In the example in Table 2-9.2, T = 151 and the Critical range for sum of ranks for sample sizes 

9 & 13 at p = 0.05 is 73 – 134; therefore there is a significant difference (p<0.05) between male 

and female grip strengths. 

Sex 
Grip 

Strength Rank Sex Grip Strength Rank 
F 24 1 M 40 9.5 
F 28 2 M 41.5 12 
F 29 3 M 43 13.5 
F 30 4 M 44 16 
F 30.5 5 M 48 18 
F 34.5 6 M 54 19 
F 37 7 M 54 20 
F 40 9.5 M 55.5 21 
F 40 9.5 M 65 22 
F 40 9.5    
F 43 13.5 tied 8th 9th 10th 11th   
F 43.5 15 tied 13th 14th  
F 46 17    

Sum of ranks for sample with smallest sample size (T) 151 

Sample sizes of two groups 9    13 

Critical range for sum of ranks 
for sample sizes 9 & 13 at p = 0.05 73 - 134 

Table 2-9.2:  Wilcoxson’s Rank Sum Test results for difference in grip 
strength between males (N = 9) and females (N=13) 
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Figure 2-9.6: SPSS Dialog boxes for ANALYZE – 2 RELATED SAMPLES menu (left) and 2  RELATED 
SAMPLES TESTS (right) 

Spearman’s Rank Order Correlation (rs) & Kendall’s Tau (τ) 

Often you wish to know if there is a relationship between variables but neither of the variables is 

normally distributed.  The calculation of the Pearson correlation coefficient (r) for probability 

estimation is not appropriate in this situation. Sometimes you can normalize the variables with 

some transformation as discussed in chapter 2-3. If one of the variables is normally distributed 

you can still use r, but if both are not normally distributed, then you can use Spearman’s Rank 

Order Correlation Coefficient (rs) or Kendall’s tau (τ). These tests rely on the two variables being 

rankings. A good example would be judges’ rankings on two different tests. These tests would 

test for a relationship between these rankings. Continuous non-normally distributed variables 

could also be turned into rankings by simply ordering them from highest to lowest. 

Spearman’s Rank Order Correlation (rs) 

Spearman’s rank correlation is actually calculated using the Pearson product moment 

correlation coefficient equation, but on the rankings of the scores, rather than the scores 

themselves. There is also a simplified form of the equation that gives the same answer. 
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As an example of the use of rs, table 2-9.3 

shows the rankings of 6 llamas by two judges in 

a recent llama show. You probably have never 

heard of llama shows, but just like pedigree 

dogs you can take your Canadian Livestock 

Records Corporation registered llama to shows 

where judges will place them based upon 

conformation, presence and movement. Figure 

 

Figure 2-9.7: LJ’s Serenade, a Grand 
Champion female llama. 
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2-9.7 shows LJ’s Serenade, a 5 year-old female llama who has twice been made Grand 

Champion female at shows. An interesting feature of the Western Fall Classic show is that there 

are two judges that judge the animals independently and each gives out placings and rosettes. 

Ideally, the judges place the animals the same way, but the task is very subjective although 

based upon stated expected characteristics of the breed which each judge is working to. Table 

2-9.3 shows the placings by each judge of six llamas competing in one age category. Each 

judge placed llama #1 first and agreed that llamas #4 and #6 were the worst although in 

opposite order.  

However, their ratings of the 2nd 3rd 

and 4th place llamas were more 

mixed. Spearmans rank correlation 

will quantify how well these ratings 

agree. This is a paired analysis, and 

as such the difference in ratings (d) 

is calculated. This is then squared 

and these squared values are then 

summed. The simple Spearman’s 

equation is then applied and the 

result is rs = 0.77. As with the 

Pearson Product Moment 

Correlation coefficient (r), rs can be 

compared to a critical value of rs  for the required probability level.  

For samples of more than 10 pairs the 

probability distribution is similar to that of r, so 

the table shown previously in chapter 2-5 can 

be used. For samples of less than 10 pairs 

the significance levels of rs are given in table 

2-9.4. In our llama judging example, the rs 

was found to be 0.77. The sample size was 

less than 11 so we can use Table 2-9.4. to 

find that with a sample size of 6 and p=0.05 

the critical value of rs is 0.886, so 

unfortunately for the judges, we can not say 

that their placings were significantly related, 

at the 95% confidence level. 

Llama # Judge 
1 

Judge 
2 d  2d  

1 1 1 0 0 
2 3 4 -1 1 
3 4 2 2 4 
4 5 6 -1 1 
5 2 3 -1 1 
6 6 5 1 1 
   d!  2d!  
   0 8 
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Figure 2-9.3:  Calculation of Spearman’s rs, between two 
judges’ show placings of 6 llamas 

 Probability 

Sample Size 0.05 0.01 

≤ 4 none none 

5 1.000 none 

6 0.886 1.000 

7 0.750 0.893 

8 0.714 0.857 

9 0.683 0.833 

10 0.648 0.794 

≥ 11 Use Table 2-5.? 

Table 2-9.4: Significance levels of  rs  in small 
samples  
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Kendall’s Tau (! ) 

Kendall’s !  is used to assess the degree of association of rankings. The steps in calculation for 

!  are as follows: 

• Rank the cases by one of the ratings in ascending order. 

• Taking each of the second ratings in turncount how many of the ranks below it are smaller 

than it.  

• Sum these counts to get Q . 

• Calculate !  using the 

following equation: 
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Figure 2-9.8 shows the 

calculation of !  for the llama 

judging data. The data is 

sorted by judge 1 and then 

the rankings of judge 2 are 

assessed one by one.  For 

llama #1 none have smaller 

rankings. For llama #5 only 

llama #3 has a smaller ranking so its count is 1. Moving down, llamas #2 and #4 each have one 

llama below that has a smaller rank, therefore they each get a count of 1. The counts add up to 

3 which is the value used forQ . ! is then calculated, using the formula given above, to be 0.60. 

If all the pairs were the same, termed complete concordance, then !  would be equal to +1, with 

complete disagreement being -1. Spearman’s rank correlation is more popular and easier to 

compute but Kendall’s tau is preferred by statistician’s because of its statistical properties.  

Llama # Judge 1 Judge 2 # number of ranks lower in 
ranking with smaller values 

1 1 1 0 
5 2 3 1 
2 3 4 1 
3 4 2 0 
4 5 6 1 
6 6 5  

   3=Q  
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Figure 2-9.8: Calculation of Kendall’s ! between two judges show 
placings of 6 llamas 
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Using SPSS to Calculate rs and τ 
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Nonparametric tests of association are found under the “Bivariate” option of the “Correlate” 

option in the “Analyze” menu (Figure 2-

9.9). Selecting the “Bivariate” option 

brings up the dialog box shown in the 

right hand panel of Figure 2-9.9.  

This allows a selection of one or more of 

the three measures of association; 

Pearson Correlation Coefficient (r) for 

normally distributed variables, or the 

Spearman’s (rs) or Kendall’s (! ) for non-

normal data.  Figure 2-9.10 shows the 

output for the SPSS correlation analysis 

for the llama judging data produced from 

the dialog box shown in figure 2-9.9. The 

first part is the result of the selection of 

“Pearson” in the dialog box. This is the 

parametric correlation and therefore 

inappropriate for this analysis. The next 

part is the result of the two nonparametric 

tests. The results are the same as calculated earlier in the chapter rs = 0.771 and !  = 0.60. You 

do not need to look these values up in a table for significance testing since SPSS provides the 

exact probability associated with each coefficient. 

For Kendall’s !  the two-tailed probability is 0.091, meaning we are 90.9% confident there is a 

relationship in the population that this sample was drawn from. When accepting at the 95% 

level, this is not good enough, so we accept the null hypothesis that there is no relationship 

  

Figure 2-9.9: SPSS dialog boxes for rank correlation coefficients. 

 

Figure 2-9.10: SPSS dialog boxes for rank correlation 
coefficients. 
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(p<0.05). With a Spearman’s coefficient having a probability of 0.072 we come to the same 

conclusion, as we are only 92.8% confident there is a relationship in the population that this 

sample was drawn from. 

Logistic Regression 

Logistic regression is analogous to linear regression analysis in that an equation to predict a 

dependent variable from independent variables is produced. The big difference is that the 

dependent variable (outcome) is categorical for logistic regression versus continuous for linear 

regression. Although dependent variables with multiple categories can be used, it is most 

common to use binary (dichotomous) dependent variables, and the discussion in this text will be 

restricted to such. Binary variables have only two possible values such as a Yes or No answer 

to a question on a questionnaire, or sex of a subject being man or woman. It is usual to code 

them as 0 or 1, such that men might be coded as 1 and women coded as 0.  If a sample is 

coded with 1s and 0s, the mean of a binary variable represents the proportion of 1s. For 

instance, if you have a sample size of 100 with a binary variable Sex coded as men = 1 and 

women = 0 and there were 80 men and 20 women, then the mean of the variable Sex would be 

.80 which is also the proportion of men in the sample. The proportion of women would then be 1 

– 0.8 = 0.2. The mean of the binary variable, and therefore the proportion of 1s, is labeled P, 

with the proportion of 0s being labeled Q with Q = P – 1. In parametric statistics, the mean of a 

sample has an associated variance and standard deviation, so too does a binary variable. The 

variance is PQ, with the standard deviation being PQ . P not only tells you the proportion of 1s 

but it also gives you the probability of selecting a 1 from the population. In our example you 

would have an 80% chance of selecting a man and a 20% chance of selecting a woman if you 

randomly selected from the population. 
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Figure 2-9.11: Logistic curve fitting through rolling means of binary variable sex (1=men, 0=women) 

versus height category in cm. 

On average adult men are taller than adult women, but can you predict whether someone is a 

man or a woman based upon their height alone. Figure 2-9.11 

shows a plot of the mean value (P) of the binary variable Sex 

(men = 1, women = 0) by 1 cm increments in height for the 

adults (age ≥ 18 years) from the Canada Fitness Survey data 

(see Appendix A). This mean is also the proportion of men in 

each height group. The data produce a sigmoidal curve. The 

vertical dashed lines show those heights where 80%, 50% and 

20% respectively of the sample are men. 

There are several reasons why logistic regression should be 

used rather than ordinary linear regression in the prediction of 

binary variables: 

• Predicted values of a binary variable can not theoretically 

be greater than 1 or less than 0. This could happen 

however, when you predict the dependent variable using a 

linear regression equation. If you make the dependent variable large or small enough this 

would happen.  

• It is assumed in linear regression that the variance of Y is constant across all values of X. 

This is referred to as homoscedasticity. Remember that the variance of a binary variable is 

P Q 
PQ 

Variance 

0 1 0 

.1 .9 .09 

.2 .8 .16 

.3 .7 .21 

.4 .6 .24 

.5 .5 .25 

.6 .4 .24 

.7 .3 .21 

.8 .2 .16 

.9 .1 .09 

1 0 0 

Table 2-9.4; Variance for 
different values of P and Q 
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PQ. Therefore, the variance is dependent upon the proportion at any given value of the 

independent variable. Table 2-9.4 shows the variance for different values of P and Q. Note 

that the variance is greatest when 50% are 1s and 50% are 0s. Variance reduces to 0 as P 

reaches 1 or 0. This variability of variance is referred to as heteroscedasticity. 

• Linear regression assumes that the residuals are normally distributed, but this is clearly not 

the case when the dependent variable can only have values of 1 or 0.  

The Logistic Curve 

The logistic curve relates the independent variable, X, to the rolling mean of the dependent 

variable, P ( ). The formula to do so may be written as either  

)(1
1

bXae
P

+!+
=  

or as 

bXa

bXa

e
eP +

+

+=
1  

 where P is the probability of a 1 (the proportion of 1s, the mean of Y), e is the base of the 

natural logarithm (about 2.718) and a and b are the parameters of the model. The value of a 

yields P when X is zero, and b adjusts how quickly the probability changes with changing X a 

single unit. Because the relation between X and P is nonlinear, b does not have a 

straightforward interpretation in this model as it does in ordinary linear regression. 

Maximum Likelihood 

When we were dealing with linear regression the best fitting line was based on the least 

squares approach. The least sum of squares is referred to as a loss function. The loss function 

quantifies the goodness of fit of the equation to the data. Unfortunately, the logistic curve we are 

required to fit in logistic regression is nonlinear. What this means is that we can not use least 

sum of squares as our loss function, nor indeed is there any mathematically defined loss 

function that can be used.   For logistic curve fitting and other nonlinear curves the method used 

is called maximum likelihood. For the logistic curve to fit we need to find the appropriate 

values of a and b. In the procedure, values for a and b are picked randomly and then the 

likelihood of the data given those values of the parameters is calculated. The values are 

changed and the likelihood compared to see if it has increased. If it has, another series of 

changes are made to further increase the likelihood of the data. If not, changes are made in the 

opposite direction to increase the likelihood. Each one of these changes is called an iteration. 
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The process continues, iteration after iteration, until the largest possible value or Maximum 

Likelihood has been found. Normally, criteria are set as to the number of iterations allowed or a 

limit to the increase in likelihood from iteration to iteration. 

Odds & log Odds 

Suppose we only know a person's height and we want to predict whether that person is a man 

or a woman. We can talk about the probability of being a man or a woman, or we can talk about 

the odds of being a man or a woman. Let's say that the probability of being a man at a given 

height is .90. Then the odds of being a man would be  

1/9
9.01
9.0

1
=

!
=

!
=

P
POdds  

That means that the odds of being a woman would be .11 (.10/.90). This asymmetry is 

unappealing, because the odds of being a man should be the opposite of the odds of being a 

woman. We can take care of this asymmetry though the natural logarithm, ln. The natural log of 

9 is 2.217 [ln(.9/.1)=2.217]. The natural log of 1/9 is -2.217 [ln(.1/.9)=-2.217], so the log odds of 

being a man is exactly opposite to the log odds of being a woman.  

In logistic regression, the dependent variable is a logit or log odds, which is defined as the 

natural log of the odds:  

!
"

#
$
%

&
'

==
P
P

Podds
1

ln)(logit)log(  

In logistic regression, we find bXaP +=)(logit . The log odds (logit) is assumed to be 

linearly related to X, the independent variable. In order to get to probabilities take the log out of 

both sides of the equation and convert odds to a simple probability: 

bXa
P
P

+=!
"

#
$
%

&
'1

ln    bXae
P
P +=
!1

   bXa

bXa

e
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+

+
=
1

 

The simple probability is this ugly equation that you saw earlier. If log odds are linearly related 

to X, then the relation between X and P is nonlinear, and has the form of the S-shaped curve 

you saw in the graph and the function form (equation) shown immediately above. 
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The Odds Ratio 

It was stated earlier that the odds for one group is : 

P
POdds
!

=
1

 

Table 2-9.5 shows the results of the odds ratio calculation for the occurrence of heart attack in 

two samples of patients, one undergoing drug treatment, the other not.  

 Heart Attack No Heart Attack Probability Odds 

Treatment 3 6 3/(3+6)=0.33 0.33/(1-0.33) = 0.50 

No 
Treatment 7 4 7/(7+4)=0.64 0.64/(1-0.64) = 1.75 

   Odds Ratio 1.75/0.50 = 3.50 

Table 2-9.5; Odds ratio calculation for occurrence of heart attack in patients with and without drug 
treatment 

 

The odds of having a heart attack for the treatment group are 3/6 = 0.5. The probability of a 

heart attack is 3/(3+6) = 3/9 = .33. The odds from this probability are .33/(1-.33) = .33/.66 = 0.5 

The odds for the no treatment group are 7/4 or 1.75. The odds ratio therefore would be 1.75/0.5  

= 3.50. This would indicate that the individuals in the no treatment group were 3.5 times more 

likely to have a heart attack than the treatment group.  
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 Using SPSS to Calculate Logistic Regression 

Logistic regression is found as the 

BINARY LOGISTIC option under the 

ANALYZE menu as shown in Figure 2-

9.12.  This will bring up the binary 

logistic regression dialog box shown in 

Figure 2-9.13. You select your 

dependent variable from the list of 

variables of the left. The dependent 

variable must be a binary variable.  The 

covariates are those variables that you 

wish to use as predictors and find odds 

ratios for. 

In this example we are looking at data 

from a questionnaire where respondents 

were asked about allergies to cats and 

dogs, in addition to information on 

allergies in family members and 

previous exposure to cats and dogs. 

This was a questionnaire put together 

by students as a class assignment to 

learn about questionnaire design and 

analysis. They wanted to know if having a dog or cat in the house as a child or having parents 

with allergy were contributory factors to the respondent having an allergy. This was a small 

sample survey (n = 169) 

Figure 2-9.14 shows the results of one of the analyses on this data. The three variables shown 

in this analysis in Figure 2-0.14 were: 

catalrgy:  Do you have an allergy to cats (No = 0, Yes = 1) 

mumalrgy:  Does your mother have an allergy to cats (No = 0, Yes = 1) 

dadalrgy:  Does your father have an allergy to cats (No = 0, Yes = 1) 

The analysis shows the odds ratios (exp(B)) for the binary logistic regression where the 

presence of a cat allergy was predicted by whether the mother or father had a cat allergy.  The 

results showed that respondents with mothers who had a cat allergy were 4.457 times more 

likely to have a cat allergy than those respondents who had mothers who did not have a cat 

allergy (odds ratio = 4.457, p = 0.033, therefore p < 0.05 significant). Whereas respondents 

with fathers who had a cat allergy were not more likely to have a cat allergy than those 

 
Figure 2-9.12: SPSS dialog box for he BINARY LOGISTIC 
option under the ANALYZE menu 

 
Figure 2-9.13: SPSS dialog box for he BINARY LOGISTIC 
option under the ANALYZE menu 
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respondents who had fathers who did not have a cat allergy (odds ratio = 7.393, p = 0.068, 

therefore p > 0.05 not significant) 

 

Figure 2-9.14: Binary Logistic Regression of CATALRGY predicted from MUMALERGY and DADALRGY in 
student allergy questionnaire data 

 


