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ABSTRACT

New U-Pb zircon dates from gneissic xenoliths in an Early
Cambrian lamprophyre point to late Mesoproterozoic meta-
morphism and magmatism in the crust beneath northern Yukon.
The data indicate a previously unrecognized thermal event in
Yukon and extend the recognition of widely spaced 1.3-1.0 Ga
igneous, metamorphic and tectonic events along the western

margin of Laurentia. Together, these events demonstrate that

the north-western margin of Laurentia was thermally active

during a period of traditionally inferred tectonic quiescence.

Introduction

Tectonic assembly of the superconti-
nent Rodinia during the late Meso-
proterozoic (Dalziel, 1991; Hoffman,
1991; Moores, 1991) is a widely
accepted hypothesis, although details
of the continental configuration, tim-
ing and processes involved in amal-
gamation remain controversial (e.g.
Karlstrom ef al., 1999; Sears and
Price, 2000; Li et al., 2008; Evans,
2009). In North America, intense,
¢. 1.3-1.0 Ga contractional deforma-
tion and magmatism along the
eastern and southern margins of
Laurentia (Hoffman, 1989; David-
son, 2008; Mosher et al., 2008), cul-
minating in the ¢. 1.09-0.98 Ga
Grenvillian Orogeny (Hynes and
Rivers, 2010), is regarded as the
flagship of Rodinian activity world-
wide. Less is known about the other
margins of Laurentia during that
interval; however, a growing body
of evidence indicates that synchro-
nous events in western Laurentia
were more extensive than previously
recognized (Fig. 1). In this article, we
document metamorphism and mag-
matism in the crust of northern
Yukon using in situ U-Pb dating of
zircon from xenoliths in a Cambrian
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lamprophyre  (Milidragovic, 2008;
Figs 1 and 2). By placing these ages
in the context of other late Meso-
proterozoic features and events, we
outline a belt of late Mesoprotero-
zoic activity in Laurentia and evalu-
ate its significance to reconstructions
involving western Laurentia during
the assembly of the supercontinent
Rodinia.

Xenolith petrography and
geochronology

Five pebble-size xenoliths were recov-
ered from an ultramafic lamprophyre
dyke in northern Yukon. The dyke is
part of the Quartet Mountain lam-
prophyres and was dated at
532.2 &+ 29 Ma (Early Cambrian)
by **Ar/*Ar on phlogopite (Milidra-
govic et al., 2006; Milidragovic, 2008).
Three of the xenoliths are paragneiss,
one is orthogneiss, and the protolith
of the fifth strongly metasomatized
rock is uncertain.

The U-Pb zircon data were ob-
tained using a sensitive high resolution
ion microprobe (SHRIMP II) at the
Geological Survey of Canada in Otta-
wa. The zircon grains are small
(<100 um), complexly zoned, and
record original crystallization and
subsequent metamorphic growth and
recrystallization ages (Figure S1). Key
petrologic and age interpretations are
summarized in Table 1. Analytical
methods and data are described in
the data repository (Table S1).

The tectonic setting, intensity and general nature of this late
Mesoproterozoic tectonothermal activity are poorly con-
strained, but their recognition is key to expanding our
understanding of the Proterozoic geology of North America.
The recognition of this event places new constraints on the
palaeotectonic reconstructions of the supercontinent Rodinia.
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Xenolith 1 is a finely banded garnet-
sillimanite paragneiss that contains
rounded to sub-rounded zircon of
variable size (10-100 pm), ranging
from equant to elongate. Twenty-one
age determinations on 19 grains define
two distinct age populations (Fig. 2a).
The older population consists of cores
with discordant Neoarchean to Palae-
oproterozoic ages, variable diffuse,
oscillatory and sector-zoned textures,
and Th/U ratios (0.03-0.94) sugges-
tive of both igneous and metamorphic
recrystallization. The younger popu-
lation consists of Mesoproterozoic
and younger ages, obtained from both
cores and rims that we attribute to the
effects of metamorphism. Two discor-
dant analyses made on diffuse oscilla-
tory-zoned cores yielded 2°’Pb/?°°Pb
ages of ¢. 1.41 Ga, which we interpret
as a result of incomplete recrystalliza-
tion-induced Pb-loss. Analyses
obtained from weakly Iuminescent
U-rich (648-2231 p.p.m.), low Th/U
zircon (£0.07), plot along a well-
defined discordia line anchored at
upper and lower intercept ages of
1246 = 29 and 503 + 79 Ma. The
upper intercept is interpreted as the
time of growth of the U-rich domains
and recrystallization of the detrital
cores. The lower intercept age likely
represents fluid-mediated remobiliza-
tion of radiogenic Pb during xenolith
entrainment in the lamprophyre.

Xenolith 2 is a retrograded sillima-
nite paragneiss that contains equant
to highly elongate, typically well-
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Fig. 1 Late Mesoproterozoic tectono thermal activity in western North America.
Numbered locations are from the following: (1) and (2) Gillerman et al. (2002), (3)

Lund ez al. (2004), (4) Vervoort et al.

(2005) and Zirakparvar et al. (2010), (5)

Zirakparvar et al. (2010), (6) Nesheim et al. (2009), (7) Doughty and Chamberlain
(2008), (8) Ross et al. (1992), (9) and (10) Anderson and Davis (1995), (11) and (12)
Parrish and Reichenbach (1991), (13) Erdmer et al. (2002), (14) Gehrels and Ross
(1998), (15) Ross et al. (1992), (16) Jefferson and Parrish (1989), (17) LeCheminant
et al. (2007), (18) Hildebrand and Baragar (1991), (19) Thorkelson ez al. (2005), (20)

Bradley ez al. (2003).

rounded zircon with Palaeoproterozo-
ic cores and Mesoproterozoic rims.
The youngest reliable *°’Pb/?*°Pb age
from a coreis 1781 + 82 Ma (Fig. 2b).
Four diffuse mantles with moderate U

contents (450-575 p.p.m.) and Th/U
(<0.02) were dated; three of them
yielded indistinguishable concordia
ages that average 1269 + 20 Ma.
Three low-U (157-340 p.p.m.), vari-

Table 1 Summary of geochronological results.

able but higher Th/U (0.09-0.88) rims
were also analysed, yielding a concor-
dant age of 1149 + 21 Ma.

Five analyses were obtained from
four zircon grains from xenolith 3
(Fig. 2¢), a retrograded garnet-silli-
manite paragneiss. The zircon from
this sample is dominantly equant, with
irregular to rounded grain boundaries
and very small (<45 pum). Two diffuse
cores were analysed, but only one
yielded a concordant **’Pb/*°°Pb age
of 1747 £ 18 Ma. Analyses of three
diffuse high-U (> 1000 p.p.m.) meta-
morphic domains returned late Meso-
proterozoic ages. Two of these
domains returned a concordant age
of 1149 + 19 Ma.

Xenolith 4 is a strongly metasoma-
tized foliated rock, composed of lenses
of sericite surrounded by a matrix of
crystalline to microcrystalline carbon-
ate and chlorite. The zircon grains are
small (30-70 pm), equant to elongate
and variably rounded. Three zircon
populations were identified on the
basis of 17 analyses from 13 zircon
grains (Fig. 2d). Nine zircon cores,
characterized by irregular and diffuse
zoning, plot close to concordia (dis-
cordance <8%), and range in age
from 1582 + 28 to 1141 + 38 Ma.
The five oldest cores (1582—1445 Ma)
have high-U contents (1430-1480
p.p.m.), very low Th/U (<0.02), and
thus likely represent a variably recrys-
tallized population of grains with
original crystallization ages 21582 =+
28 Ma. Similarly, the four youngest
cores are believed to represent
more extensive recrystallization at c.
1150 Ma. Six analyses of unzoned,
very high-U (2170-3828 p.p.m.), low
Th/U (0.07-0.1) zircon rims and
single grains yield a weighted mean
206ph,/28U age of 1184 + 15 Ma. In

Xenolith Laboratory ID Protolith Interpreted age and significance
1 9044 Sedimentary <1626 + 45 Ma — maximum deposition age from detrital cores
1246 + 25 Ma — upper intercept — metamorphic growth and recrystallization
503 + 75 Ma — lower intercept — recrystallization during entrainment in lamprophyre magma
2 9047 Sedimentary <1781 = 82 Ma — maximum 2°’Pb/2%Ph deposition age from detrital cores
1269 + 20 Ma — concordia age of metamorphic recrystallization
1149 + 21 Ma — concordia age of metamorphic rim growth
3 9048 Sedimentary <1747 + 18 Ma — maximum 2*’Pb/2%Ph deposition age from detrital cores
1149 + 19 Ma — concordia age of metamorphic domains
4 9046 Uncertain >1582 + 28 Ma — minimum 2°’Pb,/*°Pb age of metamorphism/minimum protolith age
1168 + 28 Ma — weighted mean 2°°Pb,/**3U age — metamorphic growth and recrystallization
5 9049 Igneous 1146 + 31 — weighted mean 2°°Pb/2*8U crystallization age of igneous protolith
308
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Fig. 2 Concordia plots of SHRIMP U-Pb data from xenoliths 1-5 (ellipses at 25), with representative zircon crystals. Dotted
ellipses and lines show the positions of analysis pits and delineate approximate domain boundaries, respectively. (a) Concordia plot
of 21 analyses obtained from xenolith 1. Open ellipses represent data obtained from detrital zircon cores. Filled ellipses correspond
to the homogeneous, U-rich domains. Inset: enlarged view of the data obtained from the homogeneous, weakly luminescent
domains. (b) Plot of 11 SHRIMP analyses from xenolith 2. Empty ellipses correspond to analyses of zoned zircon cores. Light
grey-filled ellipses represent analyses from low Th/U recrystallized domains formed during the ¢. 1.27 Ga metamorphic event.
Black-filled ellipses represent the low-U rims formed at ¢. 1.15 Ga. Inset: An enlarged view of the analyses corresponding to the
¢. 1.27 Ga and ¢. 1.15 Ga metamorphic events. (c¢) Concordia diagram of five analyses from xenolith 3. (d) Concordia plot of 17
determinations from xenolith 4. Open ellipses symbolize data obtained from zircon cores; filled ellipses correspond to data
obtained from the high-U (>2000 p.p.m.) metamorphic domains. (e) Plot of seven analyses obtained from xenolith 5. Inset:
206p,/2381 ages of the analysed domains. Error bars represent 2¢ uncertainty.
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conjunction with two low-U (222—
260 p.p.m.), high Th/U (0.12-0.20)
diffuse  sector-zoned cores that
may reflect zircon re-equilibration
during metasomatism, and the two
youngest very low Th/U cores,
these analyses yield a best age estimate
of a metamorphic event at 1168 +
22 Ma.

Zircon from orthopyroxene-bear-
ing xenolith 5 is rounded to sub-
rounded, elongate and comparatively
large (50-100 um in long dimension).
Analyses produced imprecise, but
tightly clustered 2°°Pb/**U  ages
ranging from 1093 £+ 95 to 1192 +
40 Ma (Fig. 2e). The zircon has low-
U concentrations (73-472 p.p.m.)
and is composed of irregular highly
luminescent domains that crosscut or
mantle oscillatory-zoned domains of
lower luminescence. The highly lumi-
nescent domains likely represent sub-
solidus recrystallization of the older
oscillatory-zoned igneous domains,
but their ages are identical within
error. Thus, the weighted mean age
of 1146 £ 31 Ma from all seven
analyses is taken as the best estimate
of the crystallization of the igneous
protolith.

In summary, the zircon grains from
metasedimentary xenoliths 1-3 have
complexly zoned Palaeoproterozoic
and rare Archaean cores surrounded
by Mesoproterozoic rims. The cores
are regarded as detrital material
sourced from Palacoproterozoic and
Archaean Laurentian crust to the east.
The metamorphic rims indicate
growth and recrystallization events at
c. 1.27-1.25 and at 1.15 Ga. Sharp
contacts between chemically distinct
domains corresponding to these
events in xenolith 2, and the absence
of evidence for the ¢. 1.15 Ga event in
xenolith 1 support the inference of
two discrete Mesoproterozoic meta-
morphic events, rather than a spurious
continuum of ages caused by variable
Pb-loss during a single Mesoprotero-
zoic metamorphic episode. Zircon
grains from the metasomatized xeno-
lith 4 are characterized by diffuse
cores of  Mesoproterozoic  age
(>1582 £ 28 Ma) that have under-
gone variable amounts of recrystalli-
zation. The age of recrystallization is
interpreted to coincide with the
growth of very high-U (>2170
p.p.m.) zircon domains at 1168 + 22
Ma. Zircons from the meta-igneous
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xenolith 5 form a cluster of imprecise
concordant ages at 1146 + 31 Ma,
interpreted as the crystallization age
of the parent.

Interpretation of zircon ages

The foregoing ages may be generally
explained by deposition of detrital
zircon of Proterozoic and rare Ar-
chaean ages followed by Mesoprote-
rozoic metamorphic and igneous
events at =>1.58, 1.27-1.25, c¢. 1.15
Ga. The 21.58 event may be linked
to Racklan orogeny and subsequent
¢. 1.60 Ga voluminous hydrothermal
brecciation (Thorkelson et al., 2005).
The 1.27-1.25 Ga ages are likely a
reflection of the Bear River dyke
emplacement, during the Mackenzie
igneous event at ¢. 1.27 Ga (Schwab
et al., 2004).

The 1.15 Ga ages, in contrast to the
older Mesoproterozoic ages, are not
correlative with any known metamor-
phic or magmatic events in Yukon.
However, in broader terms, this newly
identified event is time-correlative
with a number of poorly understood
late Mesoproterozoic events in Yukon
and the neighbouring Northwest Ter-
ritories. These include c¢. 1.1 Ga gra-
nitic  magmatism  beneath  the
southern Mackenzie Mountains, as
determined from xenoliths in the Pal-
aeozoic Coates Lake diatreme (Jeffer-
son and Parrish, 1989), the
emplacement of mafic dikes at
¢. 1.17 Ga in the central Slave Prov-
ince (LeCheminant et al., 2007), the
poorly dated, ¢. 1.27-1.0 Ga, contrac-
tional deformation north-east of
Great Bear Lake (Hildebrand and
Baragar, 1991), and extensional
deformation at ¢. 1.0 Ga during
deposition of the Mackenzie Moun-
tains Supergroup (Turner and Long,
2008). Finally, the terminal late Mes-
oproterozoic orogenic event in north-
western Canada, the Corn Creek
orogeny, produced west-directed folds
and thrust faults in eastern Yukon
between 1.0 and 0.78 Ga (Thorkelson
et al., 2005).

Evidence from farther afield
(Fig. 1) provides additional support
for late Mesoproterozoic tectonother-
mal activity in north-western Laur-
entia, specifically: a U-Pb zircon age
of ¢.1.19 Ga from a granitic con-
glomerate boulder in Neoproterozoic
strata of central British Columbia
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Fig. 3 Plot of all reported late Mesopro-
terozoic ages (see Fig. 1 for references)
and their respective errors arranged
according to their relative latitude. The
intensity of shading of the uppermost
three bars denotes the likelihood of a
given event taking place at a given time.
MMSG, Mackenzie Mountains Super-

group.

(Ross et al., 1992); c¢. 1.1-1.0 Ga xe-
nocrystic zircon from Palaeozoic dia-
tremes in south-eastern  British
Columbia (Parrish and Reichenbach,
1991); and c. 1.1-1.0 Ga metamor-
phic zircon and titanite from the
Mesoproterozoic  Moyie sills  of
southern British Columbia (Anderson
and Davis, 1995). These data led
Anderson and Davis (1995) to spec-
ulate that a belt of Grenville-age
metamorphism  and  deformation
may have existed along much of the
north-western Laurentia. Since then,
the evidence for ¢. 1.3-1.0 Ga tecto-
nism that temporarily overlaps with
the Grenvillian Orogeny has in-
creased along the north-western pre-
Cordilleran margin and now extends
as far south as central Idaho. Lu-Hf
whole-rock and garnet and U-Pb
zircon dating of the metamorphic
complexes in northern and central
Idaho indicate a metamorphic event
at ¢ 1.3-1.0 Ga (Fig. 3; Vervoort
et al., 2005; Doughty and Chamber-
lain, 2008; Nesheim et al., 2009; Zi-
rakparvar et al., 2010). Erdmer et al.
(2002) and Bradley et al. (2003) also
reported Grenvillian detrital and
igneous zircon ages, respectively,
within the Cordillera, but the palae-
otectonic position of the dated rocks
relative to Mesoproterozoic Lauren-
tia is uncertain.

© 2011 Blackwell Publishing Ltd
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The significance of late
Mesoproterozoic events in western
Laurentia

Our new U-Pb data, in conjunction
with the data summarized in the
previous section, suggest that the pre-
vailing view of relative tectonothermal
quiescence along the western margin
of Mesoproterozoic Laurentia (Whit-
meyer and Karlstrom, 2007; David-
son, 2008), based on the lack of
intense contractional deformation of
this age, may be unwarranted. It is
suggested herein that the late Meso-
proterozoic tectonism is predomi-
nantly manifested at the lower to
mid-crustal levels. The sparse and
cryptic nature of the c¢. 1.3-1.0 Ga
geochronological record along the
western margin of Laurentian craton
may reflect a series of distinct, unre-
lated  small-scale  tectonothermal
events taking place close to the palae-
omargin of the Mesoproterozoic
Laurentia. Such events may include a
combination of: emplacement of mafic
magmas at depth, lithospheric thin-
ning in response to back-arc extension
or thermal erosion, terrane accretion
akin to the Mesozoic collisional events
of the North American Cordillera
(e.g. Monger et al., 1982), or margin-
parallel transcurrent faulting (e.g.
Ewing, 1980). Unfortunately, the
knowledge of the late Mesoprotero-
zoic geological record is insufficient to
unequivocally determine which of
these processes were operative.

It is also important to consider the
position of the Mesoproterozoic
western Laurentia within the super-
continent Rodinia and to evaluate
possible interactions with other conti-
nents, with the most likely options
including Australia, Antarctica, Sibe-
ria and South China (Li ef al., 2008
and references therein). In this regard,
the models that propose a link
between Australia and Antarctica
and the western margin of Mesopro-
terozoic Laurentia fall into two broad
categories. In the SWEAT class of
models (see summary by Li er al.,
2008), a joint Australia-East Antarc-
tica continent is juxtaposed against
Laurentia, so that east Australia and
north-western Canada form conjugate
margins separated by late Neoprote-
rozoic rifting. A complex set of
palacomagnetic data places important
constraints on the viability of the

© 2011 Blackwell Publishing Ltd

SWEAT model, restricting its window
of feasibility to the late Palacoprote-
rozoic (Li et al., 2008), or to a narrow
c. 1.0-0.8 Ga time interval (Evans,
2009). In contrast, the AUSWUS
(Karlstrom et al., 1999, 2001; Burrett
and Berry, 2000) models place the
proposed conjugate Australia—
Antarctica landmass adjacent to the
south-western USA, far south of the
area considered in this article. The
Siberian model (Sears and Price, 2000)
calls for a prolonged ¢. 2.0-0.52 Ga
joint Siberia—Laurentia continent that
further requires a connection to a

northern Australian, 1.61-1.51 Ga
zircon source for the Mesoproterozoic
Belt—Purcell Supergroup. Recent geo-
logical and palacomagnetic data do
not corroborate such a model, placing
Siberia at a substantial distance from
the northern margin of late Mesopro-
terozoic Laurentia, with a number of
intervening continents  (Pisarevsky
et al., 2008; Evans, 2009). Finally,
the ‘missing-link” option places the
South China craton between western
Laurentia and eastern Australia and
most clearly involves late Mesoprote-
rozoic tectonism. We investigate this

QML
xengliths

|

c. 1.3-1.0 Ga Grenville Province

c. 1.3-0.9 Ga western Laurentian/Sibao orogen

1000 km

e ¢ 1.27-0.9 Ga deformation/
~ I jgneous/metamorphic/hydrothermal activity

Fig. 4 Tectonic model for the cryptic late Mesoproterozoic metamorphism along the
western margin of ancestral North America. The model is an adaptation of the
‘missing-link” model of Li ez al. (2008) and calls for prolonged (c. 1.27-0.9 Ga)
oblique collision between the joint Laurentia—Cathaysia continent and the Yangtze
craton to the west. Locations in south China from Li et al. (2009) and Wang et al.
(2010). BPSG, Belt—Purcell Supergroup; MMSG, Mackenzie Mountains Supergroup;

QML, Quartet Mountain lamprophyres.
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latter model in more detail because,
while being palacomagnetically per-
missible (Li et al., 2008; Evans, 2009),
it most clearly involves late Mesopro-
terozoic tectonism. In this model,
Cathaysia was accreted to western
Laurentia by early Mesoproterozoic
time, provided sedimentary detritus
for the Belt—Purcell basin, and hosted
the western continuation of the 1.5—
1.35 Ga  mid-continental  granite
bloom (Li et al., 2008). How long
Cathaysia could have been in that
position is unclear, but docking
may have occurred during the late
Palaeoproterozoic Racklan—Yavapai—
Mazatzal orogenic events (Karlstrom
and Bowring, 1988; Laughton ef al.,
2005; Whitmeyer and Karlstrom,
2007). Alternatively, Cathaysia may
have obliquely converged with wes-
tern Laurentia at c¢. 1.47 Ga, leading
to transtensional opening of the Belt—
Purcell basin (Ross and Villeneuve,
2003).

During the late Mesoproterozoic
(Fig. 4) the western (outer) margin of
Cathaysia began to collide with the
eastern edge of the Yangtze Craton,
forming the Sibao orogen (Li ef al.,
2008). Building on this scenario, we
suggest that western Laurentia was
not entirely insulated from the effects
of the Sibao orogeny, and that the late
Mesoproterozoic features described
herein may reflect the elevated heat
flow at depth and limited stress prop-
agation well inboard of the collisional
zone. In this light, the missing-link
model provides an explanation for
many of the late Mesoproterozoic
features in western Laurentia, partic-
ularly if the direction of transport
were oblique to the continental mar-
gin. An obliquely transpressional oro-
gen would favour the development of
localized releasing and restraining
zones and is most consistent with the
lack of intense deformation, volumi-
nous magmatism and the scattered
nature of late Mesoproterozoic tec-
tonothermal record.

In summary, it is tentatively pro-
posed that the belt of late Mesoprote-
rozoic magmatic and tectonic activity
in western Laurentia may be the
inboard complement of the ¢. 1.14-
0.83 Ga (Li et al., 2009; Wang et al.,
2010) Sibao orogen, which forms the
suture between Cathaysia and the
Yangtze Craton (Li et al., 2008). The
eastern end of the Sibao orogen
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records  ophiolite  obduction at
¢. 090 Ga (Li et al, 2003, 2008,
2009), and may represent the contin-
uation of the poorly understood con-
tractional event in north-western
Laurentia recorded by the Corn Creek
orogeny in Yukon.
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