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ABSTRACT
The Northern Cordilleran slab window formed beneath west-

ern Canada concurrently with the opening of the Californian slab 
window beneath the southwestern United States, beginning in Late 
Oligocene–Miocene time. A database of 3530 analyses from Miocene–
Holocene volcanoes along a 3500-km-long transect, from the north-
ern Cascade Arc to the Aleutian Arc, was used to investigate mantle 
conditions in the Northern Cordilleran slab window. Using geochemi-
cal ratios sensitive to tectonic affi nity, such as Nb/Zr, we show that 
typical volcanic arc compositions in the Cascade and Aleutian sys-
tems (derived from subduction-hydrated mantle) are separated by an 
extensive volcanic fi eld with intraplate compositions (derived from 
relatively anhydrous mantle). This chemically defi ned region of intra-
plate volcanism is spatially coincident with a geophysical model of 
the Northern Cordilleran slab window. We suggest that opening of 
the slab window triggered upwelling of anhydrous mantle and dis-
placement of the hydrous mantle wedge, which had developed during 
extensive early Cenozoic arc and backarc volcanism in western Can-
ada. High heat fl ow throughout the western Canadian Cordillera is 
broadly coincident with the fi eld of intraplate volcanism and is linked 
to slab window-induced mantle upwelling.

INTRODUCTION
Motions of the Earth’s tectonic plates affect fl ow patterns in the upper 

mantle (Wiens et al., 2008). In turn, these fl ow patterns affect the thermal, 
physical, and chemical evolution of the plates; the most striking examples 
are located in slab window environments. Slab windows are gaps between 
subducted parts of oceanic plates at sites of mid-ocean spreading ridge 
subduction (Dickinson and Snyder, 1979; Thorkelson and Taylor, 1989). 
These breaches occur within an otherwise continuous layer of subducting 
oceanic lithosphere, which normally separates a wedge of hydrated mantle 
(Gill, 1981) from an underlying region of hotter, drier mantle (Thorkelson, 
1996; Gorring and Kay, 2001). Consequently, slab window environments 
are expected to differ from those involving normal subduction in patterns 
of mantle fl ow, variations in mantle composition, fl ux of mantle-derived 
heat, and expressions of magmatism in both forearc and inboard regions 
(Hole et al., 1991; Haeussler et al., 1995; Cole and Stewart, 2009).

Approximately one-third of the present-day American Cordillera, 
from eastern Alaska to the Antarctic Peninsula, is underlain by slab win-
dows (Fig. 1), all of which have contributed to variations in igneous and 
tectonic conditions in the continental margin. Two of the intersections 
occurred beneath North America, leading to the formation of two large slab 
windows (Thorkelson and Taylor, 1989): one beneath the southwestern 
United States, herein referred to as the Californian slab window, and the 
other beneath western Canada, herein called the Northern Cordilleran slab 
window. The Californian slab window has been the subject of much study, 
but its relationships to volcanism and patterns of asthenospheric fl ow have 
been complicated by oceanic microplate formation (Wilson et al., 2005), an 
inboard jump of the spreading ridge and transcurrent displacement along 
the San Andreas fault system, impingement of the Yellowstone hotspot, and 
widespread extension in the Basin and Range province (Atwater and Stock, 
1998). In contrast, the crust of western Canada has undergone relatively 
little late Cenozoic deformation (Armstrong and Ward, 1991), making the 

Northern Cordilleran slab window (Fig. 2A) a more straightforward locale 
for evaluating the outcome of ridge subduction and slab window formation.

We describe the mantle response to the formation of the Northern 
Cordilleran slab window using volcanic geochemistry as a proxy for man-
tle composition. Using a 3500-km-long transect through inboard areas of 
eastern Alaska, western Canada, and the northern conterminous United 
States, we document spatial and temporal changes in mantle composition, 
particularly in the degree of hydration. We demonstrate how these changes 
are related to slab window formation and describe a unifying model for 
the modern plate tectonic environment of northwestern North America.

VOLCANIC ARC AND SLAB WINDOW ENVIRONMENTS
Metasomatism of the mantle wedge beneath volcanic arcs involves 

release of hydrous fl uids and mobile elements from the downgoing slab, 
stabilization of Ti-rich minerals, and production of arc magma (Gill, 
1981). Consequently, arc magmas have a distinctive geochemical signa-
ture in which alkalies, alkaline earth elements, and light rare earth ele-
ments are enriched over high fi eld-strength elements (HFSEs), particu-
larly Ti, Nb, and Ta. The metasomatism occurs within a wedge of mantle 
between the downgoing slab and the overriding plate (Gill, 1981). In con-
trast, other parts of the upper mantle are nearly anhydrous, as refl ected by 
higher ratios of HFSEs to other elements. These differences are critical in 
the evaluation of mantle fl ow in slab window environments.

As a mid-ocean spreading ridge enters a trench the framework of 
subduction is disturbed, leading to a new regime of physical, thermal, and 
chemical conditions (Hole et al., 1991; Thorkelson, 1996; Gorring and 
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Figure 1. Current slab windows and plausible locations of previous 
windows beneath Americas and Antarctic Peninsula (Dickinson and 
Snyder, 1979; Forsythe and Nelson, 1985; Thorkelson and Taylor, 
1989; Johnston and Thorkelson, 1997; Gorring and Kay, 2001; Sisson 
et al., 2003; Madsen et al., 2006; Breitsprecher and Thorkelson, 2009).
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Kay, 2001). Near the trench, the subducting ridge imparts a thermal pulse 
that commonly involves emplacement of magma akin to mid-ocean ridge 
basalt, high-temperature metamorphism, and melting of forearc sediment 
(Haeussler et al., 1995; Sisson et al., 2003). Farther inboard, the ridge 
separates into a slab window bounded by thin slab edges, which are prone 
to deformation and thermal erosion, including partial melting (Thorkel-
son and Breitsprecher, 2005). Above the slab window, arc magmatism is 
typically interrupted and replaced by a broader volcanic fi eld with largely 
intraplate characteristics (Hole et al., 1991; Thorkelson, 1996). Microplate 
formation and tearing of the subducted slabs may occur, complicating the 
shape and extent of the slab window (Wilson et al., 2005).

GEOCHEMICAL IMAGE OF THE SLAB WINDOW
A geochemical transect of Neogene to Holocene volcanic centers 

from the Cascade Arc to the Aleutian Arc (Fig. 2C) was carried out 
using data compiled from the literature (Appendix DR1 in the GSA Data 
Repository1). The data were fi ltered to eliminate evolved compositions 
(SiO2 > 60%), which may refl ect crustal rather than mantle sources, and 
samples with extreme trace element ratios, which may refl ect analyti-
cal error, misreporting of data, or anomalous source compositions or 
processes. The resulting data set of 3530 analyses was divided into 41 
groups representing individual volcanoes or clusters of volcanic cen-
ters, from Mount Hood in Oregon to the Katmai volcanic fi eld in Alaska 

(Figs. 2 and 3; Appendix DR2). For each group, average values and stan-
dard deviations were determined and plotted against distance along the 
transect. The plume-generated Columbia River fl ood basalts were not 
included in the study.

Element abundances and ratios varied along the transect, with MgO/
SiO2 indicating that volcanic rocks of the Cascade and Aleutian Arcs are 
less mafi c than those from volcanoes in the intervening region (Fig. 3A). 
The infl uence of subducted slab was evaluated using tectonically sensi-
tive ratios, including TiO2/MnO and Nb/Zr (Figs. 3B and 3C; Appendix 
DR2; Sun and McDonough, 1989). These ratios reveal a clear pattern 
of arc character in the Cascade Arc, intraplate character throughout 
most of British Columbia and Yukon, and a return to arc character in the 
Wrangell Mountains and Aleutians. When this pattern is compared to a 
cross section through the crust and upper mantle, the volcanic centers 
with intraplate affi nity closely register with a physical model of the slab 
window (Figs. 2 and 3D) from Thorkelson and Taylor (1989) and Mad-
sen et al. (2006), modifi ed by constraints from seismic studies (Fuis et 
al., 2008; Audet et al., 2009). The rocks with intraplate affi nity also have 
high incompatible element abundances.

In the north, the change from arc to intraplate character occurs where 
the torn and structurally complicated Pacifi c-Yakutat plate assemblage 
(Fuis et al., 2008) passes eastward into the slab window. The Wrangell 
volcanics, which were partly derived from slab melting (Preece and Hart, 
2004), are near the eastern, tomographically imaged slab edge (Frederik-
sen et al., 1998). In the south, the transition from arc to intraplate sig-
natures is gradual; the northern Cascade Arc is trenchward from coeval 
intraplate centers of the Anahim–Wells Gray–Chilcotin volcanic fi eld 
(Fig. 2A). This gradation may refl ect faulting of the downgoing slab dur-
ing formation of the Explorer microplate at 4 Ma, and thermal erosion of 

1GSA Data Repository item 2011094, Appendix DR1 (bibliography of geo-
chemical data for Miocene–Holocene volcanic rocks, northwestern North America) 
and Appendix DR2 (average values and standard deviations of geochemical ratios 
from Miocene–Holocene volcanoes, northwestern North America), is available on-
line at www.geosociety.org/pubs/ft2011.htm, or on request from editing@geosociety
.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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both the Juan de Fuca and Explorer plates (Figs. 2 and 3; Madsen et al., 
2006; Audet et al., 2009).

SLAB WINDOW–INDUCED MANTLE FLOW
In Eocene time, magmatism in western Canada was broadly arc-like 

with element ratios consistent with subduction and mantle metasomatism 
(Morris and Creaser, 2003; Breitsprecher et al., 2003; Fig. 4). In western 
Canada, a shift in tectonic affi nity from volcanic arc to intraplate began 
after cessation of the Eocene arc ca. 47 Ma (Ickert et al., 2009) and a 
hiatus in magmatism during the Oligocene. Intraplate volcanism began 
in the Late Oligocene to Early Miocene (ca. 24 Ma; Edwards and Rus-
sell, 2000), was widespread by the Middle Miocene (ca. 10 Ma; Bevier 
et al., 1979; Carignan et al., 1994; Shi et al., 1998; Madsen et al., 2006), 
continued until a few hundred years ago (Edwards and Russell, 2000), and 
may resume in the future. This geochemical transition occurred synchro-
nously with the opening of the Northern Cordilleran slab window and dis-
appearance of the subducted oceanic lithosphere that had underlain much 
of western Canada in the Paleogene (Fig. 4). The window continued to 
grow throughout the Neogene–Holocene and is currently ~1500 km long, 
extending from southern British Columbia to near the Alaska-Canada bor-
der (Figs. 2 and 3).

The temporal shift in geochemical character refl ects a change in the 
composition of the underlying magma sources, from slab-metasomatized 
mantle in the Paleogene to anhydrous asthenosphere or veined litho-
spheric mantle in the Neogene (Carignan et al., 1994; Edwards and Rus-
sell, 2000). This wholesale displacement of arc-type mantle is herein 
viewed as a passive response to the northward motion of the Pacifi c slab 
away from the eastward-moving Juan de Fuca slab (Fig. 2A). As the slabs 
diverged, they induced uprising of anhydrous asthenosphere through the 
growing slab window to fi ll the void (Fig. 3D). The upwelling astheno-
spheric mantle underwent decompressional melting, and thermally eroded 
the North American lithospheric mantle; both asthenosphere and litho-
sphere served as sources to parts of the intraplate volcanic fi eld (Carignan 
et al., 1994; Shi et al., 1998; Edwards and Russell, 2000). Previous work-
ers have used mantle plume activity, crustal extension, and backarc con-
vection to explain specifi c features of the intraplate fi eld (Bevier et al., 
1979; Edwards and Russell, 2000; Currie and Hyndman, 2006), but the 
geochemical similarities among the volcanic centers are arguably greater 
than their differences. We therefore appeal to asthenospheric displacement 
of the mantle wedge as the fundamental explanation while recognizing 
that specifi c processes may have played important roles in certain parts of 
this extensive intraplate province.
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Figure 4. La/Nb tectonic discrimination diagram (Gill, 1981) show-
ing change in tectonic affi nity of igneous rocks in western Canada 
from Eocene (volcanic arc) to Miocene–Holocene (ocean island and/
or intraplate) indicated by arrow. Eocene data are from Morris and 
Creaser (2003), Ickert et al. (2009), and Breitsprecher et al. (2003). 
Miocene–Holocene data sources are in Appendix DR1; data are in 
Appendix DR2 (see footnote 1).
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THERMAL EFFECTS

The western Canadian Cordillera has a lithospheric thickness of only 
52–66 km, with temperatures at the Moho from 800 to 850 °C (Harder 
and Russell, 2006). The association of a slab window with (1) intraplate 
volcanism involving partial melting of lithospheric and asthenospheric 
mantle, (2) thin lithosphere, (3) low seismic velocities, and (4) high heat 
fl ow is best explained by mantle upwelling, advective transfer of heat, 
and thermal erosion of the lithospheric mantle. In an alternative model, 
subduction-induced fl ow of asthenospheric mantle behind the northern-
most Cascade Arc was used to explain the high heat fl ow in southern Brit-
ish Columbia (Currie and Hyndman, 2006). However, that model cannot 
explain the high heat fl ow above the neighboring slab window (Hyndman 
et al., 2005; Harder and Russell, 2006), which is devoid of both volcanic 
arc and subducting slab. We argue that widespread asthenospheric upwell-
ing through the slab window and across the broken and eroded slab edges 
(Figs. 2 and 3D) is a more suitable model for the entire region.

CONCLUSIONS
The Northern Cordilleran slab window developed beneath western 

Canada in the Early Miocene, following an Eocene regime dominated by 
subduction and related mantle metasomatism. Opening of the window 
led to displacement of the hydrated mantle wedge by uprising astheno-
spheric mantle. This process is consistent with compositional patterns 
of magmatism beneath the Americas and worldwide. Slab windows are 
potent modifi ers of convergent plate margins, involving regional dis-
placement of the mantle wedge, production of intraplate magma, and 
thinning of the overriding lithosphere. Their current abundance suggests 
that slab windows have been common and important modifi ers of con-
vergent plate margins throughout Earth history.
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