Topic 8: Diffusion

(Chapter 13 in book)



Overview:

How does thermal energy cause things to move?
How do molecules spread out in time?
Why do things flow when there are concentration gradients?

How well can cells detect diffusing molecules in their environment?



Thermal motion - diffusion
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Figure 13.1 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

When a molecule is put into a bath at
a particular temperature, it gets random
kicks from the thermal energy in the bath

These random kicks cause it to perform a
random walk

This random walk is called ‘Brownian motion’
after the scientist who observed cells
undergoing random motion under a microscope

for small molecules, these random kicks are not
small and can lead them to move rapidly and
distribute uniformly

this random motion generated by thermal noise
IS the process of diffusion



Diffusion can be slow and fast
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Figure 13.2a Physical Biology of the Cell, 2ed. (© Garland Science 2013)
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Figure 13.5 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Random Walks

(from ‘Random Walks in Biology’ by H. Berg
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Random Walks: Average
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Random Walks: Variance
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Diffusion relation:
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Diffusion: some #’s

Or,
J{(x?%) = V2Dt

So diffusing particles, spread out as /t instead of as t as a ballistic particle would

Table 13.1: Table of diffusion coefficients for different molecules. (Data for
GFP from M. B. Elowitz et al., J. Bacteriol. 181:197, 1999 and yeast data from
W. F. Marshall et al., Curr. Biol. 7:930, 1997.)

Molecule Diffusion coefficient
Potassium ion in water ~2000 umz/s

GFP in E.coli cytoplasm ~7um?/s

DNA in yeast nucleus 5x 10~% um?/s

Table 13.1 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

For a small ion in water in a bacteria, time for a diffusing particle to traverse the cell is:

<x?%> 1 um)? .
t = = MM milliseconds
2D 22000 um?/s

so things mix fast in bacteria

. 2 1 2
For a neuron with a length around 1 cm, t = <22 = LM 94 poyrsit
2D 22000 um=/s

so diffusion is not a good way to move material around in a neuron



Random Walks: Binomial distribution

At a given time, what is the distribution of x?
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Random Walk: Binomial =2 Gaussian
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Random Walk: spreading in time

So the distribution of positions for a diffusing particle, follows a Gaussian distribution
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Figure 13.15 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Macroscopic diffusive transport: Fick’'s Equations

Previously, we were looking at the statistical behaviour of single diffusing particles.

Q: Can we derive an equation that will describe the dynamics of a concentration of particles
diffusing in solution?

no. of particles = N(x)

no. of particles = N(x+Ax)

area A

%

Figure 13.11 Physical Biology of the Cell, 2ed. (© Garland Science 2013)




Continuity Equation:

B Q: what is the flux of particles through the
area A? flux = #/s/area

no. of particles = N(x+Ax)
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Continuity equation: continued

So,

dc(x)

thus if there is a concentration gradient, there will be a flux of particles

€. 9. Q"“i ] = ﬁx}. J
— SR
2 ,

M,/‘J;-u v

Particles diffuse from regions of high concentration to low. There is NO
external force. Itis an entropic force, that arises because there is more
entropy when the system is well mixed, i.e a uniform concentration.



Diffusion equation:
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Figure 13.12 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

How does the concentration change at a given location and in time given that
there are fluxes in the system?



Diffusion equation derivation:

There are j(x)A At entering from left and
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This is a partial differential equation which in practice is hard to solve. We will just take
known solutions



Applications of diffusion equation: diffusion through pore
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Applications: Cell detecting diffusing nutrients

receptor E. coli

model cell

Figure 13.21 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Consider a perfectly absorbing spherical cell,
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Note: the diffusive current into the cell only goes as
the radius of the cell and NOT the area



Applications: Disc like receptor
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So we have the current for a i) perfectly absorbing sphere and ii) a perfectly
absorbing disc-like receptor

Q: What about the current for N disc-like receptors on a cell’'s surface?



Applications: Receptors on a cell
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Applications: Receptors on a cell — equivalent circuit
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Cell Signalling: some #'s
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Summary:

 Diffusing particles are carrying out a random walk
- the RMS distance goes as /t
 the distribution of positions of diffusing particles is a Gaussian

 derived the diffusion equation
« particles flow from high to low concentrations

« Looked at some solutions to diffusion equation:
« steady-state concentration in a chanel
« absorption by spherical cell
« absorption by disc-like receptor

« Found that cells can detect chemical signals almost as well as
having the whole cell covered with only a small % of receptors



