

THE CREATION OF EVOLUTIONARY RHYTHMS
WITHIN A MULTI-AGENT NETWORKED DRUM

ENSEMBLE

Arne Eigenfeldt
School for the Contemporary Arts

Simon Fraser University
Burnaby, BC
CANADA

ABSTRACT

This paper presents a multiple-agent architecture that
generates polyphonic rhythmic patterns which
continuously evolve and develop in a musically
intelligent manner. Agent-based software offers a new
method for real-time composition that allows for
complex interactions between individual voices while
requiring very little user interaction or supervision. The
system described, Kinetic Engine is an environment in
which networked computers, using individual software
agents, emulate drummers improvising within a
percussion ensemble. Player agents assume roles and
personalities within the ensemble, and communicate
with one another to create complex rhythmic
interactions.

1. INTRODUCTION

The promise of agent-based composition in musical
real-time interactive systems has already been suggested
[17, 13], specifically in their potential for emulating
human-performer interaction. Agents have been defined
as autonomous, social, reactive, and proactive [16],
similar attributes required of performers in
improvisation ensembles.

Kinetic Engine [6], created in Max/MSP, arose out of
a desire to move away from constrained random choices
within real-time interactive software, and utilize more
musically intelligent decision-making processes. Agents
are used to create complex, polyphonic rhythms that
evolve over time, similar to how actual drummers might
improvise in response to one another. A conductor agent
loosely coordinates the player agents, and manages the
high-level performance parameters, specifically density:
how many notes are being played by all agents.

The software is written by a composer with
compositional, rather than research, objectives, the first
stage in a long-term investigation of encoding musical
knowledge in software. As such, the encoded
knowledge is my own; my experience as a composer
suggests that I have some knowledge as to what
determines interesting music, so I am relying upon that
knowledge. No attempt has been made to create a
comprehensive compositional system that can reproduce
specific styles or genres; the system is rule-based, rather
than data-driven, and the rules and logic within Kinetic
Engine are derived from auto-ethnographic examination.

This paper will describe the implementation of
multi-agents in Kinetic Engine. Section 2 gives an
overview of existing research into multi-agent systems
and rhythm generation. Section 3 describes the specific

implementation of agents. Section 4 describes how
agents activate themselves. Section 5 describes the
social behaviour of agents. Section 6 describes how
agents learn and evolve. Section 7 offers conclusions
and future directions.

2. OVERVIEW OF EXISTING RESEARCH

2.1. Multi-agent systems

Multiple-agent architectures have been used to track
beats within acoustic signals [9, 5] in which agents
operate in parallel to explore alternative solutions.
Agents have also been used in real-time composition:
Burtner [3] created a multi-agent, multi-performer
system; Dahlstedt and McBurney [4] developed a multi-
agent model based upon Dahlstedt’s reflections on his
own compositional processes; Wulfhurst et.al. [17]
created a multi-agent system where software agents
employ beat-tracking algorithms to match their pulse to
that of human performers.

Many of these systems incorporate improvisatory
elements. As already noted, agents seem to suggest the
same sorts of specifications required of human
improvisers. Benson [1] suggests that there are many
shades of improvisation in music, ranging from standard
performance – in which musicians fill in certain details
which are not specified by the score – to complete
melodic and harmonic freedom; as such, the role agents
could play in such works is widely varying.

Murray-Rust and Smaill [13] create a theory of
Musical Acts, an expansion of Speech Act Theory, to
describe the actions of musicians (represented as
agents) engaged in improvisatory ensemble playing.
However, they are interested in creating a system that
will “enable a wider range of people to create music,”
provide a “new approach to musical composition,” and
facilitate “the interaction of geographically diverse
musicians,” none of which are motivating forces behind
Kinetic Engine.

2.2. Rhythm Generation

The generation of rhythm through software processes
has been explored through a variety of methods,
including genetic algorithms [10], cellular automata [2],
neural networks [11] and multi-agents [8]. Brown [4]
suggests that CA provides “a great deal of complexity
and interest from quite a simple initial setup”; while this
may be the case, he also comments that his generated
rhythms “often result in a lack of pulse or metre. While
this might be intellectually fascinating, it is only

occasionally successful from the perspective of a
common aesthetic.” He concludes that musical
knowledge is required within the rule representation
system in order for the system to be musically
successful.

Gimenes [8] explores a memetic approach that
creates stylistic learning methods for rhythm generation.
RGeme “generates rhythm streams and serves as a tool
to observe how different rhythm styles can originate and
evolve in an artificial society of software agents.” Using
an algorithm devised by Martins et.al. [11] for
comparing similar rhythms, agents choose rhythmic
memes from existing compositions and generate new
streams. The highest scoring memes, however, proved
to be of questionable rhythmic interest.1

Pachet [14] proposes an evolutionary approach for
modelling musical rhythm. Agents are given an initial
rhythm and a set of transformation rules from a shared
rule library; the resulting rhythm is “the result of
ongoing play between these co-evolving agents.” The
agents do not actually communicate, and the rules are
extremely simple: i.e. add a random note, remove a
random note, move a random note. The system is more
of a proof of concept than a performance tool;
seemingly, it developed into the much more powerful
Continuator [15], which is a real-time stylistic analyzer
and variation generator.

Finally, Miranda [12] describes an unnamed rhythm
generator in which agents produce rhythms that are
played back and forth between agents. Successful
rhythms (those that are played back correctly) are
stored, and unsuccessful ones are eventually deleted,
while rhythms that are too close to each other are
merged by means of a quantiser mechanism. A
repertoire of rhythms eventually emerges, which
Miranda suggests is a cultural agreement between
agents. This suggests an interesting possibility for
evaluating rhythms outside of a database.

3. AGENTS IN KINETIC ENGINE

For a detailed explanation of Kinetic Engine and its use
in the performance Drum Circle, as well as its
implementation in Max/MSP, see [7].

Agent-based systems allow for little user interaction
or supervision. While this may seem like a limitation to
some readers, this forces more higher-level decisions to
be made in software. As such, this models interactions
between intelligent improvising musicians, with a
conductor shaping and influencing the music, rather
than specifying what each musician/agent plays. This is,
in fact, the model within Kinetic Engine.

Kinetic Engine runs as a distributed network, in
which each computer operates as a separate agent, or
internally within a single computer. In the latter case,
the number of agents is limited due to processing

1 The two highest scoring memes were [11111111] and [01111111],
where 1 is a note, and 0 a rest, in a constant rhythm (i.e. one measure
of eighth notes).

requirements. There are two agent classes: a conductor
and an indefinite number of players.

3.1. The Conductor Agent

The conductor agent (hereafter simply referred to as
“the conductor”) has three main functions: firstly, to
handle user interaction; secondly, to manage (some)
high-level organization; thirdly, to send a global pulse.

Kinetic Engine is essentially a generative system,
and user interaction is limited to controlling density –
the relative number of notes played by all agents. This
value can be set directly via a graphic slider or an
external controller2. The user can also influence the
system by scaling agent parameters (see section 3.2).

Metre, tempo, and subdivision are set prior to
playing by the conductor; these values remain constant
for the duration of a composition. The user can force a
new composition, which involves new choices for these
values. Each of these values is dependent upon previous
choices using methods of fuzzy logic; for example, if
the first tempo was 120 BPM, the next cannot be 116,
120, or 126 (which would be deemed to be “too close”
to be considered new). If the second tempo was “close”
to the previous (i.e. 108/112 or 132/138), then the next
tempo would have to be significantly different.

The conductor also manages the initialization
routine, in which agents register and are assigned unique
IDs. A more truly evolutionary model eventually could
be used, in which agents are created and destroyed
during the performance, modeling the notion of
musicians entering and leaving the ensemble.

The conductor also sends a global pulse, to which all
player agents synchronize.

3.2. The Player Agents

Upon initialization, player agents (hereafter referred to
simply as “agents”) read a file from disk that determines
several important aspects about their behaviour; namely
their type and their personality.

Type can be loosely associated with the type of
instrument an agent plays, and the role such an
instrument would have within the ensemble. See Table 1
for a description of how type influences behavior.

 Type Low Type Mid Type High

Timbre low frequency:
 • bass drums

midrange
frequency:
 • most drums

high frequency:
 • rattles,
 • shakers,
 • cymbals

Density lower than
average

average higher than
average

Variation less often average more often

Table 1. Agent types and their influence upon agent
behaviour.

Agents also assume personality traits. These
parameters include Downbeat (preference given to notes
on the first beat), Offbeat (propensity for playing off the

2 In the case of Drum Circle, this was a data-glove.

beat), Syncopation (at the subdivision level), Confidence
(number of notes with which to enter), Responsiveness
(how responsive an agent is to global parameter
changes), Social (how willing an agent is to interact
with other agents), Commitment (how long an agent will
engage in a social interaction), and Mischievous (how
willing an agent is to upset a stable system). A further
personality trait is Type-scaling, which allows for agents
to be less restricted to their specific types3. See figure 1
for a display of all personality parameters.

Fig. 1. Personality parameters for a player agent.

4. AGENT ACTIVATION

A performance begins once the conductor starts
“beating time” by sending out pulses on each beat.
Agents independently decide when to activate
themselves by using fuzzy logic to “wait a bit”. This is
one attempt to accommodate “human time” within the
system. It would be possible, for example, to calculate
complex interactions between agents within
milliseconds; however, such interactions take many
measures to evolve between humans. As such, agents
independently evaluate, and re-evaluate, their
surroundings (in this case, whether to activate or not)
every few beats.

Agents determine whether to activate by testing their
own responsiveness parameter: less responsive agents
will take longer to react to the conductor's demands.

When an agent becomes active, it calculates its own
density.

4.1. Fuzzy Logic

As well as time, Kinetic Engine also attempts to model
human approximation of values, specifically to judge
success. In the case of density, agents are unaware of the
exact global density required (an value between 0.0 and
1.0). Instead, the conductor uses fuzzy logic to rate the
global density as “very low”, “low”, “medium”, or
“high”. Imagine a conductor holding her hand out in
front of her - low being closer to the ground – and
raising and lowering the hand. Musicians would tend to
break the many slight variations of hand position into
fewer general positions4.

 Agents know the average number of notes in a
pattern based upon this rating, which is scaled by the
agent’s type and type-scaling parameter. Agents

3 For example, low agents will tend to have lower densities than other
types, but a low agent with a high type-scaling will have higher than
usual densities for its type.
4 This is not based upon cognitive models, at least not on any other
than my own.

generate individual densities after applying a Gaussian-
type curve to this number, and broadcast their density.

The conductor collects all agent densities, and
determines whether the accumulated densities are “way
too low/high”, “too low/high”, or “close enough” in
comparison to the global density, and broadcasts this
success rating.

• if the accumulated density is “way too low”, non-
active agents can activate themselves and generate new
densities (or conversely, active agents can deactivate if
the density is “way to high”).

• if the accumulated density is “too low”, active
agents can add notes (or subtract them if the density is
“too high”).

• if the accumulated density is judged to be “close
enough”, agent densities are considered stable.

5. SOCIAL BEHAVIOUR

Once all agents have achieved a stable density and have
generated rhythmic patterns based upon this density5,
agents can begin social interactions.

Social interaction emulates how musicians within an
improvising ensemble listen to one another, make eye
contact, then interact by adjusting and altering their own
rhythmic pattern in various ways. In order to determine
which agent to interact with, agents evaluate6 other
agent’s density spreads - an agent’s density distributed
over the number of beats available, given the
composition’s metre.

An agent generates a similarity and dissimilarity
rating between itself and every other active agent. The
highest overall rating will determine the type of
interaction: a dissimilarity rating results in rhythmic
polyphony (interlocking), while a similarity rating
results in rhythmic heterophony (expansion).

Once another agent has been selected for social
interaction, the agent attempts to “make eye contact” by
messaging that agent. If the other agent does not
acknowledge the message (its own social parameter may
not be very high), the social bond fails, and the agent
will look for other agents with which to interact.

5.1. Interaction types

In polyphonic interaction, agents attempt to “avoid”
partner notes, both at the beat and pattern level: both
agents attempt to move their notes to where their
partner’s rests occur.

In heterophonic interaction, agents alter their own
density spread to more closely resemble that of their
partner, but no attempt to made to match the actual note
patterns. See [7] for a detailed discussion of interactions.

5 For a detailed description of how an agent’s density is translated into
rhythmic patterns, see [7].
6 Evaluation methods include comparing density spread averages and
weighted means, both of which are fuzzy tests.

6. EVOLUTION OF AGENTS

Agents adapt and evolve their personalities over several
performances, and within the performance itself. After
each composition (within the performance), agents
evaluate their operation in comparison to their
personality parameters. For example, an agent that was
particularly active (which relates to both the
responsiveness and confidence parameters) during one
composition, might decide to “take a rest” for the next
composition by temporarily lowering these parameters.

Agents also judge their accumulated behaviours over
all compositions in a performance in relation to their
preferred behaviour (as initially read from disk), and
make adjustments in an attempt to “average out” to the
latter. At the end of the performance (of several
compositions), the user can decide whether to evolve
from that performance. Comparing the original
parameter with the final accumulated history, an
exponential probability curve is generated between the
two values, and a new personality parameter – close to
the original, but influenced by the past performance – is
chosen and written to disk, to be used next performance.

7. CONCLUSION AND FUTURE WORK

This paper presented methods of using multi-agents to
create complex polyphonic rhythmic interactions that
evolve in unpredictable, yet musically intelligent ways.
The software has already been premiered, generating
music that can be described as displaying emergent
properties.

There are several planned strategies for improving
the machine musicianship of Kinetic Engine, including
the use of a dynamic rule base to avoid a homogeneity
of rhythms, the ability for agents to become soloists, the
ability to incorporate predefined (scored) ideas, and the
ability to interact with human performers.

Example music created by Kinetic Engine is
available at www.sfu.ca/~eigenfel/research.html.

8. REFERENCES

[1] Benson, B. E. The Improvisation of Musical
Dialogue, Cambridge University Press, 2003.

[2] Brown, A. “Exploring Rhythmic Automata”
Applications On Evolutionary Computing,
Vol.3449, pp. 551-556, 2005.

[3] Burtner, M. “Perturbation Techniques for
Multi-Agent and Multi-Performer Interactive
Musical Interfaces” NIME 2006, Paris, France,
2006.

[4] Dahlstedt, P., McBurney, P. “Musical agents”
Leonardo, 39 (5): 469-470, 2006.

[5] Dixon, S. “A lightweight multi-agent musical
beat tracking system” in Pacific Rim
International Conference on Artificial
Intelligence, pp. 778–788, 2000.

[6] Eigenfeldt, A. “Kinetic Engine: Toward an
Intelligent Improvising Instrument”
Proceedings of the 2006 Sound and Music
Computing Conference, Marseilles, France,
2006.

[7] Eigenfeldt, A. “Drum Circle: Intelligent Agents
in Max/MSP”, Proceedings of the International
Computer Music Conference, Copenhagen,
Denmark, 2007.

[8] Gimenes, M., Miranda, E.R., Johnson, C.
“Towards an intelligent rhythmic generator
based on given examples: a memetic approach”
Digital Music Research Network Summer
Conference, 2005.

[9] Goto, M., Muraoka, Y. “Beat Tracking based
on Multiple-agent Architecture - A Real-time
Beat Tracking System for Audio Signals”
Proceedings of The Second International
Conference on Multi-agent Systems, pp.103–
110, 1996.

[10] Horowitz, D. “Generating rhythms with genetic
algorithms” Proceedings of the International
Computer Music Conference, Aarhus
Denmark, 1994.

[11] Martins, J., Miranda, E.R. “A Connectionist
Architecture for the Evolution of Rhythms”
http://cmr.soc.plymouth.ac.uk/publications/Evo
musart06_Joao.pdf , 2006.

[12] Miranda, E.R. “On the Music of Emergent
Behaviour. What can Evolutionary
Computation bring to the Musician?”
Leonardo, v.6 n.1, 2003.

[13] Murray-Rust, D., Smaill, A. “MAMA: An
architecture for interactive musical agents”
Frontiers in Artificial Intelligence and
Applications Volume 141, 2006 ECAI 2006 -
17th European Conference on Artificial
Intelligence, 2006.

[14] Pachet, F. “Rhythms as emerging structures”
Proceedings of the 2000 International
Computer Music Conference, Berlin, ICMA,
2000.

[15] Pachet, F. “The Continuator: Musical
Interaction With Style” Journal of New Music
Research, v.32, I.3, pp. 333-341, 2003.

[16] Woolridge, M., Jennings, N. R., “Intelligent
agents: theory and practice” Knowledge
Engineering Review, 10, 2, 115-152, 1995.

[17] Wulfhorst, R.D., Flores, L.V., Flores, L.N.,
Alvares, L.O., Vicari, R.M. “A multi-agent
approach for musical interactive systems”
Proceedings of the second international joint
conference on Autonomous agents and multi-
agent systems, pp. 584–591, 2003.

