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Abstract—Most existing soft-processors on FPGAs today sup-
port a fixed-latency instruction pipeline. Therefore, for integer
division, a simple fixed-latency radix-2 integer divider is typically
used, or algorithm-level changes are made to avoid integer
divisions. However, for certain important application domains
the simple radix-2 integer divider becomes the performance
bottleneck, as every 32-bit division operation takes 32 cycles.

In this paper, we explore integer divider designs for FPGA-
based soft-processors, by leveraging the recent support of
variable-latency execution units in their instruction pipeline. We
implement a high-performance, data-dependent, variable-latency
integer divider called Quick-Div, optimize its performance on
FPGAs, and integrate it into a RISC-V soft-processor called
Taiga that supports a variable-latency instruction pipeline. We
perform a comprehensive analysis and comparison—in terms of
cycles, clock frequency, and resource usage—for both the fixed-
latency radix-2/4/8/16 dividers and our variable-latency Quick-
Div divider with various optimizations. Experimental results on
a Xilinx Virtex UltraScale+ VCU118 FPGA board show that our
Quick-Div divider can provide over 5x better performance and
over 4x better performance/LUT compared to a radix-2 divider
for certain applications like random number generation. Finally,
through a case study of integer square root, we demonstrate that
our Quick-Div divider provides opportunities for reconsidering
simpler and faster algorithmic choices.

I. INTRODUCTION

Division, one of the fundamental arithmetic operations, is
utilized in a range of computations from the simple, such as
non-power-of-two indexing and random number generation [1]
to complex use cases such as image processing [2]. There
are mainly two types of dividers: floating-point/fixed-point
dividers that produce a single fraction quotient; and integer
dividers that return two integer results, including a quotient
and a remainder. Over the years, the floating-point/fixed-
point divider has received considerably more attention and
design improvements in both commodity hard processors and
FPGA-based soft-processors [2]–[8], due to its frequent usage
in applications. Meanwhile, integer divider improvement has
been overlooked, due to its less frequent usage and the fact
that it can be emulated with a floating-point/fixed-point divider
with a sufficient degree of numerical precision. As a result, the
floating-point dividers in most commodity x64 processors are
capable of outperforming the integer dividers by nearly 2x in
throughput when calculating 32-bit integer divisions [9].

To overcome the inefficiency of integer division on com-
modity x86 processors, compiler optimizations and efficient
libraries are usually exploited to avoid using the underlying
integer dividers directly. This has led to proposals for utiliz-
ing double-precision floating point logic to accelerate 32-bit

integer division, compiling programs with predefined divisors,
or to avoid integer division all together through algorithmic
choices [9]. Although these optimizations may sometimes be
effective for x64 processors, in an FPGA-based soft-processor,
where hardware resources are often constrained, emulating
integer division using a floating-point/fixed-point divider is
inefficient in terms of performance/resource. For example, a
typical FPGA 64-bit floating-point divider occupies a few
thousand LUTs, more than 10x that a simple radix-2 32-bit
integer divider uses [4], [6].

In fact, most existing FPGA-based soft-processors—
including the widely used MicroBlaze [10], NIOSII [11] and
the LEON3 processor [12]—use a simple fixed-latency radix-
2 divider with 32 cycles of latency, if they support an integer
divider at all. The choice of a simple radix-2 divider is made
based on its smaller resource usage and the fact that most of
these soft-processors implement a simple instruction pipeline
that only supports fixed-latency arithmetic logic units (ALUs).
While simple arithmetic operations typically only take one or
two cycles, the 32-cycle radix-2 divider makes integer division
one of the slowest operations in the soft-processors. This
can cause a significant performance loss for certain important
application domains that heavily use integer divisions, such as
random number generation, non-power-of-two indexing, and
data shuffling [9]. For example, for random number generation,
our experimental results show that the simple radix-2 divider
can cause more than 5x performance slowdown compared to
an optimized divider implementation.

In this paper, we explore integer divider design for FPGA-
based soft-processors, optimizing for performance and per-
formance per LUT with the constraint of not reducing the
soft processor’s operating frequency. By leveraging the sup-
port of variable-latency operations in Taiga [13], we ex-
plore both fixed-latency radix-based (radix-2/4/8/16) dividers
and variable-latency, data-dependent integer dividers. With a
quantitative analysis and comparison in terms of operating
cycles, clock frequency and resource usage, we find that
our optimized variable-latency data-dependent integer divider,
Quick-Div, can outperform the widely used radix-2 divider by
over 5x in performance and over 4x in performance/LUT, in
certain applications like random number generation. Finally,
to demonstrate that our Quick-Div divider offers opportunities
for simpler and faster algorithms for design problems that use
integer divisions, we also conduct a case study for integer
square root: with our Quick-Div, a straightforward algorithm
using integer division can now outperform a more complex
division-avoiding algorithm by 1.6x in performance.



In summary, this paper makes the following contributions.
1. A comprehensive analysis and comparison of various fixed-

latency and variable-latency integer dividers, including their
operating cycles, clock frequency, and resource usage.

2. A highly-optimized variable-latency integer divider, called
Quick-Div, which provides better performance and perfor-
mance/resource for FPGA-based soft-processors.

3. A case study demonstrating that our Quick-Div can provide
simpler and faster algorithm choices for soft-processors.

II. BACKGROUND AND RELATED WORK

A. Basics of Integer Dividers
Integer dividers, also called whole dividers, calculate the

quotient and remainder of the divisor from the dividend, all
of which are integer numbers, such that 1) the dividend equals
the sum of the remainder and the product of the divisor and
the quotient, and 2) the remainder is less than the divisor and
non-negative. Next we describe the two major integer dividers:
fixed-latency and variable-latency dividers.

1) Fixed-Latency Radix-based Divider: A (32-bit) radix-2
integer divider has a fixed latency of 32 cycles and is the most
widely used integer divider in today’s soft-processors, since it
consumes minimal resources and can be easily integrated into
most soft-processor’s fixed-latency instruction pipeline.

A general fixed-latency radix-N division algorithm deter-
mines the quotient from the most significant bit to the least
significant bit. Each cycle, log2N bits of the quotient is
determined, representing the largest divisor multiple subtracted
from the corresponding log2N bits of the dividend. The
remainder of that is called the partial remainder and is carried
over to the new dividend bits for the next cycle. This process
continues until all quotient bits have been determined. At
the end of the algorithm, the partial remainder becomes the
remainder as no further divisor multiples can be subtracted.

The latency for a radix-N divider is determined by the bit
width of the longest operand (i.e., 32 in an 32-bit integer
divider), as well as the number of quotient bits that the divider
calculates per cycle, i.e., log2N . Analytically, the latency is
ceil(32/log2N ). Meanwhile, resource usage scales with the
radix number as it indicates the number of trial subtractions
required to find the quotient. In the context of a FPGA-based
soft-processor, where resource is limited, high-radix integer
dividers such as radix-16 or higher are not practical options
as is shown in this paper.

2) Variable-Latency Data-Dependent Divider: Another al-
ternative is a variable-latency data-dependent divider, where
the algorithm mirrors a standard process for long division by
hand: for each iteration, the largest multiple of the divisor
that is less than the dividend is found. This approach leads to
a result that produces one non-zero digit of the quotient per
cycle, thus only requiring the same number of cycles as the
number of set bits in the resulting quotient.

Figure 1 provides pseudo code for the division algorithm.
In each cycle, the partial remainder is compared against the
divisor as an exit condition, which we call early-termination.
This comparison provides an early exit if the divisor is greater
than the dividend; a common practical case of this is using

Remainder = Dividend, Quotient = 0

while (Remainder > Divisor) {

EstimatedDivsor = 2msbΔ * Divisor

A = Remainder - EstimatedDivsor

B = Remainder - EstimatedDivsor/ 2

Quotient[(A < 0) ? msbΔ-1 : msbΔ] = 1      

Remainder = (A < 0) ? B : A

}

msbΔ =  log2(Remainder)  -  log2(Divisor)

Fig. 1. Variable-latency integer divider algorithm

the modulus operator for non-power-of-two indexing. Next, to
find the highest multiple of the divisor that is less than the
partial remainder, we first find the most-significant-bit (MSB)
for both the divisor and the partial remainder, where MSB is
equivalent to the floor of log2 of the number. The difference
between the two MSBs is the bits that we should left shift
the divisor by to align it with the partial remainder. However,
as this difference only compares the MSBs for both numbers,
it can overestimate the difference resulting in a subsequent
subtraction that overflows, when the shifted trial divisor is
larger than the dividend. As such, in the case where the
estimated divisor overflows, we left shift the divisor by one
bit less and perform a second subtraction.

B. Related Work in Dividers for Soft-Processors

1) Related Work in Floating-Point/Fixed-Point Dividers:
Due to the importance of floating-point/fixed-point arithmetic
in signal processing and other applications on FPGA-based
soft-processors, various aspects of floating-point/fixed-point
dividers for FPGAs have been explored [2]–[8]. Hemmert
et al. explored floating-point divider design across a wide
range of design constraints, from pipelined to iterative, as
well as division algorithms such as non-restoring and SRT [3].
Likewise, Sutter et al. presented divider architectures for non-
restoring power-of-two radix algorithms [7] and studied SRT
dividers for FPGAs [8]. Both non-restoring and SRT algo-
rithms have a shorter critical path allowing dividers to run at
a higher operating frequency. However, for radix-r dividers up
to radix-8, in this work the soft-processor will be the limiting
factor in determining the clock frequency thus optimizations
for divider operating frequency do not result in increases in
performance. Additionally, for the SRT division algorithms,
operands are required to be scaled and normalized, which adds
extra overhead to the computation in terms of resource usage
and latency. Fang et al. and Liebig et al. investigated floating-
point division algorithms for FPGAs [4], [6] that offer lower
latencies compared to today’s commercial dividers from FPGA
vendors, but require extra DSP multiplier blocks and BRAMs.
One of Liebig et al’s designs was able to achieve latency as
low as 8 cycles, same as a radix-16 integer divider; however, it
has a hardware resource usage twice as much as the radix-16
divider investigated in this paper. Moreover, additional logic
and cycles would be required to compute integer division using
a floating-point divider.



2) Related Work in Integer Dividers: Existing soft-
processors–including the widely used MicroBlaze [10],
NIOSII [11] and the LEON3 processor [12]–use a simple
fixed-latency radix-2 divider, and all make the inclusion of
the divider optional. While algorithms for hardware are often
designed to avoid integer division, next we discuss a few cases
where high-performance integer dividers are investigated.

Dinechin et al. looked into ways to efficiently compute
division by small constants [14]. However, for a soft-processor,
full processor data width divisions and remainder operations
are required, preventing the techniques in this work from
being applied. Variable-latency data-dependent integer divider
designs have been investigated in two master’s theses by
Khan [15] and Trummer [16]. In [15], a per-iteration aligning
divider is presented. However, it is implemented as a 32-
bit dividend, 17-bit divisor for random number generation,
and no latency analysis is provided for different data sets.
In [16], a per-iteration aligning divider is also presented,
which is investigated for standalone usage only. However, it
does not present resource usage or operating clock frequency.
Only weighted average cycles of the dividers are compared
through algorithmic simulation. None of the published work
has focused on optimizing the variable-latency data-dependent
divider designs for FPGAs, provided detailed characterization,
or explored their integration into FPGA-based soft-processors.

With the introduction of open-source soft-processors (e.g.,
Taiga [17]) that support variable-latency execution units, it
provides opportunities to investigate variable-latency integer
dividers in a soft-processor environment. In contrast to Trum-
mer’s and Khan’s work, we are able to provide a comprehen-
sive analysis of various integer dividers, optimize the variable-
latency data-dependent integer divider, and integrate it within
a soft-processor, with the goal to achieve the best performance
and performance per LUT for FPGA-based soft-processors.

III. THE QUICK-DIV DIVIDER

In this section, we characterize the variable-latency data-
dependent integer divider (called Quick-Div in this paper),
discuss its implementation and optimization on FPGAs, and
integrate it with state-of-the-art RISC-V soft-processor Taiga.

Compared to the widely-used radix-2 integer divider that has
a fixed latency of 32 cycles, a key property of the variable-
latency Quick-Div integer division algorithm (presented in
Section II-A2) is that: the closer the dividend and divisor
are in magnitude, the fewer cycles the algorithm will take
to complete: if the two (decimal) numbers differ by a factor
of N or less, the divider will take at most log2N iterations.
Additionally, when both the dividend and divisor are power-
of-two numbers, it requires only a single iteration.

To characterize the behaviour of the Quick-Div divider, we
examine how the average latency of the divider scales as the
bit-width of the divider is increased. For the smaller bit-widths,
all pairs were tested exhaustively; and for larger bit-widths,
100 billion number pairs were randomly generated from a
uniform distribution. This test was repeated ten times with
different random seeds with negligible variation: less than 1%
variation across the runs in terms of the latency distribution.
As shown in Figure 2(a), as the bit-width of the Quick-Div
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Fig. 3. Variable-latency Quick-Div divider hardware implementation

divider increases, the average latency of the division increases
up to approximately 1.69 cycles and then flattens out, which
is much more attractive than the N cycles latency for a radix-2
based N-bit integer divider.

To understand how the low average latency is achieved,
we further break down the access latency distribution for the
32-bit Quick-Div divider. As shown in Figure 2(b), the vast
percentage of divisions take only a few cycles (cycles shown
in x-axis) to complete. While most pairings take only a few
cycles, there is a long tail to the distribution as 32 iterations is
still possible. However, only one number pair, ((232 − 1)/1),
will actually take 32 iterations (i.e., 33 cycles).

A. Quick-Div Divider Design
The initial Quick-Div implementation closely follows the

pseudo-code that was presented in Figure 1. A schematic of
the circuit, along with changes to improve clock frequency and
details on the design’s critical path is presented in Figure 3.
The floor of log2 operations are computed by finding the most
significant bit (MSB) for the divisor and partial remainder.
In the initial design iteration, these are implemented as 32-
bit priority encoders. The difference between the MSBs is
used to shift the divisor (the power-of-two multiply) and to
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generate the new bit to set for the quotient. Two subtractions
are performed in parallel, with the overflow bit of the es-
timated divisor as the mux select bit to determine the final
partial remainder and quotient bit. The termination condition
is provided by a separate comparator that checks for when the
divisor is greater than the current partial remainder.

The critical path of the design, highlighted as red line in
Figure 3, was found to be from the partial remainder, through
the MSB delta computation, shift, subtract and final mux.
Splitting this set of operations would result in reducing the
throughput of the divider, as such, we focused on investigating
other ways of improving the clock frequency.

B. Clock Frequency Optimization
The development of this divider was driven by a desire to

improve the performance of division for FPGA-based soft-
processors. As such, an important consideration is that the
divider should not reduce the operating frequency of the
processor in order to be suitable as a complete replacement of
the standard radix-2 divider. The initial Quick-Div implemen-
tation was found to be in the critical path of small processor
configurations. To alleviate this performance bottleneck, we
investigate several optimizations to the design.

Trial #1: Hierarchical MSB design: The first optimization
investigated was to replace the 32-bit MSB priority encoder
with a tree structured MSB design. However, this approach
provided little benefit as it did not reduce the delay on the
least significant bits which are the bits needed first for the
delta MSB subtraction.

Trial #2: Avoiding MSB delta and use pre-shift divisor:
Instead of using the MSB delta to perform the divisor shifting,
we split the shifting operation into two parts. As an initializa-
tion step we right shift the divisor by the divisor’s MSB, then
the divisor is left shifted by the partial remainder’s MSB each
cycle. However, this leads to a potential 64-bit result for the
right shifted divisor (to avoid losing divisor bits), and a 64-bit
to 32-bit left shift when left shifting by the partial remainder’s
MSB. This negates some of the benefit of pre-shift the divisor.

Trial #3: Using Count Leading Zero (CLZ): The next
optimization was to replace the MSB logic with Count Leading
Zero (CLZ) logic. CLZ can be calculated with the same kind
of circuit (it is equivalent to 32 − MSB). With CLZs, the
directions of the shifts can be reversed: we first left shift
the divisor by the divisor’s CLZ, and then right shift it by
the partial remainder’s CLZ. Using CLZs, we know that the
divisor will not be shifted outside of a 32-bit bound, and thus
reduces the storage to 32-bits and the shifts to 32-bits.

Final choice: optimized CLZ, i.e., quick-clz: Finally, we
created an optimized version of the CLZ circuit, shown in
Figure 4, which computes the upper two bits of the result in
one less level of logic than the remaining three bits. As the
upper two bits take one less level-of-LUTs, they can drive
the select logic for the first stage of the shift operation while
the lower bits are being determined thus reducing the overall
levels of logic for the critical path. The highest bit, bit index
4, indicates that there are at least 16 leading zeros. This can be
implemented by comparing the upper 16 bits against zero. Bit
index 3 is one if there are at least 24 leading zeroes (when bit
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4 is 1) or if there are between 8 and 15 leading zeros (when
bit 4 is 0). Similarly, we can calculate the value for the rest of
the bits. For bit index 2, the comparisons are made on groups
of four bits. Finally, for bit indexes 1 and 0, this would result
in comparisons needing 30 and 31 bits. As such, we look at
computing the CLZ for 4-bit intervals, mux the results pair-
wise, using whether the upper pair is all zeros, before using
the upper two bits of the CLZ result to mux the final result for
bits 1 and 0. This approach reduces the LUTs required from
30 to 19, and reduces the levels-of-LUTs from three to two
for the upper two bits of the CLZ output.

With this optimized CLZ implementation (called quick-clz),
the Quick-Div improves the clock frequency by 81MHz, while
slightly increasing resource usage, compared to the baseline
design without any of these optimizations (called quick-naive).
This places the Quick-Div’s clock frequency safely above the
Taiga soft-processor’s clock frequency, such that it does not
show up in the critical path of the processor.

C. Worst case division optimization: quick-clz-2bit
As discussed in Section III, the Quick-Div divider’s worst

case is dividing numbers with a large number of set bits by a
number with only a few or one set bit. One approach to im-
prove such cases would be to try and resolve two consecutive
bits per cycle. This is the equivalent of determining if both the
estimated divisor and the “safe” divisor can be subtracted from
the partial remainder. This adds a third subtractor to the design
and increases the final multiplexer size, while reducing some
worst case latencies by half, e.g. (232−1/1) would now require
16 iterations as opposed to the original 32. In Section IV, we
will show that while this can help in a few rare corner cases, in
practice it has little benefit and it lowers the frequency below
what was gained by our initial optimizations (i.e., quick-clz).

D. Integration into Taiga Soft-Processor
Finally, we also integrate our variable-latency Quick-Div

dividers with the RISC-V soft-processor Taiga [13], [17],
which is open-source and supports a seamless integration of
variable-latency execution units. As our Quick-Div dividers
are unsigned, they can require sign conversion before and
after completing depending on the instruction operands and
type. However, we did not need to make any modifications



to Taiga for this as its division unit was already structured to
perform sign conversions around the existing radix-2 divider.
As we wish to evaluate whether the Quick-Div divider can be a
complete replacement for the standard radix-2 divider, we have
configured the processor with a minimal single-issue high-
performance configuration to show that there are performance
and performance/LUT benefits even for smaller processor
configurations. This configuration includes 16KB of shared
instruction/data local memory, a 512 entry branch predictor,
an AXI bus interface for a UART and no exception/interrupt
support or caches. For more details of the Taiga processor, we
refer the audience to the Taiga papers [13], [17].

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Dividers for Comparison: We evaluate a comprehensive
set of radix-based fixed-latency dividers and our variable-
latency Quick-Div dividers, all of which operate on unsigned
integer numbers. The radix-based dividers include the radix-2
divider from Taiga [17] and radix-4, 8 and 16 dividers that we
implemented. Additionally, as one of the performance benefits
of the Quick-Div design is the early termination when the
divisor is larger than the dividend, we also applied these mod-
ifications for the radix-r dividers, and labelled them with the
suffix Early-Termination (ET). For radix-2 we also investigated
a design that can terminate whenever all bits of the quotient
have been determined, which is labelled Early-Termination-
Full (ETF). For our Quick-Div dividers, we evaluate three
versions: 1) Quick-Naive, which is the initial design presented
in Section III-A without any optimization, 2) Quick-CLZ,
which is the version presented in Section III-B with clock
frequency optimizations using count leading zeros (CLZ),
and 3) Quick-CLZ-2BIT, which is the version presented in
Section III-C with worst case optimization.

2) Hardware and Software Setup: All resource usage and
frequency numbers have been collected for the Xilinx Virtex
UltraScale+ VCU118 board (XCVU9P-L2FLGA2104E) using
Vivado 2018.3 synthesis, place and route with all default
settings. We leave the detailed description of benchmarks into
Section IV-D. While the Taiga processor integrated with these
dividers is synthesized to run on-board, the detailed number
of instructions and cycles each benchmark takes is collected
through the open-source Verilator simulator [18] that simulates
the full processor system.

B. Divider Latency Comparison

Table I presents min, max and average cycles for each
divider derived by analytical means for the radix-r dividers
and by running 100 billion pairs of two uniformly distributed
random numbers for the variable-latency dividers. The early-
terminate dividers have a lower min and average latency as
half of all random number pairs will result in triggering
the early-termination paths in those dividers. For the radix-
r dividers with early-termination, the termination logic is
performed before they start during the sign conversion stage,
thus reducing their contribution to the division instruction

TABLE I
MIN, MAX, AND AVERAGE CYCLES FOR RADIX-BASED DIVIDERS AND

Quick-Div DIVIDERS FOR RANDOM UNIFORMLY DISTRIBUTED NUMBERS.

Divider Cycles Min Max Avg
Radix-2 32 32 32

Radix-2-ET 0 32 16
Radix-2-ETF 1 32 16.5

Radix-4 16 16 16
Radix-4-ET 0 16 8

Radix-8 11 11 11
Radix-16 8 8 8

Quick-Naive 1 32 1.69
Quick-CLZ 2 33 2.69

Quick-CLZ-2BIT 2 33 2.66
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Fig. 5. Operating frequency and resource usage for standalone dividers: the
red line is the target frequency

latency to zero. In terms of instruction execution time, the
division latency has an additional 3 cycles over the values in
the table due to potential sign conversion operations inside the
processor’s division execution unit.

C. Resource Usage and Frequency Comparison

1) Standalone Quick-Div Divider Comparison: Figure 5
presents the resource usage and frequency for each divider
implementation when placed and routed as a standalone com-
ponent. All I/Os are registered so as not to be impacted by pin
assignment and clock frequency targets are set separately for
each divider as there is a large span in achievable frequencies.
The red line in the figure—the max frequency that the inte-
grated Taiga-radix-2 configuration can achieve—is the target
frequency that all standalone dividers need to reach in order
to not immediately be the critical path of the processor.

As shown in Figure 5, the initial implementation of the
Quick-Div algorithm did not meet the required timing thresh-
old. However, the optimized Quick-CLZ version improved
the clock frequency by 81MHz (24%) over the Quick-Naive
version, putting its clock frequency at 426MHz, well above the
373MHz threshold. The Quick-CLZ-2BIT version degrades
the clock frequency, as it increases the critical path as ex-
plained in Section III-C. So, from all three versions of our
Quick-Div, we choose the Quick-CLZ as our final version.

All radix-based dividers meet the target clock frequency
except for radix-16 due to the large number of comparisons
required to generate its quotient bits. Additionally, the radix-
16 divider requires the largest amount of LUTs approximately
double of that the Quick-CLZ divider requires. We still in-

aleclu
Highlight



 0

 500

 1000

 1500

 2000

 2500

LUTs FFs Freq
 0
 50
 100
 150
 200
 250
 300
 350
 400

# 
of

 L
U

Ts
/F

Fs

Fr
eq

ue
nc

y 
(M

H
z)

NO-DIV
RADIX-2

RADIX-2-ET

RADIX-2-ETF
RADIX-4

RADIX-4-ET

RADIX-8
RADIX-16

QUICK-NAIVE

QUICK-CLZ
QUICK-CLZ-2BIT

 0

 500

 1000

 1500

 2000

 2500

LUTs FFs Freq
 0
 50
 100
 150
 200
 250
 300
 350
 400

# 
of

 L
U

Ts
/F

Fs

Fr
eq

ue
nc

y 
(M

H
z)

NO-DIV
RADIX-2

RADIX-2-ET

RADIX-2-ETF
RADIX-4

RADIX-4-ET

RADIX-8
RADIX-16

QUICK-NAIVE

QUICK-CLZ
QUICK-CLZ-2BIT

Fig. 6. Operating frequency and resource usage for the Taiga soft-processor
integrated with dividers

clude the radix-16 divider for performance evaluation, just to
demonstrate the effectiveness of our Quick-Div.

In terms of resource usage, for regular radix-N dividers,
the LUT usage (the dominating resource usage compared to
Flip-Flop) increases almost linearly with log2 of N. The early-
termination-full (Radix-2-ETF) optimization significantly in-
creases the LUT usage due to requiring shifters for early
extraction of the quotient and remainder. The Quick-CLZ’s
resource usage is approximately half way between the radix-
4 and radix-8 dividers. But as shown in Table I, the average
latency of Quick-CLZ is even lower than the radix-16 divider.

2) Taiga-Quick-Div Integration Comparison: Figure 6
presents the frequency and resource usage for the dividers
when integrated into the Taiga processor. We initially found
a large variance of more than 20% in the clock frequency
obtained by Vivado 2018.3 for this small system, with the no-
divider configuration sometimes obtaining the lowest operating
frequency. To reduce the variation, we tried to introduce
randomness into the placer as discussed in [19]: We added a
module to the design—where multiple signals throughout the
design are AND-ed with a mask, OR-ed together and assigned
to a pin—to prevent the logic from being optimized away.
While not a true solution, the frequency variation to within
3%. Additionally, while the Quick-Naive version is reasonably
close to the target frequency, it is the critical path in each case;
whereas the Quick-CLZ divider is not the critical path in any
test case. This further confirms our choice of Quick-CLZ as
our final Quick-Div implementation.

In terms of the overall resource overhead, the simplest radix-
2 divider integration uses 189 more LUTs, or 14% more LUTs,
compared to the Taiga processor without any divider. Between
radix-2 and Quick-CLZ, there is a further 16% increase in
LUT usage, or 252 more LUTs. In this paper, we purposely
selected a small configuration for the baseline Taiga processor
to show that if Quick-CLZ provides the highest performance
per LUT for this configuration it will hold for larger processor
configurations as well.

D. Performance and Performance/Resource Comparison

1) Microbenchmark Analysis: To analyze the performance
and performance/resource of our Quick-Div in relation to the
other dividers, we first created a variety of microbenchmarks
to explore different characteristics of the dividers. All tests

are performed by iterating over arrays of uniformly randomly
distributed integer numbers. Unless stated otherwise, all mi-
crobenchmarks have four instructions following each division
that are not dependent on the division result, in order to
leverage Taiga’s support for out-of-order commits to obtain the
highest possible IPC (instruction per cycle). Figure 7 compares
the performance (IPC) of all dividers using the following
microbenchmarks.
1. div-by-one is a worst-case scenario for the Quick-Div

dividers. Here, one array of numbers is constantly divided
by one, (implemented with inline assembly to prevent the
compiler optimizing away the division). For Quick-Div, it
takes log2(dividend) cycles, and in the worst case where
the dividend is 232 − 1, 32 cycles. On average, 16-bits
per number will be set. Therefore, Quick-Naive and Quick-
CLZ achieve results in line with radix-4 which has a fixed
latency of 16-cycles. This test case also shows the potential
benefit of the Quick-CLZ-2BIT design which can generate
two consecutive bits of the quotient per cycle. Its IPC is
slightly lower than radix-8 due to an additional fixed cycle
of latency it has over the radix-8 design.

2. div-by-219-or-less is a case where the divisor is always 219

or less: 219 was found as the crossover point where Quick-
Div starts to perform better than radix-16.

3. div-always-less-than ensures that the divisor is less than
the dividend whereas div-rand does not. Between them we
see that the performance of the dividers is largely the same
with the exception of the early-termination designs. In the
div-rand benchmark, approximately half of the time, these
dividers can terminate before starting their iterative process.
In the case of radix-2, with an additional 36 LUTs for early
termination logic, performance can be improved by 39%.

4. divisor>quotient is a best case scenario where all divi-
sion operations can utilize the early-termination condi-
tion. For the radix-2 divider, the performance increase
with early-termination support can be up to 228%. For
divisor>quotient and a few other microbenchmarks we see
the original Quick-Naive implementation performs slightly
better than Quick-CLZ version: this is due to the extra
cycle of latency that Quick-CLZ has. However, we note
that the impact is limited to benchmarks where a large
proportion of division operations trigger early-termination
logic. Additionally, for this benchmark the radix-r-ET al-
gorithms perform slightly better than Quick-Div as they
have one cycle less latency for the early-termination case,
overlapping their early-termination with the cycle before
the division algorithm starts. The Quick-Div algorithms do
not do this as it would require additional resources.

5. non-power-of-two-index iterates through an array modulus
763 for an index up to 4*763. As such, the first quarter
will trigger early-termination logic, while the next three
quarters will be divisions that are very close in magnitude.
Thus, these divisions will complete in a most two iterations
for the Quick-Div dividers providing the large performance
benefit we see here for Quick-Div. For Quick-CLZ, this
results in a 3.8x increase in performance over radix-2.

6. branch-on-div-result illustrates the instruction pattern that
the next instruction after the division is a branch on the
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Fig. 8. Microbenchmark performance per LUT (IPC/LUT) comparison

division result, compared to div-rand where there are four
subsequent instructions that do not depend on the division
result. This increases the impact the division latency has,
and can be seen by the fact that the IPC for the Quick-Div
dividers have similar IPC to the div-rand case whereas the
performance of the radix-r dividers has decreased.

7. consecutive-div has four consecutive divisions, each divid-
ing the result of the previous division. It takes the trend in
branch-on-div-result further, with each division instruction
depending on the previous result. As such, the likelihood
of the divisor being larger than the dividend increases and
thus we see higher performance from early-terminate logic.
To summarize, besides division-by-one or cases where di-

vision/remainder operations always terminate early, Quick-Div
provides the highest performance gains lifting IPC values from
as low as 0.2 to 0.8 in some cases, which leaves little space
for further improvement for a single-issue processor design.

Figure 8 presents the results of Figure 7 normalized to each
processor configuration’s LUT count, i.e., performance/LUT.
Here the comparative advantage of the Quick-Div approach
increases over the higher radix dividers, as both radix-8 and
radix-16 dividers use more resources than Quick-Div. In terms
of performance per LUT, the Quick-Div is always better than
the radix-2 divider, which is the most widely used divider
choice for soft-processors.

2) Practical Benchmarks: Now we evaluate the perfor-
mance and performance/resource impact of the dividers for
benchmarks that represent practical use cases. We remove
the radix-2-ETF as its benefit was negligible over radix-2 in
the microbenchmarks examined. This is due to how radix-2
operates, resolving one bit per cycle starting with the most-
significant-bit. Thus terminating early with this approach can
only help if none of the low order bits are set for the
quotient, which rarely occurs (all odd quotients have the least-
significant-bit set). We also remove Quick-CLZ-2BIT as it did
not meet timing and only showed an improvement for the div-

by-one microbenchmark. Quick-Naive is also removed as it
did not meet timing.

The benchmarks we use include: Dhrystone [20], a standard
processor integer benchmark; random, a random number func-
tion based on C++11’s minstd_rand0 [21], which makes
use of the remainder; sqrt, a square root algorithm using New-
ton’s method [22]; prime-check, a benchmark that determines
if a number is prime through successive division; and rsa-32-
decrypt, a benchmark that performs 32-bit RSA decrypt [23],
which makes use of the remainder. Figure 9 presents the IPC
results for these benchmarks, for the remaining dividers, and
Figure 10 presents the performance per LUT results.

Dhrystone is an interesting case. Only approximately 0.24%
of dynamically executed instructions are divisions, however,
Quick-CLZ can provide a 7% increase in performance over a
radix-2 divider. As only multiply and load instructions have
latencies more than one cycle, the 32-cycle radix-2 divider can
have a reasonable impact on overall performance. Dhrystone is
the only case where Quick-CLZ does not provide the highest
performance per LUT, but the degradation is within 12%.

random performs similarly to the non-power-of-two mi-
crobenchmark. In this benchmark random numbers are gener-
ated with a remainder operation, resulting in a mixed amount
of modulus operations where the divisor is larger than the div-
idend. As a result, the early-terminate designs perform better
here than their non early-terminate counterparts. Here we see
a performance gain of over 5x for Quick-CLZ compared to
radix-2 and over 4x the improvement in IPC/LUT.

sqrt (newton’s) has lower IPC values as this benchmark
is similar to branch-on-div-result, where, immediately after
computing the division operation a branch is evaluated on
the result. Additionally, Quick-Div requires less iterations the
closer the log2 difference is between the two numbers. Square
root operations have a larger spread between the input and the
square root of the input, which lessens the benefit that Quick-
Div can provide.
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prime-check determines if a number is prime by successive
division. As the division starts from small numbers and is
dependent on previous results, this benchmark is similar to
branch-on-div-result and in between the div-by-one and the
div-by-219-or-less microbenchmarks in terms of performance
characteristics. Even so, it performs better than radix-8 and
has the highest performance per LUT. While radix-16 has
higher IPC, its performance would be lower as it lowers the
processor’s clock frequency by more than 20% compared to
our target frequency. Radix-16 is included as reference point
to compare the average number of cycles per division Quick-
CLZ takes for each scenario.

rsa-32-decrypt performs the RSA-32 decryption, which
utilizes the remainder operator. It provide a 1.5x speedup
compared to radix-2 and has the highest IPC per LUT.

In summary, through the addition of Quick-CLZ, application
performance can improve by over 5x in some cases. And even
in cases where only a fraction of one percent of instructions
are division operations, a respectable 7% improvement in
performance can be obtained.

V. CASE STUDY USING QUICK-DIV

To demonstrate that our Quick-Div divider provides oppor-
tunities for simpler and faster algorithmic choices on soft-
processors, we further investigate the square root benchmark as
introduced in Section IV-D. A quick Internet search produces
many different software implementations of integer square
root, with almost all of them avoiding the use of the division.
We chose the three best performing algorithms that avoid divi-
sions as comparison points against the Newton’s method [22]
that uses divisions.

The first algorithm shift-a [24] determines one bit of the re-
sult per iteration over 16 iterations, as the max square root for
a 32-bit number can be at most 216−1. The second algorithm
shift-b [24] finds the highest power-of-four less than the input
number, and performs only shifts and subtractions to obtain
the result. For smaller numbers, it requires less iterations than
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Fig. 11. Runtime comparison between different integer square root algo-
rithms: shift-a, shift-b, and multiply use division-avoiding algorithms

the shift-a algorithm. The third algorithm, which we labelled
as multiply [25], is one of only a few algorithms that uses
multiplications. This algorithm uses multiplication to square
the current guess and compare against the input number. Its
starting point for the guess is at 216.

Newton’s method requires one division per iteration and
uses the following formula where n is the number for which
you are finding the square root of: nextGuess = (guess +
n/guess)/2. The exit condition occurs when n/guess is
less than nextGuess. We experimented with different initial
guesses and approximations before settling on 216− 1, which
provides the best performance for this platform.

The results of the four benchmarks are plotted in Figure 11.
As all algorithms other than Newton’s do not use division,
only one data point is provided for them. As shown in
Figure 11, with only a radix-2 divider in the system, the
multiply algorithm provides the fastest runtime. However, for
any divider selection other than radix-2, Newton’s method
results in a better runtime. The overall speedup is 1.6x for
Quick-CLZ over the multiply algorithm, and the Quick-CLZ
design achieves the best performance per LUT.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown that large performance gains
are made possible by replacing the standard fixed-latency
radix-2 dividers widely used in today’s soft-processors with
our optimized variable-latency divider called Quick-Div. The
resulting performance and performance/LUT improvements
can be more than 5x and 4x, respectively. Even for benchmarks
with a small percent (0.24%) of division instructions, there is
still a noticeable (7%) performance improvement. An in-depth
characterization and comparison—in terms of performance, re-
source usage, and clock frequency—for the Quick-Div divider
and radix-based dividers was conducted to provide insight
into their potential use cases. Our case study illustrates that
current algorithm choices may need to be reevaluated due to
the performance gain obtained with our new Quick-Div divider.
In future work, we will explore compiler and library changes
to increase the use of division operations which are currently
assumed to be slow.
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