Exposures from Mask Aligner into Resist

- Mask aligner images created by shadowing from mask into resist
- Soft contact and Proximity good for 3 micron structures
- Vacuum Hard Contact: no shadow effects at edge but gets mask dirty
- Size of mask structure & wavelength determines distance
- Smaller line, or shorter wavelength closer object
- Exposure time T and total intensity I gives the exposure energy

\[E = TI \]

- T in sec, I in W/cm2, E in J/cm2

Table 7.4 Maximum allowable proximity gap for near and deep UV sources as a function of the feature size normalized to the gap required for 2.5 μm resolution with a deep UV source

<table>
<thead>
<tr>
<th>Feature Size (μm)</th>
<th>Maximum Gap for Near UV Source</th>
<th>Maximum Gap for Deep UV Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>0.63</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.37</td>
<td>0.61</td>
</tr>
<tr>
<td>1.0</td>
<td>0.08</td>
<td>0.24</td>
</tr>
<tr>
<td>0.5</td>
<td>0.05</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data taken from Lin.
Exposure Near the Mask Structure Edges

- Proximity: diffraction & shadowing cause non abrupt exposure
- Light changes gradually from zero to full Intensity
- Causes a variation in line width after development
- Edge shadow spread creates partially exposed resist
- Resist development then creates slopped edges
- Hence resolution limitation ~2 micron on non contact aligner
- With contact alignment diffraction is almost nill

Figure 5-14 Light intensity near the image edge. The geometrical edge of this mask feature is at $x = 0$. N.A. = 0.42, $\lambda = 436$ nm, $S = 0.7$, linewidth = spacewidth = 0.75 μm. (After Ref. 3. Reprinted with permission of Solid State Technology, published by Technical Publishing, a company of Dun & Bradstreet.)
Contrast Curves and Resist

- What fraction of resist is removed for given exposure
- Define two exposure points (for positive resist)
- D_0 Energy (mJ/cm2) where resist just affected
- D_{100} Energy where resist full removed after exposure
- Make a straight line projection on semilog plot
- Contrast Gamma γ is the resulting slope

\[
\gamma = \frac{1}{\log_{10}\left(\frac{D_{100}}{D_0}\right)}
\]

- Typical contrast $\gamma = 2 – 3$ regular resists – now up to 10
- Higher Gamma sharper the slope edge
- Note: negative resist reverses terms: D_0 just affected: D_{100} solid
- Light absorbed by resist thickness T_R decreases by

\[
A = \exp(-\alpha T_R)
\]

- Thus the contrast becomes

\[
\gamma = \frac{1}{\beta + \alpha T_R}
\]

Figure 8-7 Contrast curves for idealized resists: (a) positive tone and (b) negative tone.
Critical Modulation Transfer Function

- Brightest to darkest part of exposure is Modulation Transfer Function (MTF):

\[MTF = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} \]

- For resist use Critical Modulation Transfer Function (CMTF)
- Minimum optical modulation needed to create pattern

\[CMTF = \frac{D_{100} - D_0}{D_{100} + D_0} \]

- Converting to using contrast ratio

\[CMTF = \frac{10^{1/\gamma} - 1}{10^{1/\gamma} + 1} \]

- Typical need CMTF at least 0.4
- MTF must exceed CMTF for successful exposure
Development Process

- Developing is a chemical process that removes the exposed resist
- Action on resist similar to solvent dissolving (etching) resist
- Development rate depends on the exposure level
- Negative resists use organic solvent to dissolve soft resist
- Unexposed removed, exposed polymerized resists solvent
- Positive resists use water based developers
- Developer removes exposed (softened) resist
- Unexposed resist lack the broken bonds – does not dissolve
- Developer Mixed (usually 1:1 with DI water)
- Simple method: dunk in tanks time: 30 - 60 sec.
- Agate while in the tank – changes development rate
- Brings in fresh developer and removes resist
- Can see resist dissolved in the developer
- Rinse in DI after Development
- Spin Dry

![Diagram showing immersion developer steps.](image)

Figure 9.6 Immersion developer steps.
Wafer Track Development Systems

- Automatic development uses the spin coaters
- Several methods depending on developer/resist combination:
 - Puddle developer
 - Spin with spray to make even
 - To finish high speed rinse and spin dry
 - Often do hard bake as well on the wafer track system

![Diagram](image-url)

Figure 9.8 Puddle-spray development.
Photoresist Exposure/Development

- Development removal rate of resist is a function of exposure
- Unexposed resist removed (etched) at a low rate
eg. 0.2 nm/sec
- Exposed resist rate removal dependent on UV light level
- Higher intensity, faster removal
eg. 75 mJ/cm² develops resist at 10 nm/sec
eg. 150 mJ/cm² develops resist at 20 nm/sec
- Develop rate increases with temperature
- Rate increases with developer concentration
- As wafers developed dissolved resist slows development rate
- Hence fresh developer faster than used developer

![Graph showing linewidth change vs developer temperature and exposure time]

Figure 9.4 Developer temperature and exposure relationship versus line-width change.
Resist Hole/Line Width vs Development Time

• Let x_0 be the proper development time
to clear resist from the structures

\[x_0 = \frac{t_0}{d_r} \]

where $t_0 =$ film thickness

\[d_r = \text{rate of resist development removal} \]

• If $< x_0$ get remnant resist

• If $> x_0$ get bloated holes, narrow lines

• Always get some resist loss at top (side etching
 and ramp of exposure edge)

• Light must penetrate through full layer of resist

Figure 4-10 The evolution of positive resist development with time. Note that with time the pattern widens as well as deepens.
Proper Clearing of Resist

- Perfect Development
- Smallest holes (vias) clear of resist at bottom
- Smallest lines acceptable width
- No "stringers" between closest lines
- Usually overdevelop 5-10% so all structures clear
- Incomplete development: thick resist in openings
- Underdeveloped: sloped edges at bottom
 may leave resist scum (especially small opens)
- Overdeveloped: sloped sidewalls of resist
 Lines too small (may disappear or lift off)

![Photoresist development](image)

Figure 9.1 Photoresist development. (a) Process

(b) problems.
Mask Image Transfer to Resist Pattern

Figure 5-12 Factors affecting linewidth accuracy of resist images.
UV Reflection from Wafer Surface

- Wafer surface reflects UV back through resist
- Dull surface (oxide) small reflection & little effect
- Reflective surface (aluminum), significant effect exposure level much reduced
- At high resolution worry about optical interference in resist
- 1/4 wavelength interference effects create ripples in resist
- Creates standing wave patterns
- High resolution remove this: antireflection coatings multilayer resist (different index of refraction)

![Diagram](image)

Figure 5.16 Standing wave effects in resist. (a) \(z_0 = (N/4n)\lambda, N \) odd. Destructive interference, low reflectivity, high absorption. (b) \(z_0 = (N/4n)\lambda, N \) even. Constructive interference, high reflectivity, low absorption.

![Standing-wave effect](image)
Topology Effects on Resist

- Going over a step resist becomes very thick: piles up
- Uneven resist thickness - harder to expose, and develop evenly
- Also wider lines at crossover due to less development
- Reflection from adjacent structures reduces nearby structure width (notch in lines)
- Need to understand fab process & adjust layout to correct

Figure 5-18 Geometrical effects on the linewidth of a resist line crossing a step.
Incident light

Figure 5-19 Line notching due to reflection of a nearby topological feature.
Mask Defects

- Mask defects the most deadly problem
- Repeat same defect on every wafer
- Typical problems
- Dirt on mask (may come from resist)
 solution: clean mask (easier with Chrome mask)
- Crack in glass, or scratched mask
 solution: replacement mask
- Photoemulsion masks last about 100 wafers
- Chrome almost indefinite: but more expensive
- Typical Mask cost $500-$1000

![Diagram of exposure with Chrome, Dirt, and Glass Crack](a)

![Diagram of Negative Resist, Oxide, and Wafer](b)

Figure 8.19 (a) Clear-field mask with dirt particle and glass crack, (b) result in negative resist after develop.
Photolith Hard Bake and Etching

- Sometimes do Plasma desum remove small remnant resist
- Sometimes expose edges additionally to remove edge bead
- Hard Bake makes resist tougher against etching drives off more solvent
- Typically 120°C for 20 minutes
 Note soft bake was at 100°C
- If hard too short/or low temp does not resist etch
- If hard too long/or high temp trouble striping resist
- Etching next
- Strip resist only with etch is desired level

Fig. 14 Flow chart of a typical resist process. Steps in broken lines are not used for materials. Reprinted from Ref. 8 with permission of the American Chemical Society.
Wafer Inspection

- Always do test exposure at a level
- Calibrate light source/resist/developer for day
- Look for over/under development
- Centre of wafer: tends to underdevelopment
- Outer wafer: tends to overdevelopment
- Inspection done in yellow light often before hard bake
- Watch for resist defects:
 - Pin holes, fish eyes, gel slugs, hard spots (after strip)
- Semiauto inspection stations
- Move to specified sites on wafer: check most difficult point
- Eg Leitz LIS, cost about $150,000 + film thickness measurement
- Full auto stations used computer image processing
- Identify defects based on expected images
- used for photolith and after etching
High Temperature Resist Flow

- At high Temperatures $> 200 \, ^\circ\text{C}$ resist flows
- Creates sloped sidewalls
- Occurs in some processes (eg Ion Implantation)
- Heated resist hard to strip

\[\text{Figure 9.9} \quad \text{Resist flow at high temperature.}\]
Photoresist Stripping

- Stripping extremely important for next process
- Major worry: remnant resist

Major Processes

- Solvent Strippers: Acetone (simple positive resists)
- Phenol-based organic strippers
- Inorganic strippers (Nitric/Sulfuric acids)
- Plasma Strippers: used in advanced fabs
 Creates an oxygen plasma that destroys organics
- Watch for resist "stringers" at step edges
- Some processes (e.g., high heat, Implant) make resist hard to strip
- Edge bead thick resist - very difficult to remove
 may make special long exposure of edge area only to remove

![Diagram of Plasma System](image)

Figure 12.3 Plasma system diagrammatic cross section. *(Courtesy of LFE Corp.)*
Types of Exposure Systems

- The limit of any device is the minimum or critical feature size
- Typically that is the gate width of a MOS transistor
- Lithography usually sets the minimum geometry of devices
- Combination of the exposure system, mask and resist limits
- Mask aligner earliest & lowest cost exposure systems
- Vacuum Hard Contact: no shadow effects at edge but gets mask dirty
- Soft contact and Proximity good for >2-3 microns
- Projection systems: Optically project image using lens system
- Very expensive but low mask damage
- Shrinks image so much smaller structures
- Use 1:1 or 5:1 reduction (whole wafers)
- 5:1 or 10:1 reduction for step and repeat
- Now limitation becomes optical resolution of exposure system

![Diagram of three optical lithographic techniques](image)

Fig. 11: Schematic of three optical lithographic techniques. (a) Contact. (b) Proximity. (c) Projection. Copyright 1983, Bell Telephone Laboratories, Incorporated.
Wafer Steppers

- Called Direct Step on Wafer (DSW) or Steppers
- All systems < 2 microns
- Project one reticule (chip mask) print at a time
- Step to next chip site and repeat over wafer
- Reticules up to 3x3 cm now: may be one or several chips
- Table position uses laser interferometry for < 0.1 micron
- Lens most expensive point
Direct Step on Wafer (DSW)

- Typical cost $0.5-$10 million
- Cost depends on resolution and reticule area
- Smaller wafers steppers do small chip sizes
- Moving to laser light sources (single wavelength) for less expensive lenses
Projection Steppers Limits

- Lenses best every made: diffraction limited
- Important factor in lens is Numerical Aperature
 \[NA = n \sin(\alpha) \]
- Typical NA 0.16 - 0.5 for steppers
- Smallest object projected set by
 \[W_{\text{min}} = k_1 \frac{\lambda}{NA} \]
- \(k_1 \) depends on resist and other factors \(\sim 0.7 \)
- Depth of focus
 \[\sigma = k_2 \frac{\lambda}{NA^2} \]
- \(k_2 \) also dependent on exposure system
- Thus shorter wavelength means more care with focus
- General optical rule approximate limit of resolutions \(\lambda/2 \)
- So smallest critical dimension (CD) is set by wavelength

![Schematic for the optical train of a simple projection printer.](image)

![High pressure mercury-arc spectrum.](image)
Wavelength and Steppers

- First Steppers use Mercury Vapour lamp source
- Filters allow single line from source
- 1980: G line (439 nm) steppers > 0.8 microns
- 1990: I line (365 nm) steppers > 0.3 microns
- Now Excimer laser sources
- ~1994 KrF (248 nm) > 90nm,
- ~2001 ArF (193 nm) down to 90 nm (~$\lambda/2$)
Comparison of Lithography Systems

- Putting in order of cost effectiveness
- Contact Mask aligner still lowest cost but resolution limited > 3 microns (80 Wafer/hr)
- 1:1, 5:1 Projections limited to > 1.5 microns
- 10:1 DSW now production standard to 1 micron (50 wafers/hr typical)
- Deep UV (ArF 193 nm)
- Death of Optical Lithography often predicted but optical keep pushing limits
- Interference Phase shift masking pushing to 45 nm! below problem limit of transistor near 25 nm

(a) 0.2 μm and (b) 0.15 μm lines imaged in 30 nm poly(n-butylsilyne)
Next Generation Lithography Project (NGL)

- Semitech (organization of main fab companies)
 - Project for Next Generation Lithography (ie 2005 AD)
- Aims at device geometry below 35 nm (0.035 micron)
- 4 main contenters
- Extreme UV Optical EUV (13.4 nm)
- X-ray
- Scalpel (multiple e-beam systems by Lucent)
- Ion Projection Lithography
 - Uses ion beams to project an image
- Current (2012) projection is EUV most likely to work but delayed
- Semitech Projections as of 2003 were:
 - 180 nm (1995) 248 nm KrF Excimer DSW's
 - 130 nm (~2001) 193 nm ArF Excimer DSW's
 - 90 nm approx limit of 193 nm ArF’s
 - 70 nm immersion lithography
 - Phase shift masks now down to 40 nm
- 25 nm EUV
Immersion Lithography: A New Breakthrough

- Semitech 2003 assumed 157nm F₂ Excimer DSW's as next step
- Problem was 157 nm had lots of problems
- Lens materials fragile (CaF) F₂ Excimer difficult to use
- Old idea suddenly revived: **Immersion Lithography**
- Immerse lens & wafer in a high index fluid (DI water)
- Effective reduces wavelength of light by \(n \) (index of refraction)

\[
\lambda_n = \frac{\lambda}{n}
\]

- Use modified 193 nm steppers: same ArF Excimer & lens
- Now get 133 nm effective source (\(n_{\text{water}} = 1.44 \))
- Effectively increases Numerical Aperature

\[
NA = n \sin(\alpha)
\]

- NA goes from 0.5- 0.7 to 0.7 and targets > 1
- Since smallest object projected set by

\[
W_{\text{min}} = k_1 \frac{\lambda}{NA}
\]

- Significantly increases resolution – possibly to 40 nm range
- Cost is reduced Depth of focus is reduced

\[
\sigma = k_2 \frac{\lambda}{NA^2}
\]
Phase Shift Mask

- Regular optical limits is $\sim \lambda/2$ so 70 nm for immersion
- But what if change masks: add a layer that phase sifts the light
- If invert the phase of light then can make line $< \text{diffraction limit}$
- Get about $\sim \lambda/4$ or 35 nm structures
- Create phase shift by etching mask glass
- Alternative adding semitransparent
Computational Lithography

- Failed to get shorter wavelengths than 195 immersion
- To reduce more from Phase shift use Computational Lithography
- Phase shift at limit creates distorted structure
- Instead design the optical pattern you want on the wafer
- Now compute using Emag wave pattern back through stepper
- Find the mask pattern to create structure want in resist
- Very compute intensive operation – only on smallest structures
- With this get 20-25 nm structures
Extreme UV Lithography (EUV)

- Next Generation Lithography Extreme UV 13.5 nm
- Under development at Lawrence Livermore Lab since 2000
- Uses Laser Produced Plasma Source (LPS)
- Uses Nd:Yag laser focused on copper wire or Xeon gas
- Creates a plasma with 13.4 nm EUV emission
- Near X-ray but acts like light (not too penetrating)
- Must use grazing mirror reflectors for optics in 10X stepper
- Probably will exceed the ultimate transistor limits.
- Problem as of 2013 trouble getting the system to work well
- Not certain if EUV will get to 10 nm devices
- Transistor operation limit in 5-10 nm range
Resists for Next Generation Lithography

- Use Thin Layer Imaging (TLI) process
- At 157 & 13 nm light only penetrates very thin layer
- Use an organic planerization layer (organic resist)

Refractory Bilayer Resist

- Thin Organio-Silicon Layer absorbs EUV
- Development removes exposed area
- Resist left behind contains silicon
- In O plasma convert to a SiO$_2$ glass
- O plasma transfers glass pattern to resist layer

TSI Silyatation

- Top organic imaging layer exposed
- Resist polymer cross links, preventing diffusion
- Silylation: aminosilane gas diffuses Si into unexposed
- O plasma converts to glass during patterning of lower resist

Figure 1 - General photore sist processing schemes for refractory bilayer (left) and TSI silylation (right).

Henerson, SPIE 3331, pg 32 1998