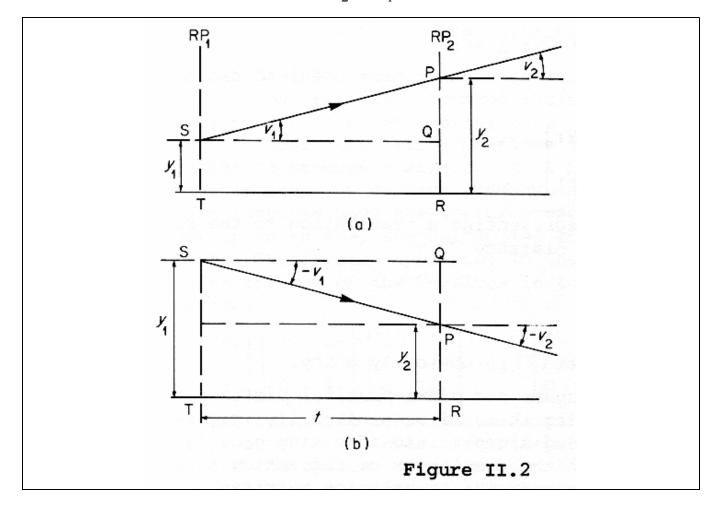
Matrix Methods in Optics

- For more complicated systems use Matrix methods & CAD tools
- Both are based on Ray Tracing concepts
- Solve the optical system by tracing may optical rays
- In free space a ray has position and angle of direction y₁ is radial distance from optical axis V₁ is the angle (in radians) of the ray
- Now assume you want to a Translation: find the position at a distance t further on
- Then the basic Ray equations are in free space making the parallex assumption

$$y_2 = y_1 + V_1 t$$
$$V_2 = V_1$$



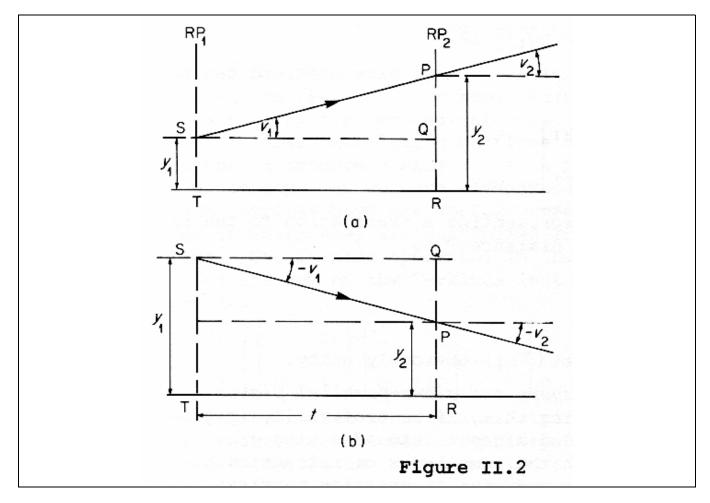
Matrix Method: Translation Matrix

- Can define a matrix method to obtain the result for any optical process
- Consider a simple translation distance t
- Then the Translation Matrix (or *T* matrix)

$$\begin{bmatrix} y_2 \\ V_2 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} y_1 \\ V_1 \end{bmatrix} = \begin{bmatrix} I & t \\ 0 & I \end{bmatrix} \begin{bmatrix} y_1 \\ V_1 \end{bmatrix}$$

• The reverse direction uses the inverse matrix

$$\begin{bmatrix} y_1 \\ V_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} \begin{bmatrix} y_2 \\ V_2 \end{bmatrix} = \begin{bmatrix} D & -B \\ -C & A \end{bmatrix} \begin{bmatrix} y_2 \\ V_2 \end{bmatrix} = \begin{bmatrix} 1 & -t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ V_1 \end{bmatrix}$$



General Matrix for Optical Devices

- Optical surfaces however will change angle or location
- Example a lens will keep same location but different angle

Table 1

Number	Description	Optical Diagram	Ray-transfer matrix
1	Translation	RP1 RP2	$\begin{bmatrix} 1 & t/n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix}$
2	Refraction at single surface (A-matrix)	PP RP2	$\begin{bmatrix} 1 & 0 \\ -(n_2 - n_1) & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -P & 1 \end{bmatrix}$
3	Reflection at single surface (for convention see section II.11)	RP, ond RP ₂	$\begin{bmatrix} 1 & 0 \\ \frac{2n}{r} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -P & 1 \end{bmatrix}$
4	Thin lens in air (focal length f , power P)	Focal length / Power P = 1//	$\begin{bmatrix} 1 & 0 \\ -(n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right) & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/\hat{f} & 1 \end{bmatrix}$

General Optical Matrix Operations

- Place Matrix on the left for operation on the right
- Can solve or calculate a single matrix for the system

$$\begin{bmatrix} y_2 \\ V_2 \end{bmatrix} = [M_{image}][M_{lens}][M_{object}][y_1]$$

$$\begin{bmatrix} y_2 \\ V_2 \end{bmatrix} = \begin{bmatrix} 1 & s' \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ V_1 \end{bmatrix}$$



FIGURE 4D
The parallel-ray method for graphically locating the image formed by a thin lens.

Solving for image with Optical Matrix Operations

- For any lens system can create an equivalent matrix
- Combine the lens (mirror) and spacing between them
- Create a single matrix

$$[M_n]\cdots[M_2][M_1] = [M_{system}] = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

• Now add the object and image distance translation matrices

$$\begin{bmatrix} A_s & B_s \\ C_s & D_s \end{bmatrix} = \begin{bmatrix} M_{image} \end{bmatrix} \begin{bmatrix} M_{lens} \end{bmatrix} \begin{bmatrix} M_{object} \end{bmatrix}$$

$$\begin{bmatrix} A_s & B_s \\ C_s & D_s \end{bmatrix} = \begin{bmatrix} I & s' \\ 0 & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I & s \\ 0 & I \end{bmatrix}$$

$$\begin{bmatrix} A_s & B_s \\ C_s & D_s \end{bmatrix} = \begin{bmatrix} A+s'C & As+B+s'(Cs+D) \\ C & Cs+D \end{bmatrix}$$

- Image distance s' is found by solving for B_s=0
- Image magnification is

$$m_s = \frac{1}{D_s}$$

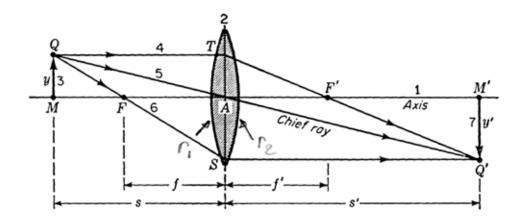


FIGURE 4D

The parallel-ray method for graphically locating the image formed by a thin lens.

Example Solving for the Optical Matrix

- Two lens system: solve for image position and size
- Biconvex lens f_1 =8 cm located 24 cm from 3 cm tall object
- Second lens biconcave f_2 = -12 cm located 6 cm from f_1
- Then the matrix solution is

$$\begin{bmatrix} A_{s} & B_{s} \\ C_{s} & D_{s} \end{bmatrix} = \begin{bmatrix} 1 & X \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{12} & 1 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{8} & 1 \end{bmatrix} \begin{bmatrix} 1 & 24 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} A_{s} & B_{s} \\ C_{s} & D_{s} \end{bmatrix} = \begin{bmatrix} 1 & X \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ \frac{1}{12} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 1 & 24 \\ -\frac{1}{8} & -2 \end{bmatrix}$$
$$\begin{bmatrix} A_{s} & B_{s} \\ C_{s} & D_{s} \end{bmatrix} = \begin{bmatrix} 25 - 0.1042X & 12 - X \\ -0.1042 & -1 \end{bmatrix}$$

• Solving for the image position:

$$B_s = 12 - X = 0$$
 or $X = 12$ cm

• Then the magnification is

$$m = \frac{1}{D_s} = -1$$

- Thus the object is at 12 cm from 2nd lens, -3 cm high
- Easiest to do this with spread sheet, matlab or maple in Excel use the matrix multiply mmult function

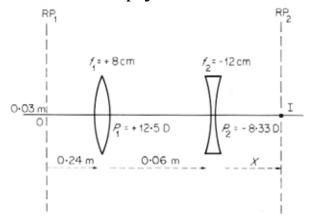


Figure II.14

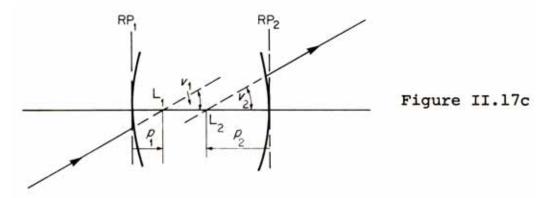
Optical Matrix Equivalent Lens

- For any lens system can create an equivalent matrix & lens
- Combine all the matrices for the lens and spaces
- The for the combined matrix

where RP_1 = first lens left vertex

 RP_2 = last lens right most vertex n_1 =index of refraction before 1^{st} lens n_2 =index of refraction after last lens

System parameter described	Measu From		Function of matrix elements	Special case $n_1 = n_2 = 1$
First focal point	RP ₁	F ₁	n_1D/C	D/C
First focal length	F ₁	н	- n ₁ /C	- 1/C
First principal point	RP ₁	H ₁	$n_1(D-1)/C$	(D - 1) /C
First nodal point	RP ₁	L ₁	$(Dn_1 - n_2)/C$	(D - 1) /C
Second focal point	RP ₂	F2	- n ₂ A/C	- A/C
Second focal length	H ₂	F2	- n2/C	- 1/C
Second principal point	RP ₂	H ₂	n ₂ (1-A)/C	(1 - A) /C
Second nodal point	RP ₂	L2	$(n_1 - An_2)/C$	(1 - A) /C



Example Combined Optical Matrix

- Using Two lens system from before
- Biconvex lens f₁=8 cm
- Second lens biconcave f_2 = -12 cm located 6 cm from f_1
- Then the system matrix is

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{12} & 1 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{8} & 1 \end{bmatrix} = \begin{bmatrix} 0.25 & 6 \\ -0.1042 & 1.5 \end{bmatrix}$$

• Second focal length (relative to H₂) is

$$f_{s2} = -\frac{1}{C} = -\frac{1}{-0.1042} = 9.766 \ cm$$

• Second focal point, relative to RP₂ (second vertex)

$$f_{rP2} = -\frac{A}{C} = -\frac{0.25}{-0.1042} = 2.400 \text{ cm}$$

• Second principal point, relative to RP₂ (second vertex)

$$H_{s2} = \frac{1 - A}{C} = \frac{1 - 0.25}{-0.1024} = -7.198 \ cm$$

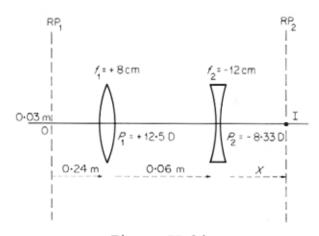


Figure II.14

Solid State Lasers

- Was first type of laser (Ruby 1960)
- Uses a solid matrix or crystal carrier
- eg Glass or Sapphire
- Doped with transition metal or rear earth ions
- eg Chromium (Cr) or Neodynmium (Nd)
- Mirrors at cavity ends
- Typically pumped with light
- Most common a Flash lamp
- Light adsorbed by doped ion, emitted as laser light
- Mostly operates in pulsed mode (newer CW)

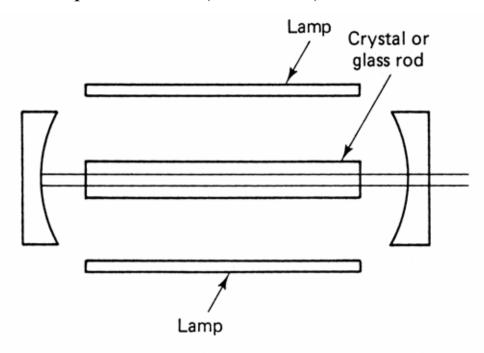


Figure 8-4 Schematic of solid laser—for example, ruby

Flash Lamp Pumping

- Use low pressure flash tubes (like electronic flash)
- Xenon or Krypton gas at a few torr (mm of mercury pressure)
- Electrodes at each end of tube
- Charge a capacitor bank:
 - 50 2000 μF, 1-4 kV
- High Voltage pulse applied to tube
- Ionizes part of gas
- Makes tube conductive
- Capacitor discharges through tube
- Few millisec. pulse
- Inductor slows down discharge

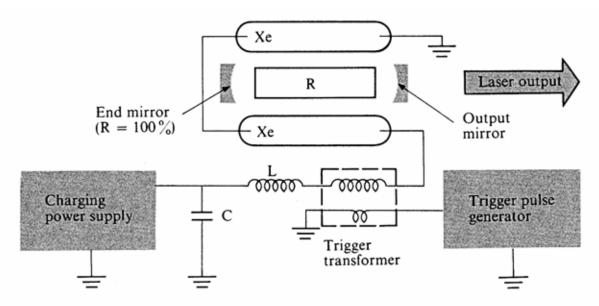


Fig. 6.16 Schematic of a simple flashlamp-pumped laser. The trigger pulse generator and transformer provide a high-voltage pulse sufficient to cause the xenon gas in the lamps (Xe) to discharge. The ionized gas provides a low-resistance discharge path to the storage capacitor (C). The inductor (L) shapes the current pulse, maintaining the discharge. The discharge of the lamps optically pumps the laser rod (R).

Light Source Geometry

- Earlier spiral lamp: inefficient but easy
- Now use reflectors to even out light distribution
- For CW operation use steady light sources Tungsten Halogen or Mercury Vapour
- Use air or water cooling on flash lamps

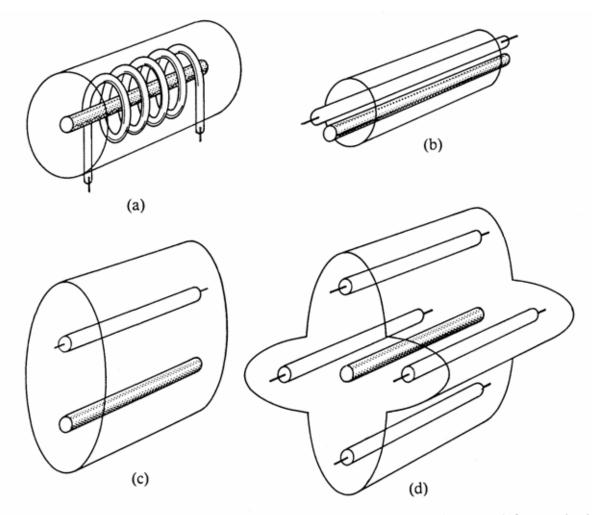


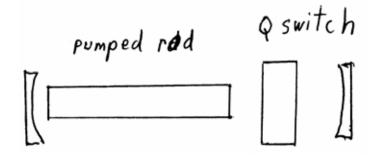
Fig. 2.4 Some of the more common flashtube geometries used for optical pumping: (a) a helical flashtube round the laser rod; (b) close coupling between flashtube and rod; (c) flashtube and rod along the two foci of an elliptical cavity and (d) a multi-elliptical cavity.

Q Switch Pulsing

- Block a cavity with controllable absorber
- Like an optical switch
- During initial flash pulse switch off
- Recall the Quality Factor of resonce circuit (eg RLC)

$$Q = \frac{2\pi \ energy \ stored}{energy \ lost \ per \ light \ pass}$$

- During initial pulse Q low
- Allows population inversion to increase without lasing
- no stimulated emission
- Then turn switch on
- Now sudden high stimulated emission
- Dump all energy into sudden pulse
- Get very high power level, but less energy



Q Switch Process During Laser Pulse

- Flash lamp rises to max then declines (~triangle pulse)
- Q switch makes cavity Q switch on after max pumping
- Low Q, so little spontaneous light
- Population inversion rises to saturation
- The Q switch creates cavity: population suddenly declines due to stimulated emission
- Laser pulse during high Q & above threshold conditions

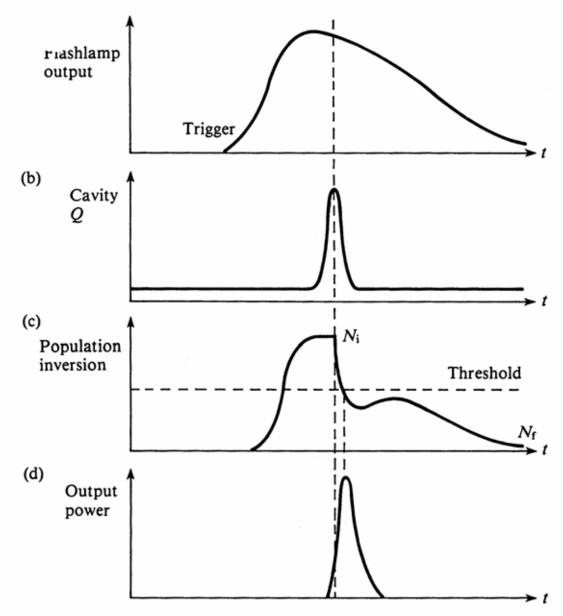


Fig. 3.11 Schematic representation of the variation of the parameters: (a) flashlamp output; (b) cavity Q; (c) population inversion; (d) output power as a function of time during the formation of a Q-switched laser pulse.

Energy Loss due to Mirrors & Q

- Q switching can be related to the cavity losses
- Consider two mirrors with reflectance R₁ and R₂
- Then the rate at which energy is lost is

$$\frac{E}{\tau_c} = \frac{\left(1 - R_1 R_2\right) E}{\tau_r}$$

where τ_c = photon lifetime τ_r = round trip time = 2L/c E = energy stored in the cavity

• Average number of photon round trips is the lifetime ratio

$$\frac{\tau_c}{\tau_r} = \frac{1}{\left(1 - R_1 R_2\right)}$$

Q Equations for Optical Cavity

- Rewrite energy equation in terms of photon lifetime τ_c
- First note the energy lost in the time of one light cycle $t_f = 1/f$

$$E_{lost/cycle} = \frac{Et_f}{\tau_c} = \frac{E}{f\tau_c}$$

where f = frequency

• Thus the cavity's Q is

$$Q = \frac{2\pi E}{E_{lost/cycle}} = \frac{2\pi E}{\left(\frac{E}{f\tau_c}\right)} = 2\pi f\tau_c$$

• Thus for a laser cavity:

$$Q = 2\pi f \tau_c = \frac{2\pi f \tau_r}{(1 - R_1 R_2)} = \frac{4\pi f L}{c(1 - R_1 R_2)} = \frac{4\pi L}{\lambda (1 - R_1 R_2)}$$

- Q switch: go form high reflectivity to low reflectivity on one mirror
- Also Q is related to the bandwidth of the laser (from resonance cavity circuits).

$$Q = \frac{f}{\Delta f}$$

• Thus lifetime relates to the bandwidth

$$\Delta f = \frac{1}{2\pi\tau_c}$$

Transition Metal Impurity Ion Energy levels

- Chromium Cr₃₊ ion
- Atom has energy levels (shells)
 (orbit)(shell)_(no. electrons)
 1s₂ 2s₂ 2p₆ 3s₂ 3p₆
- In ions unfilled orbital electrons interact
- inter-electron coulomb interaction split the energies (capital letter the L quantum)_(spin quantum)
- Ion then interacts with crystal field splits energy levels more

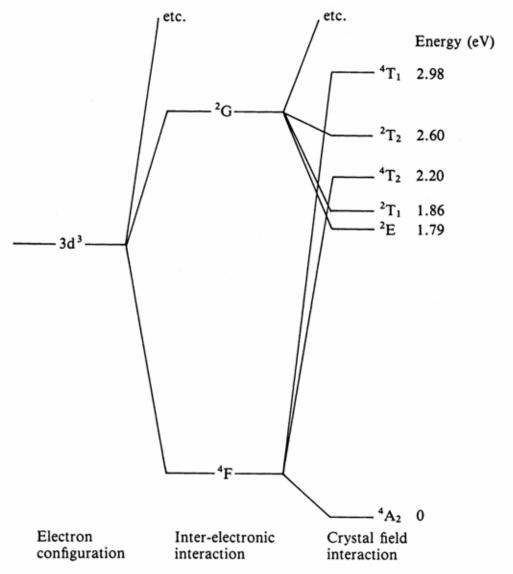


Fig. 2.1 The origins of the low-lying electronic energy levels in Cr³⁺. Successive interactions split the original 3d³ electron configuration into an increasing number of energy levels.

Rare Earth Impurity Ion Energy levels

- Spin of electrons interacts with orbit
- Splits the inter-electronic levels

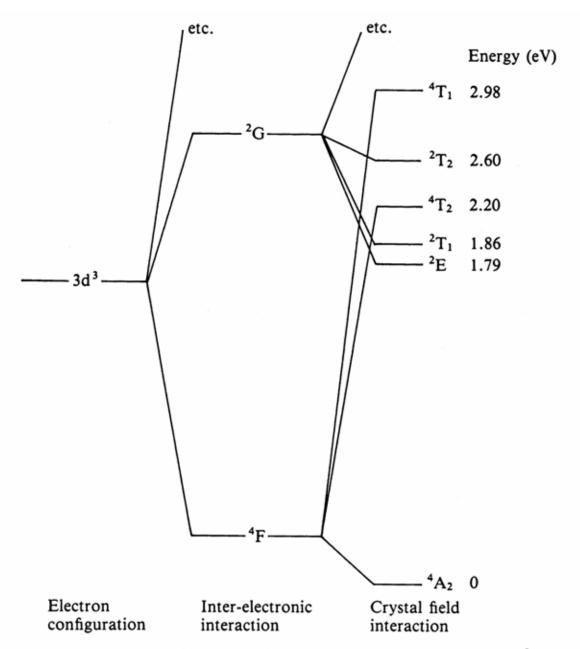


Fig. 2.1 The origins of the low-lying electronic energy levels in Cr³⁺. Successive interactions split the original 3d³ electron configuration into an increasing number of energy levels.