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Abstract

For design problems involving computation-intensive analysis or simulation processes,

approximation models are usually introduced to reduce computation time.  Most

approximation-based optimization methods make step-by-step improvements to the

approximation model by adjusting the limits of the design variables.  In this work, a new

approximation-based optimization method for computation-intensive design problems
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— the adaptive response surface method (ARSM), is presented.  The ARSM creates

quadratic approximation models for the computation-intensive design objective function

in a gradually reduced design space. The ARSM was designed to avoid being trapped by

local optimum and to identify the global design optimum with a modest number of

objective function evaluations.  Extensive tests on the ARSM as a global optimization

scheme using benchmark problems, as well as an industrial design application of the

method, are presented.  Advantages and limitations of the approach are also discussed.

Keywords : Response Surface Method, Approximate Optimization, Global Optimization,

Design Automation

Introduction

Today’s engineer design frequently involves complex and large systems. With the

advances of Computer-Aided Design and Engineering (CAD/CAE) techniques, complex

computer models and computation-intensive numerical analyses/simulations are often used

to more accurately study the system behavior from many aspects and to guide design

improvements.  However, the high computational cost associated with these analyses and

simulations prohibits them from being used as performance measurement tools in the

optimization of a design.  The design optimization process normally requires a large

number of numerical iterations, each with one or more analysis calls, before the optimal

solution is identified.  The use of approximation models to replace the expensive computer

analysis is a natural approach to avoid the computation barrier to the application of modern

CAD/CAE tools in design optimization.
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A number of approximation methods have been introduced in the past.  Among them the

response surface method (RSM) has attracted a growing interest in recent years.  The RSM

is one of the design of experiments (DOE) methods used to approximate an unknown

function for which only a few values are computed [6, 29, 21, 28]. The RSM stems from

science disciplines in which physical experiments are performed to study the unknown

relation between a set of variables and the system output, or response, for which only a few

experiment values are acquired.  These relations are then modeled using a mathematical

model, called response surface. Optimization based on the response surface is referred as

experimental optimization. When experiments are inexpensive, experimental optimization

can directly utilize methods developed for conventional analytical optimization. When

experiments are expensive, the number of experiments required for the optimization must

be minimized to reduce the total cost of the optimization.  Haftka and his co-authors [17]

pointed out that two factors distinguish experimental optimization from analytical

optimization. The first is that experiments are cheaper to run in batches and the second is

that it is difficult to obtain proper derivatives from experiments. More detailed comparison

of these two types of optimization is in [17].

In engineering design, computation-intensive design analyses are treated as expensive

computer “experiments” and thus experimental optimization can then be used for design

optimization.  Response surface models based on computer experiments are called

surrogates.  There are a large number of successful design examples using surrogates that
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are archived in the literature [3, 42, 56, 38].  Applications of surrogates have also been

widely studied in multidisciplinary design optimization.  For instance, Renaud and

Gabriele developed response surface approximations of multidisciplinary systems during

concurrent subspace optimizations (CSSOs) [34, 35]; Chen et al. investigated the use of

response surface approximations for robust concept exploration and concurrent design [8,

9]; and Korngold and Gabriele addressed discrete multidisciplinary problems using the

RSM [24].

When employing surrogates in design optimization, the number of expensive computer

experiments should be minimized to reduce computation cost, while ensuring

improvements in the actual system through each step of the search.  The surrogate related

methods can be roughly categorized into two groups.  The first group focuses on the better

choice of an experiment planning scheme and a response surface model.  The second group

concentrates on the approximation model management in the optimization process to

ensure a design optimum for the actual problem.

Experiment planning is an active research area.  Standard DOE methods, such as factorial

design and central composite are often used [28].  Other schemes include Taguchi’s

method [52], D-optimal design [20] and Latin Hypercube designs [27].  Sacks et al.

proposed a stochastic model to treat the deterministic computer response as a realization of

a random function with respect to the actual system response [39, 40].  Neural networks

have also been applied in generating the response surfaces for system approximation.
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Representative researches include those reported in Swift and Batill [48, 49, 50, 51],

Sellar, Batill and Renaud [44], Sellar and Batill [43], Sellar et al. [45], and Shi et al. [46].

The pioneer work on approximation model management in the optimization process was

done by Box and Draper [5].  They developed a heuristic approach called evolutionary

operation, which iteratively builds a response surface around the optimum from the

previous iteration.  Otto, Lanman and Patera introduced a qualitative surrogate validation

in the experimental optimization [30].  Torczon and Trosset experimented with the use of

merit functions to simultaneously improve both the quality of the approximation and the

solution to the actual optimization problem [54].  A number of heuristic move-limit

strategies have been developed for the approximate design optimization [15, 53, 74,16, 33,

60, 61].  These methods vary the bounds of design variables in approximation iterations

and differ from each other by different bound-adjustment strategies.

Related work in the mathematical community includes a proposed trust region method that

guides the construction of the response surface using an accuracy index  [10, 11, 12].  This

idea was later incorporated into design applications by Dennis and Torczon [13], Lewis

[25], Alexandrov et al. [1], and Rodríguez et al. [36]. The trust region method can work

jointly with a response model and the global convergence can be achieved [10, 11].  The

term, global convergence, means the convergence to a local minimum from any valid

starting point.  Convergence to the global minimum, which has the possible lowest/highest

function value across the entire design space, is not guaranteed.
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The new method presented in this paper falls into the second category of the surrogate

related methods.  The method was introduced to guide the approximation modeling in the

optimization process to reach the global optimum with a limited number of computer

experiments.  The design problems that this method deals with are assumed having

following characteristics:

- Evaluation of a particular design objective depends on the output of computer

simulations involving large numbers of intermediate states or complicated computation

processes;

- The evaluation of the design objective is computationally intensive and expensive.

- Evaluation results from computer analysis or simulation are deterministic, i.e.,

rerunning the simulation with the same inputs gives identical output.  Thus, any

difference between a model prediction and the result evaluated from the computer

experiment at the same design point is because of the approximation inaccuracy of the

response model.

Problem Description

The standard form of a non-linear optimization problem is

Minimize  ( )f xr    (1)

1[ , , ]nx x x=r L

subject to      ( ) 0, ( 1, , )jh x j J= =r
L (2)
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( ) 0, ( 1, , )kg x k K≤ =r
L (3)

, , ( 1, , )L i i U ix x x i n≤ ≤ = L (4)

The lower and upper bounds iLx ,  and iUx ,  in Equation 4 are initial variable bounds

imposed by the designer.

In applications with the surrogate, approximations of both the objective and the constraints

are often needed because of the associated computation intensity in evaluating these

functions.  In this paper for the ease of illustration, it is assumed that all constraint

functions be in simple forms and only the objective function requires approximation due to

its computation intensive evaluation process.  For constraints requiring approximation,

surrogates of the constraints can be constructed and incorporated similarly in the design

optimization.  The surrogate problem is formulated as

Minimize  ( )f xr%    (5)

1[ , , ]nx x x=r L

subject to      ( ) 0, ( 1, , )jh x j J= =r
L (6)

( ) 0, ( 1, , )kg x k K≤ =r
L (7)

, , ( 1, , )L i i U ix x x i n≤ ≤ = L (8)
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where, )(
~

xf
r

 is the surrogate to the actual computation-intensive objective function. The

proposed Adaptive Response Surface Method (ARSM) solves the original design problem

(defined by Equations 1 to 4) through the construction and solution of a series of surrogate

problems (specified by Equations 5 to 8).

Adaptive Response Surface Method

Response Surface Method

The standard RSM first employs an experimental strategy to generate design points in the

design space, then applies either the first-order model or the second-order model to

approximate the unknown system.  The first and second order models have forms as given

in Equations 9 and 10.

∑
=

+=
n

i
ii xy

1
0 ββ (9)

∑ ∑ ∑∑
= = < =

+++=
n

i

n

i ji

n

j
jiijiiiii xxxxy

1 1 1

2
0 ββββ (10)

where ij and ,, βββ iii   represent regression coefficients; )1(, nix i L=  are design variables

and y is the response.  The ARSM employs the second-order polynomial function

(Equation 10) as the response surface model.  It is the simplest nonlinear model in contrast

to Sacks’ stochastic model and neural networks [39, 40, 44].

Many experimental strategies, including the full and fractional factorial designs, central

composite designs (CCD) [28], Taguchi [52], and D-optimality design [20], can be used for
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planning experimental designs.  The CCD is probably by far the most widely used

experimentation strategy for the second-order model fitting.  Although CCD is not the

most efficient planning strategy, it is adopted in the ARSM due to its successful use in

other RSM applications.  Even though the ARSM emphasizes the approximation model

management during the optimization rather than the experimental design, a better planning

method may overcome limitations of the ARSM imposed by the CCD when solving large-

scale design problems.  This will be further discussed in the later sections.

Conceptual Illustration of the ARSM

The concept of the ARSM can be illustrated through a single variable cubic function,

1322)( 3 +−= xxxf , which is used to represent a computation-intensive design function.

In the designated design space [-3,5], two local minima of the function exist, namely, (-3,

43) and (2.31, -48.3).  Based upon CCD, five experimental points are obtained to

approximate the “unknown” curve, as illustrated in Fig. 1.  The experiment points are (-3,

43),   (-1, 31), (1, -29), (3, -41), and (5, 91).  If one applies a second-order model to carry

out the approximation, the first fitted function using the least square method will be

268.102.24)( xxxf +−−= .  The minimum of this fitted model is at 9.0=x while the

actual global optimum of the design function is at 31.2=x , as shown in Fig. 1.  To

improve the approximation accuracy, the ARSM introduces a threshold, i.e., a cutting

plane, to the objective function.  In this illustration, 20 is used as the threshold and the part

of the design space corresponding to the function value above 20 is discarded.  The new

design space is now between the points (-1.96, 20) and (3.76, 20).  The ARSM then applies
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the CCD again over the reduced design space [-1.96, 3.76], and produces a second fitted

model 240.595.2206.10)( xxxf +−−= , also shown in Fig. 1.  This second fitted model

yields a much better approximated optimum at 13.2=x , close to the true design optimum

at 31.2=x .  By continuing this process, the approach can quickly locate the global

optimum of the design at the point (2.31, -48.3).

Algorithm of the ARSM

As shown in Fig. 2, given design variables, objectives, constraints, and the initial design

space, experimental designs (points in the design space) are generated according to a

formal planning strategy, e.g. CCD.  Values of the objective function are evaluated through

the computation intensive analysis and simulation processes.  The quadratic response

surface model, or surrogate, is fitted to the data using the usual least square method.  Since

the constraints in Equations 6 and 7 may take any nonlinear forms, standard optimization

methods, such as Lagrange Multipliers or line search, may fail.  In the ARSM, a global

optimization algorithm, simulated annealing, is used to find the global optimum.

Following this step, the value of the actual objective function at the optimum of the

surrogate is calculated through an evaluation of the computation-intensive objective

function.  If the value of the actual objective function at the surrogate optimum is better

than the values at all other experimental designs, the point is added to the set of

experimental designs for the following iteration because the point represents a promising

search direction.  All experimental designs and the accepted model optimum are recorded

in a design library.  After each design iteration, a threshold, or cutting plane, is used to

reduce the design space, as described in the following sub-section.  In this algorithm, the
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second highest value of the objective function in the set of experimental designs is chosen

as the threshold.  If this second highest value cannot help to reduce the design space, the

next highest value of the design function will be used, and so on.  The termination criteria

of the process are described in the sub-section: Termination Criteria.

Identification of the Reduced Design Space

For a single variable function, calculation of the reduced design space can be easily carried

out by intersecting “the cutting plane” to the fitted function.  Identification of the reduced

design space for a multiple-variable design task is more challenging.  Given the threshold

of the objective function, the bounds of all design variables are identified through the

construction of subsidiary optimization problems.

Assume the design problem has a total of n design variables, nxxx ,,, 21 L , the ARSM

model is as in Equation 10 and the threshold for the objective function is y0, the range of

design variable, xk n) , 2, 1, (k L= , can be obtained by optimizing xk with respect to all

other design variables,.  Rearranging the response surface model given in Equation 10

gives a quadratic function in xk, with respect to other design variables in the coefficients as

in Equation 11,

0])([)(
,1 ,1 , ,1

00
22 =−+++++++ ∑ ∑ ∑ ∑∑

<= ≠= ≠< ≠=>
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ki
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kji
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kiiikkkkk yxxxxxxxx ββββββββ
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which can be written as

02 =++ cbxax kk ,
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where,
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The two solutions of xk, 1,kx  and 2,kx , are given by

2
, 1

, 2

4
, ( 0)

2
k

k

x b b ac
a

x a

 − ± − = ≠


(13)

The reduced range of xk is identified by finding the minimum and maximum of xk with

respect to all other design variables within their bounds, ],[ ,, iuili xxx ∈ .  Two subsidiary

optimization problems are formulated as:

For the lower limit of kx ,

Minimize    },{min 2,1, kk xx    (14)

 subject to

),,1,1,,1(,, nkkixxx iuiil LL +−=≤≤ (15)

where xl,i and xu,i are, respectively, the lower and upper limits of xi from the previous

model.

For the upper limit of kx ,

Minimize },{max 2,1, kk xx−                (16)
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subject to

),,1,1,,1(,, nkkixxx iuiil LL +−=≤≤ (17)

These optimization problems involve non-linear objective functions that have no

guaranteed unimodality.  The simulated annealing global optimization method is thus

applied for their solutions [22].

It is to be noted that the above procedure applies well to functions whose overall shape is

convex, even though the function itself is non-convex, as shown in Fig. 3. An overall

convex function f(x) is one that there is a convex function g(x) and a constant d such that

|f(x) - g(x)| ≤ d for most x in the domain and where d is substantially less than the total

variation in the function f(x). For this case, the approximation function will generally be

convex.  The obtained design space, defined by the new bounds of each design variable,

will thus be smaller than the previous design space. The reduced design space is then used

to plan the experimental designs for the next iteration and a new surrogate will be

constructed.

If the overall shape of the objective function is concave, the approximation function will be

concave too and the minimum of the design problem will likely be at or close to the

boundary of the design space.  In this case, the above-described space identification

procedure will not enable the ARSM to converge to a global optimum.  To detect this

situation, one needs to check at the first design iteration whether the obtained surrogate
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optimum is in the new design space.  If it is not, that implies that the overall function shape

is concave.

Termination Criteria

In the ARSM, the search process terminates when the difference between the upper bound

and lower bound for all variables becomes negligible. The termination criterion can be

written as

nixx iuil ,,1,|| ,, L=≤− ε  (18)

where, ε  is a small number specified by the designer.  Also, the designer can terminate the

process whenever a satisfactory design  is found.

Tests on the ARSM

Even though there is not a standard set of test problems for global optimization algorithms,

a number of well-known problems are widely used [14, 18, 31, 41, 55]. The proposed

ARSM method was tested using these benchmark optimization problems.  Among those,

the Goldstein and Price function is a high-order polynomial function with an unusual

shape, and is frequently used to test new optimization algorithms for their convergence

characteristics [14].  This function rises up to higher than 109 and has four local minima in

a small  region and has the following form:

)]273648123218()32(

30[*)]361431419()1(1[)(
2
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2
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212,1

xxxxxxxx

xxxxxxxxxxf
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+++−+−+++=
  (19)
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where, ]22[, 21 −∈xx .  We assume that the Goldstein and Price function acts as a complex

function that requires intensive computation for each function evaluation.

The tests on the ARSM cover two aspects:

• How  close does it come to the global optimum of the test function?

• How many function evaluations are needed for the algorithm to converge?

The comparison was made to the response surface method that only one surrogate was

built, referred to here as "one-time RSM", in order to demonstrate the advantage of the

ARSM in which surrogates are gradually improved.  For the Goldstein and Price function,

the one-time RSM results in a function value of 425.66, which is far from the design

optimum of 3.0 (Table 1). On the other hand, the ARSM continues to improve the fitting

accuracy and systematically approaches the global optimum. Calculation results after each

design iteration are listed in Table 1.  At the seventh iteration, the ARSM reached a

solution very close to the analytic global optimum.  The search could be terminated as a

satisfactory result was obtained.  Calculation results from additional iterations are listed as

well to illustrate the potential improvement on the accuracy of the design optimum.

The search efficiency (in terms of required number of function evaluations) and the

accuracy of the optimization are compared with another global optimization scheme,

simulated annealing (SA), in Table 2.
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Table 1.  Optimization of the GoldStein and Price function using the ARSM

Design
Iteration

Design Space Cutting
Value

Optimum
Design @

Design
Func.
Value

#1 X1:[-2 2], X2:[-2 2] 316600 (2.00, 0.53) 425.66

#2 X1:[-1.24 2], X2:[-1.50 2] 211478 (2.00, 0.53) 425.66

#3 X1:[-1.24 2], X2:[-1.50 1.76] 211478 (2.00, 0.53) 425.66

#4 X1:[-1.24 2], X2:[-1.50 1.39] -4000.00 (2.00, 0.53) 425.66

#5 X1:[-1.24 2], X2:[-1.50 -0.72] 41444.9 (0.012, 0.72) 63.200

#6 X1:[-1.24 1.66], X2:[-1.50 -0.49] 8855.98 (0.21, -0.99) 26.880

#7 X1:[-1.24 1.18], X2:[-1.50 -0.49] 5177.48 (-0.03, -0.99) 3.21

#8 X1:[-1.24 0.88], X2:[-1.50 -0.34] 2224.69 (-0.03, -0.99) 3.21

#9 X1:[-1.24 0.74], X2:[-1.21 -0.34] 287.420 (-0.03, -0.99) 3.21

#10 X1:[-0.68 0.51], X2:[-1.21 -0.34] 200.00 (-0.03, -0.99) 3.21

#11 X1:[-0.64 0.29], X2:[-1.02 -0.34] 80.36 (-0.03, -0.99) 3.21

#12 X1:[-0.33 0.29], X2:[-1.02 -0.53] 34.38 (-0.03, -0.99) 3.21

#13 X1:[-0.28 0.29], X2:[-1.02 -0.77] 28.01 (-0.03, -0.99) 3.21

#14 X1:[-0.23 0.20], X2:[-1.02 -0.77] 10.00 (-0.03, -0.99) 3.21

#15 X1:[-0.10 0.14], X2:[-1.02 -0.87] N/A (-0.009, -0.99) 3.11

Table 2.  A performance comparison between the SA and the ARSM

(on Goldstein and Price function)

Global
Optimization

Method

Obtained
Design

Optimum

Optimal Design
Function Value

Minimum
Obtained at
Iteration #

Number of
Function

Evaluations

ARSM (-0.01, –0.99) 3.11 15 150

SA ( 0.00, –1.00) 3.00 11,276 11,276

If  five minutes of computation time  were needed to carry out one computation-intensive

function evaluation, then the total computation time required by the SA would be forty

days, in comparison to twelve hours required by the ARSM.  The computation time

associated with the design space reduction at each design iteration in the ARSM is in 1~2
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seconds on a Sparc Ultra SUN workstation and thus is negligible.  The ARSM

optimization could be stopped after the seventh or eighth iteration with an obtained design

minimum at 3.21, very close to the actual minimum and with far fewer computations.

Thus the time needed to acquire the design optimum using the proposed ARSM is more

suitable for a real design optimization task than the SA method.  If distributed computation

is used to perform experimental designs, the time can be further reduced.

Following the same procedure of minimizing the Goldstein and Price function, the ARSM

was also tested with a number of other minimization problems listed below, where n is the

total number of variables [14, 18, 31, 41, 55].

• Six-hump camel-back function (SC), n = 2.

]5,5[,44
3
1

1.24)( 2,1
4
2

2
221

6
1

4
1

2
1 −∈+−++−= xxxxxxxxxf sc (20)

• Branin function (BR), n = 2.

]15,0[],10,5[,10cos)
8
1

1(10)6
5

4
1.5

()( 211
2

1
2
122 ∈−∈+−+−+−= xxxxxxxf B πππ

 (21)

• Generalized polynomial function (GF), n = 2.

2
3

2
2

2
1)( uuuxf SB ++= (22)

3,2,1),1( 21 =−−= ixxcu i
ii (23)

625.2,25.2,5.1 321 === ccc (24)
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• Rastrigin function (RS), n = 2.

]1,1[,18cos18cos)( 2,121
2
2

2
1 −∈−−+= xxxxxxf RS (25)

• Griewank function (GN), n = 2.

∏∑
==

−∈+−=
n

i
i
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iGN xixxxf

1
2,1
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2 ]100,100[,1)/cos(200/)( (26)

• Hesse function (HE), n = 6

2
6

2
5

2
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2
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2
2
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1 )4()1()4()1()2()2(25)( −+−+−+−+−+−=− xxxxxxxf HE (27)
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212165432,1

)3(4,)3(4
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(28)

• Hartman function (HN), n = 6.

nixpxcxf i
i

n

j
ijjijiHN ,,1],1,0[],)(exp[)(

4

1 1

2 L=∈−−−= ∑ ∑
= =

α ( 29)

where

i           6,,1, L=jijα                        ci

1
2
3
4

10       3      17      3.5     1.7      8       1
.05     10     17      0.1       8     14     1.2
  3     3.5    1.7      10      17       8       3
17       8      .05     10      0.1    14     3.2

i 6,,1, L=jp ij

1
2
3
4

.1312     .1696     .5569     .0124     .8283     .5886

.2329     .4135     .8307     .3736     .1004     .9991

.2348     .1451     .3522     .2883     .3047     .6650

.4047     .8828     .8732     .5743     .1091     .0381
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The test results were compared to those obtained through the one-time RSM and simulated

annealing method, as listed in Table 3, where GP stands for the Goldstein and Price

function.  The third column of Table 3 lists the number of local minima of each test

function within its given design space.

As shown in Table 3, the ARSM can converge fairly close to the global optimum (verified

by the analytical solution) with a modest number of function evaluations.  For functions

RS, GN and HE, as the optimum is obtained at the first fitting, the advantage of the ARSM

over the one-time RSM is not revealed.  In other cases, the one-time RSM yields poor

solutions for functions GP, SC, BR, GF and HN, as shown in Table 3.  The ARSM did not

find the global optimum for the function BR because the global optimum was cut-off

during design space reduction.   This problem is further discussed later in  the Discussion

section of this paper.  For function HN, the ARSM identified its global optimum with a

relatively large number of function evaluations.  At present the total number of design

function evaluations of the ARSM is determined by the CCD for experimental design

planning.  A drawback of the CCD is that the number of experimental designs (function

evaluations) increases exponentially with the number of design variables. The ARSM can

reasonably be used at this time for design optimization problems with less than ten design

variables.  Nevertheless the total number of design function evaluations required by the

ARSM is significantly smaller than that of the simulated annealing method.
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Table 3.  Summary of tests on the ARSM

Global Optimum Obtained Number of Function Evaluation
Test

Function

Number
of

Variables

Number
of Local
Minima

Analytic
Solution ARSM

One-
time
RSM

Simulated Annealing ARSM

GP 2 4 3 3.21 425.66 11,276 70

SC 2 6 -1.032 -0.866 0 11,128 100

BR 2 3 0.398 2.099 10.961 11,263 50

GF 2 ≥ 5 0 0.609 14.203 14,824 144

RS 2 50 -2 -2 -2 11,099 9

GN 2 500 0 0 0 16,776 9

HE 6 18 -310 -304.5 -304.5
550,483 evaluations
with the optimum at

–180.642

9

HN 6 ≥ 3 -3.32 -3.32 -0.836
11,081 evaluations
with the optimum at

–0.161
1248

Application Example: Optimal Design of a Fuel Cell Stack and System

In all, three industrial design examples were studied.  Initial testing of the ARSM was with

the well-known two-bar structure design problem [8, 58].  Then the second application of

the ARSM was to design a mechanical component of multiple functions [59].  For the

purpose of brevity, these two design examples have been omitted from this article.  The

third application of the ARSM  is the design optimization for a fuel cell stack and system

with seven design variables.  A fuel cell is an electric power-generating element based on

the controlled reaction of fuel, typically hydrogen, and an oxidant, typically oxygen.  The

fuel cell system has significant potential to be used as a “clean” alternative to automotive

engines.
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 Design Objectives and Constraints

The operation of a fuel cell system involves very complex mass and heat transfer

processes.  Design optimization has to be carried out at a stack and system level to

optimize the performance and minimize the costs of fuel cells as an “engine”.  The

performance measures include the United States Advanced Battery Consortium Dynamic

Stress Test (USABC DST) efficiency [37, 62], net power output, volumetric power

density, and gravitational power density.  The system cost measures include the

operational cost, material cost, manufacturing cost and assembly cost.  The fuel cell, as an

engine for vehicles, has to fit within the given space of a passenger car.  According to [47],

the space is limited to 0.5 m ×  1 m2.  In addition, the structural integrity of a fuel cell stack

is to be ensured.  This work is to optimize the system design based on a patented fuel cell

stack structure, the Tri-Stream External Manifolding and Radiator Stack (TERS).  The

system performance modeling involves a large number of non-linear equations and

iterative simulation processes.  The cost model is strongly interlaced with the performance

model.  Detailed fuel cell system performance and cost modeling is in [32, 57].  The

performance measures and the system cost are evaluated through calling a system

operation simulation process.

Design Variables

Fig. 4 illustrates a group of chosen design variables.  These variables include:

1. Operational variable: air stoichiometry, airSt;

2. Configuration variable: number of fuel cells per stack, nCell;

3. Geometric dimensions:
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• Stack width (assumed square cross-section), stackW,

• Supporting column width (assumed square cross-section), colW,

• Height of the panel (fin), finH,

• Thickness of the stack end plate, tEnd, and

• Thickness of manifold covers, tMani.

Based upon a sensitivity study, the thickness of the endplate and the thickness of the manifolding

behave independently of other design variables, and so are not included in the optimization.

Optimization Process

The optimization was carried out using five variables: airSt, stackW, colW, nCell, and finH,

denoted as ,,,, 4321 xxxx and 5x , respectively.  A heuristics-based design given by Pastula [32]

is used as the base case design for comparison.  This base case is represented by a point in the

design space: ]9,24,05.19,8.177,2[=x
r

.  The range of the five variables was set by the

designer of the TERS fuel cell system as shown in Table 4.

Table 4.  Variable ranges for TERS system design

Design Variable Range

Air Stoichiometry, airSt 1.3 ~ 2.5

Stack Width, stackW 100 ~ 240 mm
Column Width, colW 10 ~ 30 mm

Number of Cells per Stack, nCell 10 ~ 130 mm (Layout (b))
or 10 ~ 60 mm (Layout (a))

Fin Height, finH 4 ~ 15 mm

The number of cells per stack is a function of the stack layout.  Two possible stack layouts are

given in Fig. 5.  Intuitively, layout (b) can reduce the total number of stacks and present a better

solution.   However, both layouts are included in the design optimization.
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The system performances and cost of the fuel cell system were normalized and summed up into a

single design objective function using the weighted-sum method with equal weights.  The space

constraint was incorporated in the optimization process while the structure integrity was verified

at the obtained optimum after the optimization.  The optimal designs were obtained for both

layouts after two design iterations of each case using the ARSM.  Detailed process and the

experimental design data can be found in [57].  The results of optimization are given in Table 5.

Table 5.  A comparison of the two system layouts

Layout Efficiency
(%)

Net
Power
(kW)

Power
Density

(w/l)

Power
Density
(w/kg)

System Cost
Reduction

(%)

Length
(m)

Space
(m2)

(a) 53.345 57.249 171.427 137.323 7.172 0.499 0.27
(b) 54.163 57.453 173.328 143.051 11.527 0.998 0.14

Base 46.3 51.0 121.2 100.1 0 0.33 0.84

Significant performance improvement and cost reduction were achieved by both layouts over the

base case design while satisfying the space constraint.  Layout (b) presents a better design

solution and the result confirms our design intuition.

For Layout (b), another type of optimization problem was formulated.  This formulation was to

use the cost as the objective function, subjected to the space constraint and the performance

constraint that all the performance measures were required to be better than a base case design

performances.  This formulation represents the industrial need because the cost reduction is of

major concern today while the fuel cell performances are satisfactory.  The optimization results

are given in Table 6.  For the first formulation, the ARSM led to a balanced performance and

cost design solution at xmin=[2 100 10 114 4] after two design iterations.  This result is a little

different from that in Table 5 because after the optimization for layout comparison, the air

stoichiometry was intentionally fixed at a conservative number [57].  For the second formulation,
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a minimum cost design at xmin=[2 135 10 114 4] after nine iterations was reached by using the

ARSM.  Both designs are superior to the base case design.  A considerable 43 percent increase in

system power density or 16 percent reduction on system cost could be achieved.  The entire

design optimization was completed in hours.

Table 6.  Design improvements over the base (reference) design

Designs
Efficiency
Increase

(%)

Net Power
Increase

(%)

Volumetric
Power Density
Increase (%)

Gravimetric
Power Density
Increase (%)

System Cost
Reduction

(%)

Number of
Design

Iterations
Scenario I 12.02 6.20 43.49 43.49 12.07 2
Scenario II 6.09 3.83 40.59 40.75 16.12 9

Discussions 

The proposed adaptive response surface method was introduced to carry out computation-

intensive design optimizations.  The ARSM applies an iterative process to progressively improve

the quadratic approximation around the minimum of  a complex or unknown design function.

The space reduction  ensures the convergence of the optimization process for overall convex

shape functions as the objective function value is forced to reduce at each iteration.

 The ARSM inherits the advantages from the traditional RSM, including the facilitation of

distributed computation and providing insights  into complex design problems. The RSM also

enables design optimization to be independent of any CAD/CAE systems.  Various modeling,

analysis and simulation processes can be utilized to perform experimental designs and be

integrated through the RSM with minimum coding effort.  This feature allows broader

applications and imposes fewer constraints on industrial users.
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The ARSM also has its own distinct merits. It is an efficient global search scheme for

approximation-based design optimization.  It requires significantly fewer function evaluations

for the convergence of design optimization, compared to the probabilistic global optimization

algorithm, simulated annealing.  In this sense, the ARSM increases the range of problem for

which global optimization of computation- intensive design problems is feasible and practical.  In

addition, the ARSM facilitates the automation of the design process with proper interface

between various function evaluation modules and the ARSM unit.

As any other optimization algorithms, the ARSM also has its limitations.  In rare cases, the

search algorithm may miss the true global optimum, as illustrated in Fig. 6.  During the reduction

of the design space, the true global optimum at point 2 will be ruled out and point 1 will be

identified as the global optimum.  Unless an experiment had been performed within the

neighborhood of point 2, the real global optimum would be missed in the search. This is the case

that the ARSM failed to find the global optimum of the Branin function in the testing. To avoid

this case, a reasonably small initial design space should be chosen, if this is possible, and an

appropriate experimental planning method with experimental points close enough to avoid

missing the minimum. Secondly, as described in the section of Identification of the Reduced

Design Space, the ARSM fails to converge to the global optimum when the overall shape of the

objective function is concave.  Finally, a better method of selecting threshold values needs to be

developed to replace the current ad hoc method.

The ARSM focuses on the approximation model management during the optimization process.

To solve practical industrial design problems, it can be combined with the sequential screening

method [5, 2] to eliminate unimportant design variables and with a better experimental design

planning technique to tackle large-scale design problems [23].
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Conclusions

The Adaptive Response Surface Method (ARSM) introduced in this work focuses on the

approximation model management for computation-intensive design optimization problems.  The

method is introduced for the optimization of an industrial design problem that has complex

objective and constraint functions, and requires a computation intensive analysis/simulation

process to evaluate these functions.  The proposed ARSM algorithm maps the objective function

value to a gradually reduced design space for functions of overall convex shape.  As illustrated in

benchmark tests and the industrial design application, the ARSM can converge to a global design

optimum with a modest number of function evaluations.  This new method makes the global

optimization of approximation-based design problems feasible.  Further work may improve its

efficiency and ability to handle large-scale engineering design problems.
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Fig. 2 The flowchart of the ARSM
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Fig. 3 A non-convex function with an overall convex shape

Approximation
Function g(x)

x

Actual function f(x)



38
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Fig. 5 Two possible spatial layouts of stacks
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Fig. 6 The case in which ARSM may miss the global optimum
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