
Solving Large Scale Optimization Problems by
Opposition-Based Differential Evolution (ODE)

Shahryar Rahnamayan
University of Ontario Institute of Technology (UOIT)

Electrical and Computer Engineering
2000 Simcoe Street North

Oshawa, ON, L1H 7K4, Canada
Shahryar.Rahnamayan@uoit.ca

G. Gary Wang
Simon Fraser University (SFU)

Mechatronic Systems Engineering
250-13450 102 Avenue

Surrey, BC, V3T 0A3, Canada
Gary Wang@sfu.ca

Abstract:This work investigates the performance of Differential Evolution (DE) and its opposition-based version
(ODE) on large scale optimization problems. Opposition-based differential evolution (ODE) has been proposed
based on DE; it employs opposition-based population initialization and generation jumping to accelerate conver-
gence speed. ODE shows promising results in terms of convergence rate, robustness, and solution accuracy. A
recently proposed seven-function benchmark test suite for the CEC-2008 special session and competition on large
scale global optimization has been utilized for the current investigation. Results interestingly confirm that ODE
outperforms its parent algorithm (DE) on all high dimensional (500D and1000D) benchmark functions (F1-F7).
Furthermore, authors recommend to utilize ODE for more complex search spaces as well. Because results con-
firm that ODE performs much better than DE when the dimensionality of the problems is increased from500D
to 1000D. All required details about the testing platform, comparison methodology, and also achieved results are
provided.

Key–Words:Opposition-Based Differential Evolution (ODE), Opposition-Based Optimization (OBO), Opposition-
Based Computation (OBC), Cooperative Coevolutionary Algorithms (CCA), Large Scale Optimization, Scalabil-
ity, High-Dimensional Problems

1 Introduction

Generally speaking, evolutionary algorithms (EAs)
are well-established techniques to approach those
practical problems which are difficult to solve for the
classical optimization methods. Tackling problems
with mixed-type of variables, many local optima, un-
differentiable or non-analytical functions, which are
frequently faced in all science and engineering fields,
are some examples to highlight the outstanding ca-
pabilities of the evolutionary algorithms. Because of
evolutionary nature of EA algorithms, as a disadvan-
tage, they are computationally expensive in general
[16, 17]. Furthermore, the performance of EAs de-
creases sharply by increasing the dimensionality of
optimization problems. The main reason for that is
increasing the search space dimensionality would in-
crease complexity of the problem exponentially. On
the other hand, for many real-world applications, we
are faced with problems which contain a huge num-
ber of variables. Due to such a need, supporting the
scalability is a very valuable characteristic for any

optimization method. In fact, reducing the required
number of function calls to achieve a satisfactory so-
lution (which means accelerating convergence rate)
is always valuable; especially when we are faced
with expensive optimization problems. Employing
smart sampling and meta-modelling are some com-
monly used approaches [24, 25] to tackle this kind of
problems.

Many comparison studies confirm that the differ-
ential evolution (DE) outperforms many other evo-
lutionary optimization methods. In order to en-
hance DE, opposition-based differential evolution
(ODE) was proposed by Rahnamayan et al. in 2006
[2, 3, 5, 27] and then quasi-oppositional DE (QODE)
in 2007 [4]. These algorithms (ODE and QODE) are
based on DE and the opposition concept [8, 1]. ODE
was followed by others to propose opposition-based
particle swarm algorithms [20, 21], tracking dynamic
objects using ODE [9], opposition-based ant colony
algorithms [10, 11], enhancing self-adaptive DE with
population size reduction to tackle large scale prob-

WSEAS TRANSACTIONS on COMPUTERS
Manuscript received May. 10, 2008; revised Sep. 18, 2008

Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1792 Issue 10, Volume 7, October 2008

lems [19]1, and introducing an adaptive DE applied
to tuning of a Chess program [22].

ODE employs opposition-based population ini-
tialization [6] and generation jumping to accelerate
the convergence rate of DE. The main idea behind
the opposition is the simultaneous consideration of
an estimate and its corresponding opposite estimate
(i.e., guess and opposite guess) in order to achieve a
better approximation for the current candidate solu-
tion [29].

The reported results for ODE were promising on
low and medium size problems (D <100). But pre-
viously, ODE was not investigated in scalability. By
experimental verification, current work tries to find
out an answer for this question: which one, DE or
ODE, presents higher efficiency to solve large scale
problems?

Organization of this paper is as follows: Section
2 provides the brief overview of DE and ODE. In
Section 3, detailed experimental results and also per-
formance analysis are given and explained. Finally,
the work is concluded in Section 4.

2 Brief Review of DE and ODE
Differential evolution (DE) and its extended version
by opposition-based concept (ODE) has been briefly
reviewed in following subsections.

2.1 Differential Evolution (DE)
Differential Evolution (DE) was proposed by Price
and Storn in 1995 [12]. It is an effective, robust, and
simple global optimization algorithm [13]. DE is a
population-based directed search method [14]. Like
other evolutionary algorithms, it starts with an ini-
tial population vector, which is randomly generated
when no preliminary knowledge about the solution
space is available. Each vector of the initial popula-
tion can be generated as follows [13]:

Xi,j = aj + randj(0, 1)× (aj − bj); j = 1, 2, ..., D,
(1)

whereD is the problem dimension;aj andbj are
the lower and the upper boundaries of the variablej,
respectively.rand(0, 1) is the uniformly generated
random number in[0, 1].

Let us assume thatXi,G(i = 1, 2, ..., Np) are
candidate solution vectors in generationG (Np :

1It uses opposition concept implicitly by changing the sign
of F and so searching in the opposite direction.

population size). Successive populations are gen-
erated by adding the weighted difference of two
randomly selected vectors to a third randomly se-
lected vector. For classical DE (DE/rand/1/bin),
the mutation, crossover, and selection operators are
straightforwardly defined as follows:

Mutation - For each vectorXi,G in generationG
a mutant vectorVi,G is defined by

Vi,G = Xa,G + F (Xc,G −Xb,G), (2)

where i = {1, 2, ..., Np} and a, b, and c are
mutually different random integer indices selected
from {1, 2, ..., Np}. Further, i, a, b, and c are
different so thatNp ≥ 4 is required.F ∈ [0, 2] is a
real constant which determines the amplification of
the added differential variation of(Xc,G − Xb,G).
Larger values forF result in higher diversity in the
generated population and lower values cause faster
convergence.

Crossover - DE utilizes the crossover operation to
generate new solutions by shuffling competing vec-
tors and also to increase the diversity of the popu-
lation. For the classical DE (DE/rand/1/bin), the
binary crossover (shown by ‘bin’ in the notation) is
utilized. It defines the following trial vector:

Ui,G = (U1i,G, U2i,G, ..., UDi,G), (3)

Uji,G =

{
Vji,G if randj(0, 1) ≤ Cr ∨ j = k,
Xji,G otherwise.

(4)
Cr ∈ (0, 1) is the predefined crossover rate,

and randj(0, 1) is the jth evaluation of a uniform
random number generator.k ∈ {1, 2, ..., D} is a
random parameter index, chosen once for eachi
to make sure that at least one parameter is always
selected from the mutated vector,Vji,G. Most
popular values forCr are in the range of(0.4, 1)
[15].

Selection -This is an approach which must decide
which vector (Ui,G or Xi,G) should be a member of
next (new) generation,G + 1. For a minimization
problem, the vector with the lower value of objective
function is chosen (greedy selection).

This evolutionary cycle (i.e., mutation, crossover,
and selection) is repeatedNp (population size) times

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1793 Issue 10, Volume 7, October 2008

to generate a new population. These successive gen-
erations are produced until meeting the predefined
termination criteria.

2.2 Opposition-Based DE (ODE)
Similar to all population-based optimization algo-
rithms, two main steps are distinguishable for the
DE, population initialization and producing new
generations by evolutionary operations such as
selection, crossover, and mutation. ODE enhances
these two steps based on looking at the opposite
points (let say individuals in the population). The
opposite point has a straightforward definition as
follows:

Definition (Opposite Number) -Let x ∈ [a, b] be
a real number. The opposite numberx̆ is defined by

x̆ = a + b− x. (5)

Similarly, this definition can be extended to higher
dimensions as follows [8, 1, 29]:

Definition (Opposite Point in n-Dimensional
Space) -Let P = (x1, x2, ..., xn) be a point in n-
dimensional space, wherex1, x2, ..., xn ∈ R and
xi ∈ [ai, bi] ∀i ∈ {1, 2, ..., n}. The opposite point
P̆ = (x̆1, x̆2, ..., x̆n) is completely defined by its
components

x̆i = ai + bi − xi. (6)

Fig.1 presents the flowchart of ODE. White boxes
present steps of the classical DE and grey ones
are expended by opposition concept. Blocks (1)
and (2) present opposition-based initialization and
opposition-based generation jumping, respectively.

Extended blocks by opposition concept will be ex-
plained in the following subsections.

2.2.1 Opposition-Based Population Initializa-
tion

By utilizing opposite points, we can obtain fitter
starting candidate solutions even when there is no
a priori knowledge about the solution(s). Block
(1) in Fig.1 show implementation of corresponding
opposition-based initialization for the ODE. Follow-
ing steps show that procedure:

1. Random initialization of populationP (NP),

2. Calculate opposite population by

OP i,j = aj + bj − Pi,j , (7)

i = 1, 2, ..., Np ; j = 1, 2, ..., D,

where Pi,j andOP i,j denotejth variable of the
ith vector of the population and the opposite-
population, respectively.

3. Selecting theNp fittest individuals from{P ∪
OP} as initial population.

2.2.2 Opposition-Based Generation Jumping

By applying a similar approach to the current popula-
tion, the evolutionary process can be forced to jump
to a new solution candidate, which may be fitter than
the current one. Based on a jumping rateJr, after
generating new population by selection, crossover,
and mutation, the opposite population is calculated
and theNp fittest individuals are selected from the
union of the current population and the opposite pop-
ulation. As a difference to opposition-based initial-
ization, it should be noted here that in order to cal-
culate the opposite population for generation jump-
ing, the opposite of each variable is calculated dy-
namically. The maximum and minimum values of
each variable incurrent population([MINp

j , MAX p
j])

are used to calculate opposite points instead of using
variables’ predefined interval boundaries ([aj , bj]):

OPi,j = MINp
j + MAX p

j − Pi,j , (8)

i = 1, 2, ..., Np ; j = 1, 2, ..., D.

The dynamic opposition increases the chance to
find fitter opposite points, so it helps in fine tun-
ing. By staying within variables’ interval static
boundaries, we would jump outside of the shrunken
solution space and the knowledge of current re-
duced space (converged population) would not be
utilized. Hence, we calculate opposite points by
using variables’ current interval in the popula-
tion ([MINp

j , MAX p
j]) which is, as the search does

progress, increasingly smaller than the correspond-
ing initial range[aj , bj]. Block (2) in Fig.1 shows
the implementation of opposition-based generation
jumping for the ODE. Our extensive experiments
show that jumping rateJr should be a small num-
ber in(0, 0.4].

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1794 Issue 10, Volume 7, October 2008

Figure 1: Opposition-Based Differential Evolution (ODE). Block (1): Opposition-based initialization, Block
(2): Opposition-based generation jumping (Jr: jumping rate,rand(0, 1): uniformly generated random
number,Np: population size).

3 ODE vs. DE on Large Scale Mini-
mization Problems

In this section, DE and ODE are compared on a
large scale (D=500and D=1000) minimization test
suite in term of solution accuracy. The utilized
test suite contains seven well-known unimodal and
multi-modal functions with separability and non-
separability characteristics in both modality groups.

3.1 Benchmark Functions

For comparison of DE and ODE, a recently proposed
benchmark test suite for the CEC-2008 Special Ses-
sion and Competition on Large Scale Global Opti-
mization [23] has been utilized. It includes two uni-
modal (F1-F2) and five multi-modal (F3-F7) func-
tions, among which four of them are non-separable
(F2, F3, F5, F7) and three are separable (F1, F4, F6).
Functions names and their properties are summa-
rized in Table 1. The mathematical definitions of

these functions are described in Appendix A.

3.2 Parameter Settings

Parameter setting for all conducted experiments is as
follows:

• Dimension of the problems,D = 500 andD =
1000 [23]

• Population size,Np = D [26, 19]

• Differential amplification factor,F = 0.5 [5, 7,
28]

• Crossover probability constant,Cr = 0.9 [5, 7,
28]

• Mutation strategy: DE/rand/1/bin (classical ver-
sion of DE) [12, 5, 7, 28]

• Maximum number of function calls,
MAX NFC = 5000×D [23]

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1795 Issue 10, Volume 7, October 2008

Table 1: Benchmark functions. All of them are scalable and shifted.

Function Name Properties Search Space

F1 ShiftedSphere Function Unimodal, Separable [−100, 100]D

F2 Shifted Schwefels Problem 2.21 Unimodal, Non-separable [−100, 100]D

F3 Shifted Rosenbrocks Function Multi-modal, Non-separable, A narrow valley from local optimum to global optimum[−100, 100]D

F4 Shifted Rastrigins Function Multi-modal, Separable, Huge number of local optima [−5, 5]D

F5 Shifted Griewanks Function Multi-modal, Non-separable [−600, 600]D

F6 Shifted Ackleys Function Multi-modal, Separable [−32, 32]D

F7 FastFractal DoubleDip Function Multi-modal, Non-separable [−1, 1]D

• Jumpingrate constant (for ODE),Jr = 0.3 [5,
7, 28]

All above mentioned settings are based on our or
colleagues’ previous works and so there has no new
attempts to obtain better values for them. In order
to maintain a reliable and fair comparison, these set-
tings are kept unchanged for all conducted experi-
ments for both algorithms and also for both dimen-
sions (D=500and1000).

3.3 Comparison Criteria

The conducted comparisons in this paper are based
on solution accuracy. The termination criteria is
set to reaching the maximum number of function
calls (5000× D). In order to have a clear vision
on algorithm’s efficiency, the best, median, worse,
mean, standard deviation, and95% confidential in-
terval (95%CI) 2 of the error value (f(x) − f(x∗),
x∗: optimum vector) are computed with respect to25
runs per function.

3.4 Numerical Results

Results for DE and ODE on seven functions are sum-
marized in Table 2 for500D and in Table 3 for
1000D. For each function, the best, median, worse,
mean, standard deviation, and95% confidential in-
terval (95% CI) of the error value on25 runs are
presented. The best result of each error measure is
emphasized inboldface. Fitness plots of DE and
ODE for D=500 and D=1000are given in Figure 2
and Figure 3, respectively. The plots show that how
ODE converges to the solution faster than DE.

2It shows that95% of the data appearances in this interval.

3.5 Result Analysis

As seen from Table 2 and Table 3, on all bench-
mark test functions, ODE clearly outperforms DE.
Although, for functionsF2 (the only for500D), F4,
F6, andF7, DE presents a lower standard deviation,
the fact that even for these functions it is reported
95% confidential intervals confirms that ODE per-
forms better. In fact, the smaller boundaries of95%
CI for ODE demonstrate this conclusion. That is
valuable to mention, except forF6, on all functions
(D=500 and1000), a big difference between DE and
ODE’s results is recognizable.

As mentioned before, our test suite contains
shifted unimodal, multi-modal (with huge number
of optima), scalable, separable, and non-separable
functions; so according to the obtained results that
is reasonable to say ODE presents evidences to per-
form better than DE (parent algorithm) on large scale
problems.

4 Conclusion
Before the current work, the performance of ODE on
large scale problems has not been investigated. So,
it was interesting to have a performance study by an
accepted high dimensional test suite. The achieved
results are promising because ODE outperforms DE
on all seven test functions, for D=500and1000. We
propose that other DE-based approaches, which are
used to tackle large scale problems, may investigate
replacing DE by ODE.

Proposing a cooperative coevolutionary ODE
(CCODE) and also studying ODE’s jumping rate for
large scale optimization represent our directions for
future work.

Acknowledgement: Authors would like to thank
Dr. K. Tang et al. who shared the Matlab code of
benchmark functions.

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1796 Issue 10, Volume 7, October 2008

References:

[1] S. Rahnamayan, H.R. Tizhoosh, M.M.A
Salama, Opposition versus Randomness in
Soft Computing Techniques, Elsevier Journal
on Applied Soft Computing, Volume 8, March
2008, pp. 906-918.

[2] S. Rahnamayan, H.R. Tizhoosh, M.M.A.
Salama,Opposition-Based Differential Evo-
lution Algorithms, IEEE World Congress
on Computational Intelligence, Vancouver,
Canada, 2006, pp. 7363–7370.

[3] S. Rahnamayan, H.R. Tizhoosh, M.M.A.
Salama,Opposition-Based Differential Evo-
lution for Optimization of Noisy Problems,
IEEE World Congress on Computational In-
telligence, Vancouver, Canada, 2006, pp.
6756–6763.

[4] S. Rahnamayan, H.R. Tizhoosh, M.M.A
Salama,Quasi-Oppositional Differential Evo-
lution, IEEE Congress on Evolutionary Com-
putation (CEC-2007), Singapore, Sep. 2007,
pp. 2229-2236.

[5] S. Rahnamayan, H.R. Tizhoosh, M.M.A
Salama,Opposition-Based Differential Evo-
lution, IEEE Transactions on Evolutionary
Computation, Volume 12, Issue 1, Feb. 2008,
pp. 64-79.

[6] S. Rahnamayan, H.R. Tizhoosh, M.M.A
Salama, A Novel Population Initialization
Method for Accelerating Evolutionary Algo-
rithms, Elsevier Journal on Computers and
Mathematics with Applications, Volume 53,
Issue 10, May 2007, pp. 1605-1614.

[7] S. Rahnamayan,Opposition-Based Differen-
tial Evolution, Ph.D. Thesis, Department of
Systems Design Engineering, University of
Waterloo, Waterloo, Ontario, Canada, May
2007.

[8] H.R. Tizhoosh,Opposition-Based Learning:
A New Scheme for Machine Intelligence, In-
ternational Conf. on Computational Intelli-
gence for Modelling Control and Automation
(CIMCA’2005), Vienna, Austria, Vol. I, 2005,
pp. 695-701.

[9] Fadi Salama,Tracking Dynamic Objects using
Opposition-Based Differential,Thesis Thesis

for Honours Programme, Department of Com-
puter Science, University of Western Aus-
tralia, Australia, 2007.

[10] A.R. Malisia and H.R. Tizhoosh,Applying
Opposition-Based Ideas to the Ant Colony
System, Proceedings of IEEE Swarm Intelli-
gence Symposium (SIS-2007), Hawaii, April
1-5, 2007, pp. 182-189.

[11] Alice R. Malisia, Investigating the Applica-
tion of Opposition-Based Ideas to Ant Algo-
rithms, M.Sc. Thesis, Department of Systems
Design Engineering, University of Waterloo,
Waterloo, Ontario, Canada, Sep. 2007.

[12] R. Storn and K. Price,Differential Evolution-
A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces, Jour-
nal of Global Optimization 11, pp. 341-359,
1997.

[13] K. Price, R.M. Storn, J.A. Lampinen,Dif-
ferential Evolution : A Practical Approach
to Global Optimization (Natural Computing
Series)Springer; 1st Edition, 2005, ISBN:
3540209506.

[14] K. Price, An Introduction to Differential
Evolution, In: D. Corne, M. Dorigo, F.
Glover (eds) New Ideas in Optimization,
McGraw-Hill, London (UK), pp. 79-108,
1999, ISBN:007-709506-5.

[15] S. Das, A. Konar, U. Chakraborty,Improved
Differential Evolution Algorithms for Han-
dling Noisy Optimization Problems, IEEE
Congress on Evolutionary Computation Pro-
ceedings, Vol. 2, pp. 1691-1698, 2005.

[16] S. Rahnamayan, H.R. Tizhoosh, M.M.A
Salama,Learning Robust Object Segmenta-
tion from User-Prepared Samples,WSEAS
Transactions on Computers, Volume 4, Issue
9, Sep. 2005, pp. 1163-1170.

[17] S. Rahnamayan, H.R. Tizhoosh, M.M.A
Salama,Towards Incomplete Object Recogni-
tion, WSEAS, Transactions on Systems, Vol-
ume 4, Issue 10, October 2005, pp. 1725-
1732.

[18] G. L. Cascella, F. Neri, N. Salvatore, G. Ac-
ciani, F. Cupertino,Hybrid EAs for Backup
Sensorless Control of PMSM Drives,WSEAS

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1797 Issue 10, Volume 7, October 2008

Transactions on Systems, Volume 5, Issue 1,
pp. 131–135, January 2006.

[19] J. Bresta, A. Zamuda, B. Boškovíc, M.S.
Maučec, V. Žumer, High-Dimensional Real-
Parameter Optimization using Self-Adaptive
Differential Evolution Algorithm with Popu-
lation Size Reduction, IEEE World Congress
on Computational Intelligence (WCCI-2008),
Hong Kong, June 2008, pp. 2032-2039.

[20] L. Han, X. He, A Novel Opposition-Based
Particle Swarm Optimization for Noisy Prob-
lems, Third International Conference on Natu-
ral Computation (ICNC-2007), 2007, pp. 624-
629.

[21] H. Wang, Y. Liu, S. Zeng, H. Li, C. Li,
Opposition-based Particle Swarm Algorithm
with Cauchy Mutation, IEEE Congress on
Evolutionary Computation (CEC-2007), Sin-
gapore, Sep. 2007, pp. 4750-4756.

[22] B. Boškovíc, S. Greiner, J. Brest, A. Za-
muda, and V.Žumer, An Adaptive Differ-
ential Evolution Algorithm with Opposition-
Based Mechanisms, Applied to the Tuning of a
Chess Program,In Uday K. Chakraborty, edi-
tor, Advances in Differential Evolution, Stud-
ies in Computational Intelligence, Vol. 143,
Springer, June 2008.

[23] K. Tang, X. Yao, P. N. Suganthan, C. Mac-
Nish, Y. P. Chen, C. M. Chen, Z. Yang,
Benchmark Functions for the CEC’2008
Special Session and Competition on Large
Scale Global Optimization, Technical Re-
port, Nature Inspired Computation and
Applications Laboratory, USTC, China,
http://nical.ustc.edu.cn/cec08ss.php, 2007.

[24] B. Sharif, G.G. Wang, and T. El-Mekkawy,
Mode Pursing Sampling Method for Discrete
Variable Optimization on Expensive Black-
box Functions,ASME Transactions, Jour-
nal of Mechanical Design, Vol. 130, 2008,
pp.021402-1-11.

[25] L. Wang, S. Shan, and G.G. Wang,Mode-
Pursuing Sampling Method for Global Opti-
mization on Expensive Black-box Functions,
Journal of Engineering Optimization, Vol. 36,
No. 4, August 2004, pp. 419-438.

[26] Z. Yang, K. Tang, X. Yao,Differential Evo-
lution for High-Dimensional Function Op-
timization, IEEE Congress on Evolutionary
Computation (CEC-2007), Singapore, Sep.
2007, 3523-3530.

[27] S. Rahnamayan, H.R. Tizhoosh, M.M.A
Salama,Opposition-Based Differential Evo-
lution, Advances in Differential Evolution,
Series: Studies in Computational Intelli-
gence, Springer-Verlag, 2008, ISBN: 978-3-
540-68827-3, pp. 155-171.

[28] S. Rahnamayan, H.R. Tizhoosh, M.M.A
Salama,Differential Evolution via Exploiting
Opposite Populations,Oppositional Concepts
in Computational Intelligence, Series: Stud-
ies in Computational Intelligence, Springer-
Verlag, 2008, ISBN: 978-3-540-70826-1, pp.
143-160.

[29] H.R. Tizhoosh, M. Ventresca, S. Rahna-
mayan,Opposition-Based Computing,Oppo-
sitional Concepts in Computational Intelli-
gence, Series: Studies in Computational In-
telligence, Springer-Verlag, 2008, ISBN: 978-
3-540-70826-1, pp. 11-28.

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1798 Issue 10, Volume 7, October 2008

Table 2: Numerical results for DE and ODE on seven 500-dimensional minimization problems (25runs
per function). The best result of each error measure is emphasized in boldface.95% CI stands for95%
confidential interval.

Function Error Value DE ODE

Best 2, 636.54 15.66
Median 3, 181.45 36.61

F1 Worse 4, 328.80 292.65
Mean 3, 266.24 80.17
Std 409.68 79.24
95% CI [3039.4, 3493.1] [299.9,646.1]
Best 79.74 3.60
Median 82.39 4.86

F2 Worse 85.92 11.91
Mean 82.93 5.78
Std 2.09 2.37
95% CI [81.59, 84.25] [4.26,7.28]
Best 76, 615, 772.08 39,718.90
Median 119, 733, 049.20 137,279.03

F3 Worse 169, 316, 779.50 407,661.64
Mean 123, 184, 755.70 154,306.34
Std 29, 956, 737.58 114,000.53
95% CI [1.06e08, 1.39e08] [0.91e05,2.17e05]
Best 5, 209.99 2,543.51
Median 5, 324.57 4,279.56

F4 Worse 5,388.24 6, 003.94
Mean 5, 332.59 4,216.34
Std 43.82 1, 017.94
95% CI [5312.1, 5353.1] [3739.9,4692.7]
Best 24.29 1.25
Median 24.71 1.55

F5 Worse 27.59 2.13
Mean 25.16 1.75
Std 1.10 0.37
95% CI [24.42, 25.90] [1.49,1.99]
Best 4.66 2.49
Median 4.97 4.12

F6 Worse 5.15 6.73
Mean 4.94 4.51
Std 0.17 1.44
95% CI [4.87, 5.00] [3.91,5.09]
Best −3683.07 −3957.85
Median −3575.13 −3834.07

F7 Worse −3565.73 −3830.36
Mean −3593.75 −3851.82
Std 32.74 38.80
95% CI [−3615.7,−3571.8] [−3877.9,−3825.7]

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1799 Issue 10, Volume 7, October 2008

(a) F1 (b) F2

(c) F3 (d) F4

(e) F5 (f) F6

Figure 2: Fitness plots for DE and ODE, 500D.

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1800 Issue 10, Volume 7, October 2008

Table 3: Numerical results for DE and ODE on seven1000-dimensional minimization problems (25runs
per function). The best result of each error measure is emphasized in boldface.95% CI stands for95%
confidential interval.

Function Error Value DE ODE

Best 223, 944.73 19,548.90
Median 236, 805.13 21,104.67

F1 Worse 258, 806.47 43,417.84
Mean 238, 923.73 23,903.98
Std 12, 141.16 8,009.82
95% CI [2.30e05, 2.47e05] [1.81e04,2.96e04]
Best 119.57 0.44
Median 121.68 0.77

F2 Worse 123.11 2.88
Mean 121.33 1.31
Std 1.05 0.94
95% CI [120.57, 122.09] [0.64,1.99]
Best 35, 743, 891, 601 213,105,668
Median 40, 519, 312, 742 572,841,466

F3 Worse 44, 559, 917, 677 1,069,602,053
Mean 40, 215, 461, 419 516,296,792
Std 2, 838, 193, 442 326,088,526
95% CI [3.81e10, 4.22e10] [2.83e08,7.49e08]
Best 11, 589.29 5,704.55
Median 11, 791.33 5,904.49

F4 Worse 11, 898.50 7,309.99
Mean 11, 782.84 6,168.10
Std 105.06 620.58
95% CI [1.17e04, 1.18e04] [5.72e03,6.61e03]
Best 1, 845.36 138.99
Median 2, 040.99 182.19

F5 Worse 2, 101.89 185.05
Mean 2, 016.90 179.01
Std 79.15 14.13
95% CI [1.96e03, 2.07e03] [168.90,189.13]
Best 14.80 10.07
Median 15.14 12.64

F6 Worse 15.51 13.40
Mean 15.13 12.14
Std 0.23 1.14
95% CI [14.97, 15.30] [11.32,12.96]
Best −6, 764.16 −7,326.71
Median −6, 705.17 −7,290.84

F7 Worse −6, 692.63 −7,103.89
Mean −6, 711.71 −7,256.45
Std 21.08 87.08
95% CI [−6726,−6696] [−7318,−7194]

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1801 Issue 10, Volume 7, October 2008

(a) F1 (b) F2

(c) F3 (d) F4

(e) F5 (f) F6

Figure 3: Fitness plots for DE and ODE, 1000D.

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1802 Issue 10, Volume 7, October 2008

Appendix A: List of Bound Constrained Global Optimization High-Dimensional Benchmark Functions [23]

• Shifted Sphere Function

F1(X) =
n∑

i=1

Zi
2 + f bias1,

X ∈ [−100, 100], Z = (X −O), X = [x1, x2, ..., xn]
O = [o1, o2, ..., on] : The shifted global optimum.

Global optimum:X∗ = O,F1(X∗) = f bias1 = −450
Unimodal, shifted, separable, and scalable.

• Schwefel’s Problem 2.21

F2(X) = maxi{|Zi|, 1 ≤ i ≤ n}+ f bias2,

X ∈ [−100, 100], Z = (X −O), X = [x1, x2, ..., xn]
O = [o1, o2, ..., on] : The shifted global optimum.

Global optimum:X∗ = O,F2(X∗) = f bias2 = −450
Unimodal, shifted, non-separable, and scalable.

• Shifted Rosenbrock’s Function

F3(X) =
n−1∑
i=1

{100(Z2
i − Zi+1)2 + (Zi − 1)2}+ f bias3,

X ∈ [−100, 100], Z = (X −O) + 1, X = [x1, x2, ..., xn]
O = [o1, o2, ..., on] : The shifted global optimum.

Global optimum:X∗ = O,F3(X∗) = f bias3 = 390
Multi-modal, shifted, non-separable, scalable, and having a very narrow valley from local optimum to

global optimum.

• Shifted Rastrigins Function

F4(X) =
n∑

i=1

{Z2
i − 10 cos(2πZi) + 10}+ f bias4,

X ∈ [−5, 5], Z = (X −O), X = [x1, x2, ..., xn]
O = [o1, o2, ..., on] : The shifted global optimum.

Global optimum:X∗ = O,F4(X∗) = f bias4 = −330
Multi-modal, shifted, separable, scalable, and local optimas number is huge.

• Shifted Griewank’s Function

F5(X) =
n∑

i=1

Z2
i

4000
−

n∏
i=1

cos
(

Zi√
i

)
+ 1 + f bias5,

X ∈ [−600, 600], Z = (X −O), X = [x1, x2, ..., xn]
O = [o1, o2, ..., on] : The shifted global optimum.

Global optimum:X∗ = O,F5(X∗) = f bias5 = −180

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1803 Issue 10, Volume 7, October 2008

Multi-modal, shifted, non-separable, and scalable.

• Shifted Ackley’s Function

F6(X) = −20 exp

−0.2

√√√√√ n∑
i=1

Z2
i

n

− exp

n∑

i=1
cos(2πZi)

n

 + 20 + e,

X ∈ [−32, 32], Z = (X −O), X = [x1, x2, ..., xn]
O = [o1, o2, ..., on] : The shifted global optimum.

Global optimum:X∗ = O,F6(X∗) = f bias6 = −140
Multi-modal, shifted, separable, and scalable.

• FastFractal ”DoubleDip” Function

F7(X) =
n∑

i=1

fractal1D(xi + twist(x(i mod n)+1)),

twist(y) = 4(y4 − 2y3 + y2),

fractal1D(x) ≈
3∑

k=1

2k−1∑
1

ran2(o)∑
1

doubledip

(
x + ran1(o),

1
2k−1(2− ran1(o))

)
,

doubledip(x, c, s) =

{
(−6144(x− c)6 + 3088(x− c)4 − 392(x− c)2 + 1)× s if −0.5 < x < 0.5,
0 otherwise.

X = [x1, x2, ..., xn] ,
o: integer, seeds the random generators
ran1(o): double, pseudorandomly chosen, with seed o, with equal probability from the interval[0, 1].
ran2(o): integer, pseudorandomly chosen, with seed o, with equal probability from the set{0, 1, 2}.
fractal1D(x) is an approximation to a recursive algorithm, it does not take account of wrapping at the

boundaries, or local re-seeding of the random generators.
X∗ =unknown,F7(X∗) = unknown.
Multi-modal, non-separable, and scalable.

WSEAS TRANSACTIONS on COMPUTERS Shahryar Rahnamayan,G. Gary Wang

ISSN: 1109-2750 1804 Issue 10, Volume 7, October 2008

