Review of Simple Matrix Derivatives
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $y=f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)$.

Definition: Gradient

The gradient vector, or simply the gradient, denoted ∇f, is a column vector containing the first-order partial derivatives of f :

$$
\nabla f(\mathbf{x})=\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}=\left(\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \\
\vdots \\
\frac{\partial y}{\partial x_{n}}
\end{array}\right)
$$

Definition: Hessian

The Hessian matrix, or simply the Hessian, denoted \mathbf{H}, is an $n \times n$ matrix containing the second derivatives of f :

$$
\mathbf{H}=\left(\begin{array}{ccc}
\frac{\partial^{2} y}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{1} \partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} y}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} y}{\partial x_{n}^{2}}
\end{array}\right)=\nabla^{2} f(\mathbf{x})=\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{T}}
$$

Application: Differentiating Linear Form

$$
\mathbf{x}^{T} \mathbf{b}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=b_{1} x_{1}+\cdots+b_{n} x_{n}
$$

Then,

$$
\begin{aligned}
\frac{\partial \mathbf{x}^{T} \mathbf{b}}{\partial \mathbf{x}} & =\left[\begin{array}{c}
\frac{\partial \mathbf{x}^{T} \mathbf{b}}{\partial x_{1}} \\
\vdots \\
\frac{\partial \mathbf{x}^{T} \mathbf{b}}{\partial x_{n}}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}}\left(b_{1} x_{1}+\cdots+b_{n} x_{n}\right) \\
\vdots \\
\frac{\partial}{\partial x_{n}}\left(b_{1} x_{1}+\cdots+b_{n} x_{n}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] \\
& =\mathbf{b}
\end{aligned}
$$

Application: Differentiating Quadratic Form

$$
\begin{aligned}
\mathbf{x}^{T} \mathbf{A} \mathbf{x} & =\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\left(a_{11} x_{1}+\cdots+a_{n 1} x_{n}\right) & \cdots & \left(a_{1 n} x_{1}+\cdots+a_{n n} x_{n}\right)
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\sum_{i=1}^{n} a_{i 1} x_{i} & \cdots & \sum_{i=1}^{n} a_{i n} x_{i}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =x_{1} \sum_{i=1}^{n} a_{i 1} x_{i}+\cdots+x_{n} \sum_{i=1}^{n} a_{i n} x_{i} \\
& =\sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} a_{i j} x_{i} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} x_{i} x_{j}
\end{aligned}
$$

Application: Differentiating Quadratic Form

$$
\frac{\partial \mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial \mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\partial x_{1}} \\
\vdots \\
\frac{\partial \mathbf{x}^{T} \mathbf{A x}}{\partial x_{n}}
\end{array}\right]
$$

Consider the $k^{\text {th }}$ row in the above vector:

$$
\begin{aligned}
\frac{\partial \mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}}\left(\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} x_{i} x_{j}\right) \\
& =\frac{\partial}{\partial x_{k}}\left(x_{1} \sum_{i=1}^{n} a_{i 1} x_{i}+\cdots+x_{k} \sum_{i=1}^{n} a_{i k} x_{i}+\cdots+x_{n} \sum_{i=1}^{n} a_{i n} x_{i}\right) \\
& =x_{1} a_{k 1}+\cdots+\left(\sum_{i=1}^{n} a_{i k} x_{i}+x_{k} a_{k k}\right)+\cdots+x_{n} a_{k n} \\
& =\sum_{j=1}^{n} a_{k j} x_{j}+\sum_{i=1}^{n} a_{i k} x_{i} \\
& =\left(k^{\text {th }} \text { row of } \mathbf{A}\right) \mathbf{x}+\left(\text { transpose of } k^{\text {th }} \text { column of } \mathbf{A}\right) \mathbf{x} \\
& =\left[\left(k^{\text {th }} \text { row of } \mathbf{A}\right)+\left(\text { transpose of } k^{\text {th }} \text { column of } \mathbf{A}\right)\right] \mathbf{x}
\end{aligned}
$$

Application: Differentiating Quadratic Form

Therefore,

$$
\begin{aligned}
\frac{\partial \mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} & =\left[\begin{array}{c}
{\left[\left(1^{\text {st }} \text { row of } \mathbf{A}\right)+\left(\operatorname{transpose} \text { of } 1^{\text {st }} \text { column of } \mathbf{A}\right)\right] \mathbf{x}} \\
\vdots \\
{\left[\left(n^{\text {th }} \text { row of } \mathbf{A}\right)+\left(\text { transpose of } n^{\text {th }} \text { column of } \mathbf{A}\right)\right] \mathbf{x}}
\end{array}\right] \\
& =\left[\begin{array}{c}
{\left[\left(1^{\text {st }} \text { row of } \mathbf{A}\right)+\left(\text { transpose of } 1^{\text {st }} \text { column of } \mathbf{A}\right)\right]} \\
\vdots \\
{\left[\left(n^{\text {th }} \text { row of } \mathbf{A}\right)+\left(\text { transpose of } n^{\text {th }} \text { column of } \mathbf{A}\right)\right]}
\end{array}\right] \mathbf{x} \\
& =\left(\left[\begin{array}{c}
\left(1^{\text {st }} \text { row of } \mathbf{A}\right) \\
\vdots \\
\left(n^{\text {th }} \text { row of } \mathbf{A}\right)
\end{array}\right]+\left[\begin{array}{c}
\left(\text { transpose of } 1^{\text {st }} \text { column of } \mathbf{A}\right) \\
\vdots \\
\left(\text { transpose of } n^{\text {th }} \text { column of } \mathbf{A}\right)
\end{array}\right]\right) \mathbf{x} \\
& =\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{x}
\end{aligned}
$$

Application: Differentiating Quadratic Form

The following can be easily verified:

- If \mathbf{A} is symmetric, then

$$
\frac{\partial \mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}=2 \mathbf{A} \mathbf{x}
$$

- Differentiating $\mathbf{x}^{T} \mathbf{A} \mathbf{x}$ w.r.t to x_{k} is equal to

$$
\frac{\partial}{\partial x_{k}}\left(\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} x_{i} x_{j}\right)=\frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} a_{i k} x_{i} x_{k}+\sum_{j=1}^{n} a_{k j} x_{k} x_{j}\right)
$$

- Differentiating a summation:

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} a_{i k} x_{i} x_{k}\right) & =\sum_{i=1}^{n} \frac{\partial}{\partial x_{k}}\left(a_{i k} x_{i} x_{k}\right) \\
& =\sum_{i=1}^{n} a_{i k} x_{i}
\end{aligned}
$$

Application: Taylor Expansion

$k^{\text {th }}$ Order Taylor Expansion in \mathbb{R}

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is k times differentiable on \mathbb{R}. Then for any $x, \bar{x} \in \mathbb{R}$, there exists a \hat{x} between x and \bar{x} such that

$$
\begin{aligned}
f(x)= & f(\bar{x})+\frac{1}{1!} \frac{\partial f(\bar{x})}{\partial x}(x-\bar{x})+\frac{1}{2!} \frac{\partial^{2} f(\bar{x})}{\partial x^{2}}(x-\bar{x})^{2}+\cdots+\frac{1}{(k-1)!} \frac{\partial^{k-1} f(\bar{x})}{\partial x^{k-1}}(x-\bar{x})^{k-1} \\
& +\frac{1}{k!} \frac{\partial^{k} f(\hat{x})}{\partial x^{k}}(x-\bar{x})^{k} \\
= & \sum_{i=0}^{k-1} \frac{1}{i!} \frac{\partial^{i} f(\bar{x})}{\partial x^{i}}(x-\bar{x})^{i}+\frac{1}{k!} \frac{\partial^{k} f(\hat{x})}{\partial x^{k}}(x-\bar{x})^{k} .
\end{aligned}
$$

Things to note:

- $0!=1$ and $\frac{\partial^{0} f(\bar{x})}{\partial x^{0}}=f(\bar{x})$. Thus the first term in the summation (when $i=0$) is $f(\bar{x})$.
- The first $(k-1)^{\text {th }}$ order derivative is evaluated at \bar{x}; whereas the $k^{\text {th }}$ order derivative is evaluated at \hat{x}.

Application: Taylor Expansion

Second Order Taylor Expansion in \mathbb{R}^{n}

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable on \mathbb{R}^{n}. Then for any $\mathbf{x}, \overline{\mathbf{x}} \in \mathbb{R}^{n}$, there exists a $\hat{\mathbf{x}}$ between \mathbf{x} and $\overline{\mathbf{x}}$,

$$
\begin{aligned}
f(\mathbf{x}) & =f(\overline{\mathbf{x}})+\nabla f(\overline{\mathbf{x}})^{T}(\mathbf{x}-\overline{\mathbf{x}})+\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{T} \mathbf{H}(\hat{\mathbf{x}})(\mathbf{x}-\overline{\mathbf{x}}) \\
& =f(\overline{\mathbf{x}})+\sum_{i=1}^{n} \frac{\partial f(\overline{\mathbf{x}})}{\partial x_{i}}\left(x_{i}-\bar{x}_{i}\right)+\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial^{2} f(\hat{\mathbf{x}})}{\partial x_{i} \partial x_{j}}\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right),
\end{aligned}
$$

where $\mathbf{H}(\hat{\mathbf{x}})=\nabla^{2} f(\hat{\mathbf{x}})$ is the Hessian evaluated at $\hat{\mathbf{x}}$.

