Mathematical Preliminaries

Ling 324

Reading: Basic Concepts of Set Theory

Outline

- Set theory
- Ordered pairs and cartesian products
- Relations
- Functions

What is a Set?

A SET is a collection of objects. It can be finite or infinite.

$$A = \{a, b, c\}$$

 $N = \{1, 2, 3, ...\}$

 An object is an ELEMENT of a set A if that object is a member of the collection A.

Notation: "∈" reads as "is an element of", "is a member of", or "belongs to".

$$a \in A$$

 $2 \in N$

A set can have another set as a member.

Let
$$B = \{a, b, c, \{d, e\}\}\$$
, then $\{d, e\} \in B$

- A set with only one member is called a SINGLETON.
- A set with no members is called the EMPTY SET or NULL SET.

Notation: \emptyset or $\{\ \}$

Specification of Sets

List notation

A set consists of the objects named, not of the names themselves.

```
B = \{ \text{The Amazon River, George Washington, 3} \}

C = \{ \text{The Amazon River, 'George Washington', 3} \}
```

A set is unordered.

Writing the name of a member more than once does not change its membership status. For a given object, either it is a member of a given set or it is not.

$$\{a,b,c,e,e,e\}$$
$$\{a,b,c,e\}$$

Specification of Sets (cont.)

Predicate notation

A better way to describe an infinite set is to indicate a property the members of the set share.

 $\{x\mid x \text{ is an even number greater than 3}\}$ is read as "the set of all x such that x is an even number greater than 3."

'x' is a variable.

Recursive rules

A rule for generating elements 'recursively' from a finite basis.

- a) $4 \in E$
- b) if $x \in E$, then $x + 2 \in E$
- c) Nothing else belongs to E.

QUESTION: Give a list notation for the above recursive rules.

Set-theoretic Identity and Cardinality

• Two sets are IDENTICAL if and only if they have exactly the same members.

 $\{1, 2, 3, 4\} = \{x \mid x \text{ is a positive integer less than 5}\}$

 $\{x \mid x \text{ is a member of the Japanese male olympic gymnastics team in 2004}\}$ = $\{x \mid x \text{ is a member of the team that won the gold medal in the 2004}$ olympics for the male all-around gymnastics competition}

• The number of members in a set A is called the CARDINALITY of A.

Notation: |A|

Let
$$A = \{1, 3, 5, a, b\}$$
.

$$|A| =$$

Subsets

ullet A set A is a SUBSET of a set B if all the elements of A are also in B.

Notation: $A \subseteq B$

• PROPER SUBSET

Notation: $A \subset B$

- ullet $A \not\subseteq B$ means that A is not a subset of B.
- A set A is a subset of itself. $A \subseteq A$.
- If $A \subseteq B$, and $B \subseteq C$, then $A \subseteq C$.

Subsets (cont.)

QUESTION: Fill in the blank with either \subseteq or $\not\subseteq$.

- a) $\{a, b, c\}$ $\{s, b, a, e, g, i, c\}$
- b) $\{a, b, j\}$ $\{s, b, a, e, g, i, c\}$
- c) \emptyset $\{a\}$
- d) $\{a, \{a\}\}\$ $\{a, b, \{a\}\}\$
- e) $\{\{a\}\}$ $\{a\}$
- f) $\{a\}$ $\{\{a\}\}$
- g) $\{\emptyset\}$ $\{a\}$
- h) A A

QUESTION: Are the following statements true or false?

Let $A = \{b, \{c\}\}.$

- a) $c \in A$
- b) $\{c\} \in A$
- c) $\{b\} \subseteq A$
- d) $\{c\} \subseteq A$
- e) $\{\{c\}\}\subseteq A$
- f) $\{b\} \not\in A$
- g) $\{b, \{c\}\} \subset A$
- $h) \quad \{\{b,\{c\}\}\} \subseteq A$

Power Sets

• The POWER SET of A, $\wp(A)$, is the set whose members are all the subsets of A.

The set A itself and the nulll set are always members of $\wp(A)$.

Let
$$A = \{a, b\}$$
.
 $\wp(A) = \{\{a\}, \{b\}, \{a, b\}, \emptyset\}$

- $\bullet |\wp(A)| = 2^n$
- From the definition of power set, it follows that $A \subseteq B$ iff $A \in \wp(B)$.

QUESTION: Let $B = \{a, b, c\}$. What is $\wp(B)$?

Set-theoretic Operations

• $A \cap B$: The INTERSECTION of two sets A and B is the set containing all and only the objects that are elements of both A and B.

$$A \cap B \cap C = \bigcap \{A, B, C\}$$

• $A \cup B$: The UNION of two sets A and B is the set containing all and only the objects that are elements of A, of B, or of both A and B.

$$A \cup B \cup C = \bigcup \{A, B, C\}$$

- A-B: The DIFFERENCE between two sets A and B subtracts from A all objects which are in B.
- A': The COMPLEMENT of a set A is the set of all the individuals in the universe of discourse except for the elements of A (i.e., U-A).

Set-theoretic Operations (cont.)

QUESTION: Let $K = \{a, b\}$, $L = \{c, d\}$, and $M = \{b, d\}$.

- a) $K \cup L = \{a, b, c, d\}$
- b) $K \cup M =$
- c) $(K \cup L) \cup M =$
- d) $L \cup \emptyset =$
- e) $K \cap L = \emptyset$
- f) $L \cap M =$
- g) $K \cap K =$
- h) $K \cap \emptyset =$
- i) $K \cap (L \cap M) =$
- j) $K \cap (L \cup M) =$
- k) $K M = \{a\}$
- m) L-M=
- n) M-L=
- o) $K \emptyset =$
- p) $\emptyset K =$

Set-theoretic Equalities

- Some fundamental set-theoretic equalities
 - 1. Commutative Laws

$$X \cup Y = Y \cup X$$

$$X \cap Y = Y \cap X$$

2. Associative Laws

$$(X \cup Y) \cup Z = X \cup (Y \cup Z) \qquad (X \cap Y) \cap Z = X \cap (Y \cap Z)$$

$$(X \cap Y) \cap Z = X \cap (Y \cap Z)$$

3. Distributive Laws

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

4. Identity Laws

$$X \cup \emptyset = X$$

$$X \cup \emptyset = X$$
 $X \cup U = U$ $X \cap \emptyset = \emptyset$ $X \cap U = X$

$$X \cap \emptyset = \emptyset$$

$$X \cap U = X$$

5. Complement Laws

$$X \cup X' = U$$

$$(X')' = X$$

$$X \cap X' = \emptyset$$

$$X \cup X' = U$$
 $(X')' = X$ $X \cap X' = \emptyset$ $X - Y = X \cap Y'$

6. DeMorgan's Laws

$$(X \cup Y)' = X' \cap Y'$$

$$(X \cup Y)' = X' \cap Y' \qquad (X \cap Y)' = X' \cup Y'$$

Set-theoretic Equalities (cont.)

 Set-theoretic equalities can be used to simplify a complex set-theoretic expression, or to prove the truth of other statements about sets.

Simplify the expression $(A \cup B) \cup (B \cap C)'$.

- 1. $(A \cup B) \cup (B \cap C)'$
- 2. $(A \cup B) \cup (B' \cup C')$ DeMorgan
- 3. $A \cup (B \cup (B' \cup C'))$ Associative
- 4. $A \cup ((B \cup B') \cup C')$ Associative
- 5. $A \cup (U \cup C')$ Complement
- 6. $A \cup (C' \cup U)$ Commutative
- 7. $A \cup U$ Identity
- 8. U Identity

QUESTION: Show that $(A \cap B) \cap (A \cap C)' = A \cap (B - C)$.

Ordered Pairs and Cartesian Products

 A SEQUENCE of objects is a list of these objects in some order. (cf., Recall that a set is unordered.)

$$< a, b, c >$$
, $< 7, 21, 57 >$, $< 1, 2, 3, ... >$

ullet Finite sequences are called TUPLES. A sequence with k elements is a K-TUPLE.

A 2-tuple is also called an (ordered) PAIR.

$$\langle a, b \rangle$$

- If A and B are two sets, the CARTESIAN PRODUCT of A and B, written as $A \times B$, is the set containing all pairs wherein the first element is a member of A and the second element is a member of B.
- Although each member of a Cartesian product is an ordered pair, the Cartesian product itself is an unordered set of them.

Ordered Pairs and Cartesian Products (cont.)

QUESTION: Let $K = \{a, b, c\}$ and $L = \{1, 2\}$.

$$K \times L = \{ \langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle \}$$

$$L \times K =$$

$$L \times L =$$

QUESTION: Let $A \times B = \{ < a, 1 >, < a, 2 >, < a, 3 > \}$. What is $\wp(A \times B)$?

Relations

A RELATION is a set of ordered n-tuples.

Binary relation: e.g., mother of, kiss, subset

Ternary relation: e.g., give

Unary relation: a set of individuals. e.g., being a ling324 student, being a

Canadian

• A relation from A to B is a subset of the Cartesian product $A \times B$.

Rab, or aRb: The relation R holds between objects a and b.

 $R \subseteq A \times B$: A relation between objects from two sets A and B. A relation from A to B.

 $R \subseteq A \times A$: A relation holding of objects from a single set A is called a relation in A.

Relations (cont.)

• Domain(R) = { $a \mid$ there is some b such that $< a, b > \in R$ } Range(R) = { $b \mid$ there is some a such that $< a, b > \in R$ }

Let
$$A = \{a, b\}$$
 and $B = \{c, d, e\}$. $R = \{\langle a, d \rangle, \langle a, e \rangle, \langle b, e \rangle\}$. Domain $R = \{a, b\}$; Range $R = \{d, e\}$

Note: A relation may relate one object in its domain to more than one object in its range.

• The COMPLEMENT of a relation $R \subseteq A \times B$, written R', contains all ordered pairs of the Cartesian product which are not members of the relation R.

The INVERSE of a relation, written as R^{-1} , has as its members all the ordered pairs in R, with their first and second elements reversed.

$$(R')'=R;$$
 $(R^{-1})^{-1}=R$ If $R\subseteq A\times B$, then $R^{-1}\subseteq B\times A$, but $R'\subseteq A\times B$.

QUESTION: Let $A = \{1, 2, 3\}$ and $R \subseteq A \times A$ be $\{<3, 2>, <3, 1>, <2, 1>\}$, which is 'greater than' relation in A. What is R'? What is R^{-1} ?

Types of Relations

• Reflexive: for all a in the domain, $< a, a > \in R$. e.g., being the same age as Nonreflexive: e.g., like

Irreflexive: for all a in the domain, $\langle a, a \rangle \notin R$. e.g., proper subset

- Symmetric: whenever $< a, b> \in R, < b, a> \in R$. e.g., being five miles from Nonsymmetric: e.g., being the sister of Asymmetric: it is never the case that $< a, b> \in R$ and $< b, a> \in R$. e.g., being the mother of
- Transitive: whenever $< a, b> \in R$ and $< b, c> \in R$, $< a, c> \in R$. e.g., being older than

Nontransitive: e.g., like

Intransitive: whenever $< a, b> \in R$ and $< b, c> \in R$, it is not the case that $< a, c> \in R$. e.g., being the mother of

• Equivalence: reflexive, transitive and symmetric. e.g., being the same age as An equivalence relation PARTITIONS a set A into EQUIVALENCE CLASSES, which are DISJOINT and whose union is identical with A.

Functions

- A relation R from A to B is a FUNCTION from A to B if and only if:
 - a) Each element in the domain is paired with just one element in the range.
 - b) The domain of R is equal to A (except for PARTIAL FUNCTIONS).

QUESTION: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Which of the following relations are functions?

a)
$$P = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 3 \rangle \}$$

b)
$$Q = \{ \langle a, 1 \rangle, \langle b, 2 \rangle \}$$

c)
$$R = \{ \langle a, 2 \rangle, \langle a, 3 \rangle, \langle b, 4 \rangle \}$$

d)
$$S = \{ \langle a, 3 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle \}$$

- A function that is a subset of $A \times B$ is a function *from* A to B. A function in $A \times A$ is a function *in* A.
- $F: A \rightarrow B$ is read as "F is function from A to B".
- F(a) = b is read as "F maps a to b".
- Given F(a) = b, a is an ARGUMENT and b is the VALUE.

Functions (cont.)

- Functions from A to B are generally said to be INTO B.

 Functions from A to B such that the range of the function equals B are called ONTO B.
- A function $F:A\to B$ is called a ONE-TO-ONE function just in case no member of B is assigned to more than one member of A. Otherwise, we will call them MANY-TO-ONE function.
- A function which is both one-to-one and onto is called a ONE-TO-ONE CORRESPONDENCE.
 If a function F is a one-to-one correspondence, F⁻¹ is also a function.
- A function with k arguments is called a K-ARY FUNCTION, and k is called the ARITY of the function.

Unary function takes one argument. F(a). Binary function takes two arguments. F(a, b).

• Infix notation: e.g., a + b. Prefix notation: e.g., +(a, b).

Functions (cont.)

A PREDICATE or PROPERTY is a function whose range is {True, False}.
 even_number(2) = True, even_number(3) = False.
 take_ling324, male, freshman.

• The specification of a function from a domain D to $\{True, False\}$ defines a unique subset of domain D, and the specification of a set defines a unique function.

For instance, let the domain D be a set of numbers. If we collect all the elements in D that are mapped to True by function $even_number$, we end up with a set of even numbers, which is a subset of D.

Also, if a number is an element of the set of even numbers, then it is mapped to True by function $even_number$, and if it is not an element of the set of even numbers, then it is mapped to False by function $even_number$.

• We call the unique function that is associated with set A, the CHARACTERISTIC FUNCTION of A.