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Abstract—Summarizing patterns of connections or social ties
in a social network, in terms of attributes information on nodes
and edges, holds a key to the understanding of how the actors
interact and form relationships. We formalize this problem as
mining top-k group relationships (GRs), which captures strong
social ties between groups of actors. While existing works focus
on patterns that follow from the well known homophily principle,
we are interested in social ties that do not follow from homophily,
thus, provide new insights. Finding top-k GRs faces new chal-
lenges: it requires a novel ranking metric because traditional
metrics favor patterns that are expected from the homophily
principle; it requires an innovative search strategy since there is
no obvious anti-monotonicity for such GRs; it requires a novel
data structure to avoid data explosion caused by multidimensional
nodes and edges and many-to-many relationships in a social
network. We address these issues through presenting an efficient
algorithm, GRMiner, for mining top-k GRs and we evaluate its
effectiveness and efficiency using real data.

I. INTRODUCTION

Information networks, such as social networks, citation
networks, dating networks, etc., are heterogeneous and mul-
tidimensional [1] in that nodes and edges belong to certain
classes and each class has description on multiple attributes.
For example, in addition to links, Facebook contains large
quantities of user demographic data that reveal detailed per-
sonal information. The frequent patterns of connections in
social networks, concisely in terms of attribute information of
nodes and edges, indicate specific common social interactions.
We call this kind of patterns “social ties”. Summarizing such
social ties holds a key to the understanding of how the actors
interact with each other and form relationships, which is
useful in user behavior analysis and modelling, friends/items
recommendation, inferring user demographics, etc.

In addition, it is well known that social ties follow the
homophily principle, or “love of the same” [2]: a contact
between similar people occurs at a higher rate than among
dissimilar people, where similarity is measured by common
characteristics such as beliefs/religion, value, race, age, etc.
So far, the literature largely focuses on applications based on
the homophily principle, such as community detection, link
prediction, friend/product recommendation and information
diffusion. However, there is more and more voice from the
academic circle and industry that they want to break the
boundaries to unearth the treasures beyond homophily. For
example, the authors in [3] claim that “recommending popular
items is unlikely to result in more gain than discovering
insignificant yet liked items because the popular ones might
be already known to the user”, and [4] infers networks of
product relationships to recommend complementary products

in addition to substitutes (similar products). Similarly, the
social ties following the homophily principle are usually well-
expected and people can easily dope out them without much
effort, even though they are somewhat useful. Therefore,
discovering the social ties that are popular and interesting, but
are not simply expected from homophily is more practical. In
this paper we study this problem.
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(a) Network topology (patterns represent Race and shapes represent
Education)

ID SEX RACE EDU
1 F Asian Grad
2 F Latino Grad
3 F White Grad
4 F Asian College
5 F White College
6 F Asian High School
7 F Latino High School
8 M Asian Grad
9 M Latino Grad
10 M White Grad
11 M Latino College
12 M White College
13 M Asian High School
14 M White High School

(b) Attributes on nodes

Fig. 1: A toy dating network

A. Motivating Examples

To motivate our work, we consider the toy online dating
network in Fig. 1a with the node information in Fig. 1b. A
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pair of individuals in a dyadic tie is a dating relationship and
each individual has attributes SEX, RACE, and EDU. We can
represent a group of links between two groups of individuals
by a group relationship or GR, denoted l w−→ r. l and r are the
attributes information describing the two groups of nodes and
w is the attributes information describing the edges between
the groups. GRs serve as the representation of social ties.

Example 1: According to the recent study on Facebook
dating app, Are You Interested1, men tended to prefer Asian
women for dating. This finding can be represented by GR1 in
the following table.

GR1 (SEX:M) → (SEX:F, RACE:Asian)
supp = 7/15; conf = 7/14

GR2 (SEX:M, RACE:Asian) → (SEX:F, RACE:Asian)
supp = 0; conf = 0

The edge descriptor w = dates is omitted. supp = 7/15
and conf = 7/14 are two intuitive metrics, support and
confidence, originally used for association rule mining [5].
supp = 7/15 means that 7 out of the 15 links are involved
in this relationship, and conf = 7/14 means that 7 out of the
14 links originating from the nodes for male go to the nodes
for Asian women. Having found GR1, people wonder whether
Asian men particularly prefer Asian women, so propose the
variation GR2, whose supp and conf can be obtained by
queries on the data. GR2 and GR1 together suggest that while
most men preferred Asian women, Asian men are an exception,
which is a finding in Are You Interested. This finding could
be interesting to a dating service provider. �

GRs that are expected from the homophily principle usually
tend to have a high confidence, and such GRs generally have
the form l

w−→ r where the values in r occur in l. In this paper,
we assume that the homophily principle is known, and our
goal is to find interesting GRs not expected from homophily.
Example 2 illustrates that such GRs can be potentially useful
but they are not ranked high by confidence.

Example 2: Consider the two GRs, GR3 and GR4, listed
in the table below.

GR3 (SEX:F, EDU:Grad) → (SEX:M, EDU:Grad)
supp = 4/15; conf = 4/6

GR4 (SEX:F, EDU:Grad) → (SEX:M, EDU:College)
supp = 2/15; conf = 2/6

Assume that the attribute EDU follows the homophily
principle. Therefore, GR3 likely has a high confidence but
is not interesting because it is expected from the homophily
principle. GR4 likely has a low confidence since GR3 has a
high confidence. supp and conf are obtained from the data in
Fig. 1. A closer inspection of the data reveals that if a female
with Grad education does NOT want her partner to have Grad
education, there is a high chance that she prefers a partner
with College education. This preference of College education,
which is conditioned on the educations other than Grad, could
be interesting to the dating service provider. Though GR4
correctly captures this relationship, it will not be ranked high
by the confidence metric. �

1http://huffingtonpost.com/jenny-davis/race-online-dating b 4449946.html

GR4 is ranked low by the confidence metric because most
females with Grad education dated male partners with Grad
education according to the homophily principle. However,
if we exclude this “homophily effect” by restricting to the
male partners not having Grad education, GR4 holds 100%
of the time, which indicates a strong preference beyond the
homophily principle. This observation motivates a new ranking
metric, called non-homophily preference. Intuitively, non-
homophily preference captures “secondary bonds” beyond
the “primary bonds” of homophily. One contributing factor
of secondary bonds is heterophily [6], i.e., the tendency of
individuals to collect in diverse groups. It was shown in
that heterophilious networks are better to promote and spread
innovations [6]. Thereby, though the primary bond is important
in multiple applications, exploring the secondary bond can
result in more interesting findings and bring extra value to
many businesses. The next example further explains this point.

Example 3: To leverage social influence for promoting
products, an obvious strategy for a financial institution is to
use GRs following from homophily, such as

(JOB : Lawyer, PRODUCT : Stocks)→ (PRODUCT : Stocks)

to promote Stocks to the friends, f , of existing customers who
are lawyers and have bought Stocks (on LHS). This effort fails
if most such friends f already bought or do not like Stocks.
On the other hand, suppose

(JOB : Lawyer, PRODUCT : Stocks)→ (PRODUCT : Bonds)

has a high non-homophily preference, that is, among the
friends f who do not buy Stocks, many buy Bonds. This GR
can be used to promote Bonds to a friend if he/she has not
bought Bonds, and the high non-homophily preference implies
a high adoption rate. �

Indeed, many companies have both e-commerce services
and social network services, enabling them to create informa-
tion networks to mine GRs for economic benefits. For example,
Alibaba Group2 provides various sales services, and has the
instant messenger Aliwangwang that builds the social network
among customers and vendors. As another example, Facebook
Platform3 allows a third party business to build application
based on their platforms. This tool enables integrating the
social graph with the customer information owned by the third
party business, and applications on facebook.com are allowed
to access the graph.

B. Contributions

In summary, we make the following contributions.

• We propose a novel ranking metric called non-
homophily preference (Section III-B) to identify
strong social ties beyond the homophily principle;
we define the problem of mining top-k GRs (Section
III-C) to extract k most interesting social ties under
the non-homophily preference metric.

• The search space of top-k GRs is large due to
multidimensional nodes and edges and the lack of
usual anti-monotonicity of non-homophily preference.

2http://en.wikipedia.org/wiki/Alibaba Group
3http://en.wikipedia.org/wiki/Facebook Platform

422



We first propose a compact data model to store
the multidimensional nodes and edges information
in social networks, then we present a novel search
strategy to enable a new form of anti-monotonicity for
non-homophily preference (Section IV). This strategy
ensures that only non-trivial GRs that meet a minimum
requirement on support and non-homophily preference
are enumerated.

• We present an efficient top-k GRs mining algorithm,
GRMiner, based on the new data model and the above
search strategy (Section V).

• We evaluate our approach on two real world data sets
(Section VI), and provide potential extensions of our
framework (Section VII).

II. RELATED WORK

Graph mining. Most previous works on graph mining
summarizes a large graph by simple statistics, such as degree
distributions, hop-plots, clustering coefficients and number
of triangles. See surveys [7], [8]. Other works summarize
a large graph by densely connected subgraphs [9], [10],
network motifs [11], and frequent sub-structures [12], [13].
Link prediction [14] uses neighbourhood information to predict
the existence of a link between two nodes. Majority of these
works exploit only the topological structure of graphs. The
work on community detection with node attributes, such as
[15], develops a probabilistic model to model the interaction
between network structures and node attributes for detecting
overlapping communities. The works like [16] and [17] jointly
model network structure and vertex attributes with probability
models. The motivation of these works is quite different from
ours. [18] focuses on class propagation in a social network
using a given influence matrix. Our GRs can serve as the
assumed influence matrix. In fact, GRs capture a more general
type of influences between sub-populations summarized by
RHS and LHS, which makes more sense because strong
influences typically exist at sub-population level.

Information network summarization. This body of
works considers information networks where nodes and edges
have attributes like ours [1], [19], [20], [21]. These works
focused on summarizing the entire graph, whereas our focus
is on identifying strong relationships that exist for certain
groups of nodes and certain types of edges. The work in [22]
focuses on community detection whereas we focus on strong
non-homophily patterns between individuals. They considered
multigraphs that allow only values on edges (called dimen-
sions) but not on nodes such as SEX and RACE like ours.
Such multigraphs cannot model our graphs with values on both
edges and nodes, such as “a male dates a female Asian”. The
itemsets in [22] can construct rules about an individual like “if
X publishes in VLDB, X also publishes in SIGMOD” where
VLDB and SIGMOD are dimensions on edges, but cannot
construct GRs that aim at a pair (X,Y) of individuals such as
“if X is a male, X tends to date a female Asian Y”, which is
useful to gauge the influence between two persons.

Association rule mining. Support and confidence were
first introduced for association rule mining [5] from transaction
data. Mining frequent combinations of attribute-values in a
relational table was studied as iceberg cube queries [23]. [24]

proposed “self-sufficiency” to measure the interestingness of
itemsets. Multi-relational data mining [25] generalizes frequent
patterns by allowing multiple predicates and variables in a
pattern, but it does not consider the issues associated with
social networks. As pointed out in Section I, the homophily
of social networks requires reconsideration of interestingness
metrics and new strategies of pruning. [26] studied mining
unexpected rules based on prior knowledge where unexpected-
ness is measured by similarity between fuzzy terms. Such non-
statistical rules cannot be used for social network applications
that motivate our work. [26] uses support-based pruning, which
is too weak to unearth non-homophily GRs buried deeply in
many homophily based GRs. Our interestingness metric is
a statistical measure and captures the notion of conditional
probability, which is good for inference.

Social structure of social networks. Our work has simi-
larity with the study on social structure of Facebook networks
in [27], which focuses on calculating the propensity for two
nodes with the same categorical value to form a tie. While their
work can be used to quantify and specify homophily attributes
in our problem, our focus is on searching for unexpected ties
that do not follow from homophily.

III. PROBLEM STATEMENTS

A social network is a pair G = (V,E) with V being a set of
nodes/vertices and E being a set of directed edges/links. |V |
denotes the number of nodes in V and |E| denotes the number
of edges in E. Each node in V has descriptions over a fixed
set of node attributes and each edge in E has descriptions over
a fixed set of edge attributes. Each attribute A has a discrete
domain {0, 1, · · · , |A|}, where |A| is the domain size, with
0 representing the null value. We consider directed edges; an
undirected edge can be represented by a pair of directed edges
in the opposite directions.

A subset of nodes of V that share same values a on some
node attributes A can be represented by a set of pairs (A :
a) called a node descriptor. For example, (SEX:F, JOB:IT)
represents all the nodes having the values (SEX:F, JOB:IT).
Similarly, a subset of edges in E that share same values w on
some edge attributes W can be represented by a set of pairs
(W : w) called an edge descriptor. Table I summarizes the
main notations used in the paper.

TABLE I: Frequently used notations

Notation Definition
G(V,E) graph with the nodes V and the edges E
l, r, w three parts of attributes values in a GR l

w−→ r
L
R
W

attributes for the values in l, r, and w

Al,Ar Al is an attribute in L, and Ar is Al in R
l

w−→ l[β] homophily effect, see Eqn. (5)

A. Group Relationships

Definition 1: [GR] A group relationship (GR) has the form
l
w−→ r, where l and r are node descriptors and w is an edge

descriptor. l is called LHS. r is called RHS. L, W , R denote
the attribute sets for l, w, and r, respectively. �
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For GR3 in Example 2, l = (SEX:F, EDU:Grad), w =
(TYPE:dates), and r = (SEX:M, EDU:Grad). This GR says that
females with Grad education tend to prefer male partners with
Grad education. The “tendency” can be measured by support
and confidence [5].

Definition 2: [Support] Support of l w−→ r indicates the
probability that an edge satisfies all the conditions in l∧w∧r:

supp(l
w−→ r) = P (l ∧ w ∧ r) = |E(l ∧ w ∧ r)|

|E|
(1)

|E(l∧w∧r)| denotes the number of edges satisfying l∧w∧r.
Support of l ∧ w is defined as

supp(l ∧ w) = P (l ∧ w) = |E(l ∧ w)|
|E|

(2)

|E(l ∧ w)| is the number of edges satisfying l ∧ w. �

With |E| being a constant for a given network, we can use
absolute support by dropping the denominator |E|. While
support measures the generality of a GR, confidence measures
the strength of a GR.

Definition 3: [Confidence] Confidence of l w−→ r is defined
as

conf(l w−→ r) = P (r | l ∧ w) = supp(l
w−→ r)

supp(l ∧ w)
� (3)

B. Non-homophily Preference

The above support/confidence metric has been used in the
literature to mine interesting association rules, by specifying
a minimum threshold on support and a minimum threshold
on confidence. However, many GRs that have a high support
and a high confidence, like GR3, often are known and well
expected because of the homophily effect, and those that do
not follow from homophily but are still interesting, like GR4,
are missed due to a low confidence. To unearth interesting
GRs like GR4, the support/confidence metric approach has to
set the thresholds for support and confidence at a very low
level, leading to a much larger search space. In this paper
we assume that the homophily principle is known and we are
interested in GRs that are not expected from the homophily
principle. Therefore, the confidence metric is not suitable for
our purpose and we need a new metric to identify interesting
GRs. First, let us clarify the notion of homophily.

Homophily attributes. Intuitively, a GR is considered to
follow from the homophily principle if the LHS and RHS of
this GR share a (set of) value(s). However, the homophily is
attribute sensitive so that sharing values on certain attributes
are not considered as trivial, such as the attribute SEX in a
dating site. We differentiate an attribute as either a homophily
attribute or a non-homophily attribute. An homophily attribute
refers to an attribute on which the individuals sharing the
same value are more likely to connect to each other. For a
given social network, we assume that the setting of homophily
attributes is specified. Some existing works, like [27], studied
the methods to identify homophily attributes. In many cases,
homophily attributes are known from a common sense. For
example, EDU is likely a homophily attribute for dating
relationships whereas SEX is a non-homophily attribute since
dating could be between two people of same or opposite sex.

Trivial GRs. We say that a GR l
w−→ r is trivial if all of the

values in r are from homophily attributes and r ⊆ l. A trivial
GR is expected from the homophily principle, so we are only
interested in non-trivial GRs.

To capture and rank the GRs not expected from homophily,
we propose to exclude the homophily effect from confi-
dence. Consider GR4, (SEX:F, EDU:Grad) dates−−−→ (SEX:M,
EDU:College), in Example 2. Assume that EDU is a ho-
mophily attribute. The confidence of GR4 is given by
supp(GR4)/supp(l∧dates) = 2/6. 4 of the support supp(l∧
dates) = 6 is contributed by the homophily effect represented
by GR3 (SEX : F, EDU : Grad) dates−−−→ (EDU : Grad),
supp(GR3) = 4. Excluding this effect from supp(l∧dates) =
6, the new metric of GR4 is 2/(6 − 4) = 100%, read
as: for women with Grad education, when not dating men
having Grad education, they were dating men having College
education with 100% probability.

In general, for a GR l
w−→ r, let β denote the homophily

attributes in R that occur in L but have different values in the
two sides, i.e.,

β = {Ar ∈ R | Al ∈ L, r[Ar] 6= l[Al]} (4)

Let l[β] denote the condition for the RHS containing the values
in l restricted to β. We define homophily effect as

l
w−→ l[β] (5)

In example GR4, EDU is the only homophily attribute and
the values for EDU on both sides are different, thereby, β
= {EDU} , and the homophily effect is (SEX:F, EDU:Grad)
dates−−−→ (EDU:Grad). Recall conf (l

w−→ r) = supp(l
w−→r)

supp(l∧w) . We
can exclude the homophily effect by subtracting supp(l

w−→
l[β]) from the denominator supp(l ∧ w) in the confidence.
This gives rise to the following new metric.

Definition 4: [Non-homophily Preference] The definition
of non-homophily preference of a GR l

w−→ r is given by

nhp(l
w−→ r) = P (r | l ∧ w ∧ ¬l[β])

=
supp(l

w−→ r)

supp(l ∧ w)− supp(l w−→ l[β])
� (6)

Intuitively, nhp(l w−→ r) is the conditional probability of
links going to a node described by r, given that they satisfy
l ∧ w and do not go to a node described by l[β].

Remark 1: In the case of β = ∅, the edges due to the
homophily effect do not exist, we define supp(l w−→ l[β]) = 0;
consequently, nhp degenerates to conf. Hence, conf is a special
case of nhp where there is no homophily attribute. In the case
of β 6= ∅, nhp ≥ conf, so excluding the homophily effect
boosts the rank of a GR not expected from homophily. This
is exactly what we want to achieve.

Theorem 1: Assume supp(l w−→ r) 6= 0. (i) The denomi-
nator in Eqn. (6) is not zero. (ii) nhp ∈ [0, 1].

Proof: (i) If β = ∅, the denominator in Eqn. (6) is equal to
supp(l∧w), which is not equal to 0. Assume β 6= ∅. Suppose
supp(l ∧ w) − supp(l

w−→ l[β]) = 0, i.e., supp(l ∧ w) =

424



supp(l
w−→ l[β]), this implies that all edges satisfying l∧w go

to the nodes covered by l[β] and no edge goes to the nodes
covered by r, i.e., supp(l w−→ r) = 0. But this contradicts the
assumption.

(ii) If β = ∅, the denominator in Eqn. (6) is equal to
supp(l ∧w), so nhp has a value in the range [0, 1]. If β 6= ∅,
it suffices to note that the links accounted for by supp(l w−→ r)
and the links accounted for by supp(l

w−→ l[β]) are disjoint
(because r and l disagree on β), and both are subsets of those
accounted for by supp(l ∧ w).

C. Top-k GRs

Some GRs are interesting to users while some are not, we
can use a threshold of support and non-homophily preference
to select the interesting ones. Furthermore, for two GRs g1:
l1

w1−−→ r1 and g2: l2
w2−−→ r2, if l1 ⊆ l2, w1 ⊆ w2, and r1 = r2,

we say that g1 is more general than g2, and g2 is more special
than g1. Intuitively, if g1 is more general than g2, g1 is a similar
tendency to g2 but covers more nodes on LHS. In this case,
if both g1 and g2 satisfy certain support and non-homophily
preference thresholds, g1 would make g2 redundant.

On account of the above discussion, finding the k most
interesting GRs offers a brief and valuable overview of the
entire social network. Hence, this problem is formulated as
follows.

Definition 5: [Top-k GRs] Given the homophily settings
for attributes, a support threshold minSupp, a non-homophily
preference threshold minNhp, and an integer k, a non-trivial
l
w−→ r is a top-k GR if the three conditions hold:

• (1) supp(l w−→ r) ≥ minSupp and nhp(l
w−→ r) ≥

minNhp;

• (2) no non-trivial GR is more general than l
w−→ r

while satisfying (1);

• (3) no more than k− 1 non-trivial GRs have a higher
rank while satisfying (1) and (2), where the rank is
measured by non-homophily preference, followed by
support, followed by the alphabetical order of GRs.

The objective is to mine the top-k GRs. �

IV. MINING TOP-k GRS

One baseline algorithm for finding top-k l w−→ r is to apply
regular Apriori-like algorithms such as [5] to find frequent sets
l ∧ w and l ∧ w ∧ r above the minSupp threshold and then
construct GRs in a post-processing step using the minNhp
threshold. This algorithm does not work well for GRs with a
small support because there are too many frequent sets when
minNhp is small. In fact, strong social ties typically exist
among small groups. Another issue is that frequent set mining
usually requires collecting all information in one table. For
graph data, this means replicating the node information for
every edge adjacent to the node, and the size of this table is
|E|× (2×#AttrV +#AttrE), where #AttrV is the number
of attributes in V and #AttrE is the number of attributes in E.
The term |E| × 2×#AttrV usually causes storage explosion
and imposes a bottleneck for most graph algorithms, especially

for high dimensional nodes with large #AttrV and densely
connected graphs with large |E|.

Another straightforward approach is to use a threshold for
standard confidence (as defined in Definition 3), minConf, and
minSupp to mine all the GRs that satisfy these two criteria,
then remove the trivial (homophilic) GRs in a post-processing
phase to get the final results. This approach has the following
drawbacks. First, as discussed in Section III-B, the confidence
metric favors GRs that follow from the homophily principle
so that the majority of the high-confidence GRs in the top-k
results are trivial (we will show this in Table II). That is to say,
many non-trivial and interesting GRs are not returned because
either their conf are less than minConf or they are not ranked
as the top k GRs. As a result, this algorithm has to set a very
small minConf and very large k to first let the non-trivial GRs
to be returned before doing the post-processing. By doing this,
the efficiency of this approach becomes terrible owing to the
computation of the huge number of trivial GRs. Second, the
post-processing for the great number of trivial GRs is another
cost, which makes this approach rather worse.

An ideal algorithm is that it examine only the necessary
GRs and return the top-k results in one phase. To achieve this
and address the issues mentioned above, the key is to push the
minNhp threshold, in addition to the minSupp threshold, as
early as possible. Besides, storing edge and node attributes
information separately without duplication helps a lot. In this
section, we first introduce the data model of representing
the social networks that contain edge and node attributes
information, then we mainly focus on a new search strategy
for pushing the minNhp threshold. The full implementation
of our algorithm will be presented in Section IV.

A. Data Model
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Fig. 2: Data model: LArray, EArray and RArray

For the sake of illustration, let’s consider two node at-
tributes A,B and one edge attribute W . For each node attribute
A, we use the symbol Al for the occurrence in LHS of a GR
and use the symbol Ar for the occurrence in RHS. Then, we
shall store the node and edge information of social networks
separately as shown in Fig. 2.

LArray contains the records for individuals that could occur
in the LHS of GRs and RArray contains the records for
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individuals that could occur in the RHS of GRs. Out is the
out-degree of a record and Ind is the starting position of the
outgoing edges in EArray. EArray contains one record for each
edge and Ptr is the pointer to the record for the destination
node in RArray. We assume that this structure is held in
memory and use it to partition the data for counting the support
for GRs. For example, the first row in LArray represents the
record 1 for LHS, which connects to the destination records 2,
4 and 5 for RHS, found by the pointers Ptr kept in the entries
[Ind, Ind+Out−1] of EArray. Note that RArray and LArray
are for destinations and sources of edges (thus, not a subset
of each other) and will be sorted by the different attributes for
RHS and LHS for counting support. For this reason, RArray
and LArray must be separately stored.

This compact data structure has the size |V |× (#AttrV +
2) + |E| × (#AttrE + 1) + |V | ×#AttrV , which eliminates
the bottleneck term |E| × 2 × #AttrV of the single table
representation as mentioned above. The difference is usually
large because #AttrV is typically much larger than #AttrE
and a node typically connects to, or is connected from, multiple
nodes. Even for a sparse network, the space requirement of the
compact data model is also smaller since the nodes with zero
out-degree of in-degree will not appear in LArray or RArray.

B. Pruning Strategies

To prune GRs using a minimum threshold on nhp (Defini-
tion 4), the challenge is that, shown in Theorem 2(2,3), nhp has
anti-monotonicity only for “certain cases”; for the remaining
cases, adding a value for a homophily attribute to RHS would
increase or decrease nhp, so the traditional tree-based pattern
enumeration cannot prune GRs using a threshold of nhp. See
more discussion in Remark 2. In the rest of this section, we
devise a new enumeration to manifest the anti-monotonicity of
nhp in all cases (Theorem 3). This strategy allows us to prune
GRs based on the threshold of nhp. First, the next theorem
states pruning properties of GRs.

Theorem 2: (1) supp(l w−→ r) is not increased by adding
an attribute value to l or r or w. (2) If β 6= ∅, nhp(l w−→ r) is
not increased by adding a value to r. (3) If β = ∅, nhp(l w−→
r) is not increased by adding a value to r for a non-homophily
attribute or for a homophily attribute not occurring in l.

Proof: (1) follows from the anti-monotonicity of support.

nhp is equal to supp(l
w−→r)

supp(l∧w)−supp(l
w−→l[β])

(Definition 4). Adding

a value to r does not affect supp(l ∧ w), and if β 6= ∅, never
increases supp(l w−→ l[β]) and supp(l w−→ r). This shows (2).
If β = ∅, adding a value to r for a non-homophily attribute,
or a homophily attribute not occurring in l, preserves β = ∅,
thus, supp(l w−→ l[β]) = 0. Then (3) holds similarly as in (2).

Remark 2: Theorem 2(1) enables supp based pruning of
GRs, and Theorem 2(2,3) enables nhp based pruning when
expanding the RHS r of a GR under certain cases. The
remaining case is expanding a value to r for a homophily
attribute that occurs in l when β = ∅. In this case, nhp does
not have the anti-monotonicity. To see this, suppose that we
add a value br for a homophily attribute B to r, where some
value bl of Bl, bl 6= br, has already occurred in l. Before
the addition, β = ∅, thus, supp(l w−→ l[β]) = 0, but after the

addition, β 6= ∅ (see Eqn. (4)), so supp(l w−→ l[β]) 6= 0. This
change may increase or decrease nhp(l w−→ r). In this case,
nhp does not have anti-monotonicity.

In the remainder of this section, we propose a careful order
of enumerating GRs l w−→ r so that GRs can be pruned based
on nhp in all the cases of adding a value to r.

C. Subset-First Depth-First (SFDF) Enumeration

We use a tree structure to represent all GRs where each tree
node represents a subset LWR (see Table I for the definition
of L, W and R) and all the corresponding GRs l w−→ r. This
tree structure is only a conceptual representation and is not
stored in entirety. The nodes of this tree are enumerated to
ensure two properties:

• Property 1: Enumerate a subset LWR by adding
attributes in the order of those in L, W , and R. This
order enables the pruning in Theorem 2(1,2,3) where
the values for r are added after those for l and w.

• Property 2: Enumerate a subset L1W1R1 before any
subset L2W2R2 where L1 ⊆ L2, W1 ⊆ W2, and
R1 ⊆ R2. This order ensures that the node for
l
w−→ l[β] is enumerated before the node for l w−→ r

(because β is a subset of R), hence, supp(l w−→ l[β])
was computed before computing nhp(l w−→ r). This is
necessary because the latter depends on the former.

The regular depth-first enumeration does not provide Prop-
erty 2, and the regular breadth-first enumeration (level order)
meets these requirements but has to keep all nodes and their
GRs at the same level, which imposes a bottleneck on memory.
We propose a novel strategy, called subset-first depth-first
(SFDF), that will enumerate a subset before a superset like
the breadth-first enumeration but is depth-first (to avoid the
memory bottleneck).

To ensure that each subset LWR is enumerated at most
once, we impose the following order on all attributes:

τ : NHr, Hr,W,NH l, H l (7)

where NH l denotes non-homophily attributes for LHS, and
NHr denotes non-homophily attributes for RHS. Similarly,
H l and Hr denote homophily attributes for LHS and RHS,
respectively. W denotes edge attributes.
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Fig. 3: Subset-First Depth-First enumeration

At any tree node t, label(t) denotes the labeling attribute
for t, path(t) denotes the attribute set LWR constructed by
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all the labels for the nodes on the path from the root to t,
and tail(t) denotes the prefix of the list τ to the left of the
attribute label(t). tail(t) is the set of unused attributes that
can be to expand path(t) in the subtree below t. Initially,
label(root) is nil, path(root) is empty, and tail(root) = τ .
If tail(t) 6= ∅, for each attribute in tail(t) in order, t has
one child t′ labeled by the attribute. Note that this order will
expand the subset path(t) by adding the attributes in the order
H l, NH l,W,Hr, NHr, i.e., those for LHS, followed by those
for edges, followed by those for RHS. This gives Property 1.

For the sake of illustration, we assume that both A
and B are homophily attributes (the enumeration of non-
homophily attributes are straightforward as discussed below).
NHr = NH l = ∅, Hr = {Br, Ar}, H l = {Bl, Al}, and
τ = (Br, Ar,W,Bl, Al). Fig. 3 shows the SFDF enumeration
of all subsets LWR with the order indicated by the sequence
numbers aside the nodes. Let ti denote the tree node numbered
i. At the root t0, label(t0) = nil, path(t0) = ∅, and
tail(t0) = τ . The root has five child nodes, t1, t2, t4, t8, t16,
labeled Br, Ar,W,Bl, Al in that order. Next, the SFDF order
enumerates t1. tail(t1) = ∅ and t1 has no child. The next node
enumerated is t2 labeled Ar, tail(t2) = (Br) and t2 has one
child t3 labeled Br. path(t3) = {Ar, Br}, which represents
all GRs l w−→ r with L = ∅, W = ∅, and R = {Ar, Br}.
Similarly, t4, t5, t6, t7 are enumerated following this order.

At node t8, path(t8) = {Bl} and tail(t8) = (Br, Ar,W ).
For the first time, some homophily attribute, B, occurs in the
LHS. This node represents the enumerated subset LWR where
L = {Bl} and W = R = ∅. Note β = ∅. t8 has three
child nodes labeled Br, Ar,W . Following the above order,
the subset BlBr will be enumerated before the subset BlAr,
then the subset BlArBr will be enumerated as a child node
of BlAr (by adding Br). This is exactly the case discussed
in Remark 2 where a homophily attribute Bl has a value in l
and adding a new value for Br to r changes β = ∅ to β 6= ∅,
causing the lack of anti-monotonicity of nhp.

To avoid this problem, at node t8, it helps to add Ar

(because Al does not occur in the LHS) before adding Br

(because Bl occurs in the LHS). In Fig. 3, this order ensures
that the subset BlAr (at t9) is enumerated before the subset
BlBr (at t10), therefore, the subset BlBrAr (at t11) is
enumerated as a child node of BlBr instead of a child node of
BlAr. This is defined by the dynamic order of tail(t) below.

Dynamic ordering of tail(t). At any node t with path(t)
= LWR, let NH l, NHr,W,H l, Hr be the same as in Eqn.
(7). Let Hr

1 and Hr
2 be the partitioning of Hr, where Hr

1
contains those Ar with the corresponding Al not enumerated
in path(t) and Hr

2 contains those Ar with Al enumerated in
path(t). We dynamically order the attributes in tail(t) at a
node t as follows:

NHr, Hr
1 , H

r
2 ,W,NH

l, H l (8)

In other words, the homophily attributes in Hr are dynamically
ordered on the basis of whether their corresponding attributes
were enumerated in the LHS at t. Consequently, the attributes
in Hr

2 are added to path(t) before the attributes in Hr
1 .

Consider the node t8 again. Recall that path(t8) = {Bl}
and tail(t8) = (Br, Ar,W ). Hr

1 = {Ar} and Hr
2 = {Br}

because Al was not enumerated in path(t8) and Bl was

enumerated in path(t8). Then, tail(t8) is dynamically ordered
as (Ar, Br,W ), instead of the static order (Br, Ar,W ). This
order ensures that Br is added to path(t8) before Ar if
both Br and Ar appear in the path, as shown by the path
t8, t10, t11. On the path t4, t6, t7, Br is added to path(t4) after
Ar. This does not contradict our order because no homophily
attribute was enumerated in path(t4), i.e., Hr

1 = {Br, Ar} and
Hr

2 = ∅. The next theorem shows that this dynamical order
restores the anti-monotonicity of nhp.

Theorem 3: Assume that tail(t) is dynamically ordered at
a node t described above, and g′ and g are non-trivial GRs
where g′ is obtained from g by adding one or more values to
the RHS of g. Then nhp(g′) ≤ nhp(g).

Proof: If β 6= ∅ for g, Theorem 2(2) implies nhp(g′) ≤
nhp(g). We assume β = ∅ for g. Let g′ be the result of adding
a value b to the RHS of g. If b is a value for an attribute
in Hr

1 or NHr, Theorem 2(3) implies nhp(g′) ≤ nhp(g).
So we assume that b is a value for a homophily attribute
in Hr

2 . In this case, according to the dynamic ordering of
tail(t), the RHS of g contains only values for attributes in
Hr

2 since the values for attributes in Hr
1 and NHr are added

after those for attributes in Hr
2 . Thereby, all attributes in the

RHS of g are homophily attributes and occur in the LHS.
Then the assumption β = ∅ implies that the values of these
attributes are contained in the LHS of g, hence, g is a trivial
GR, contradicting our assumption. This shows that b cannot
be a value for a homophily attribute in Hr

2 if β = ∅. The case
of adding more values to the RHS of g follows by repeating
the above argument on g′.

The above enumeration order ensures that our depth-first
traversal enumerates smaller subsets LWR before enumerat-
ing larger ones, i.e., Property 2, adds the attributes for LHS
before adding the attributes for RHS, i.e., Property 1, and
restores the anti-monotonicity of nhp, i.e., Theorem 3. All
these properties are essential for pruning GRs based on the
threshold of nhp.

D. Computing Non-homophily Preference

A remaining issue is how to compute nhp at a node.
Suppose that we are enumerating the current node t for GRs

l
w−→ r. In nhp(l w−→ r)= supp(l

w−→r)

supp(l∧w)−supp(l
w−→l[β])

(Definition 4),

supp(l
w−→ r) is computed at t and supp(l∧w) was computed

at an earlier node because the attribute set for l∧w is a subset
of the attribute set for l w−→ r (i.e., Property 2). In the following
discussion, we consider supp(l w−→ l[β]) and assume β 6= ∅,
thus, supp(l w−→ l[β]) 6= 0. Note β ⊆ R. There are two cases:

Case 1: If β ⊂ R, the node for l w−→ l[β] was enumerated
at an earlier node because the attribute set for l w−→ l[β] is a
subset of the attribute set for l w−→ r. Note that l w−→ l[β] is a
trivial GR, its support can be easily computed.

Case 2: β = R. In this case, supp(l w−→ l[β]) is computed
at the current node t for l w−→ r. An example is a GR g at
t27: (a2, b2) → (a1, b1), where a2, a1 are different values for
attribute A, and b2, b1 are different values for B. So β =
{Ar, Br} and

nhp(g) =
supp((a2, b2)→ (a1, b1))

supp((a2, b2))− supp((a2, b2)→ (a2, b2))
(9)
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Algorithm 1: GRMiner
1 Procedure Main()
2 initiate LArray, EArray and RArray;
3 RIGHT(RArray, tail(nil));
4 EDGE(EArray, tail(nil));
5 LEFT(LArray, tail(nil)));
6 Output(top[k]);

7 Procedure LEFT(data, Tail)
8 forall the dimension d both in Tail and in LArray do
9 forall the partition p of data on dimension d do

10 if supp(p) < minSupp then
11 return;
12 RIGHT(getRight(p), tail(p.Att));
13 EDGE(getEdge(p), tail(p.Att));
14 LEFT(p, tail(p.Att));

15 Procedure EDGE(data, Tail)
16 forall the dimension d both in Tail and in EArray do
17 forall the partition p of data on dimension d do
18 if supp(p) < minSupp then
19 return;
20 RIGHT(getRight(p), tail(p.Att));
21 EDGE(p, tail(p.Att));

22 Procedure RIGHT(data, Tail)
23 forall the dimension d both in Tail and in RArray do
24 forall the partition p of data on dimension d do
25 if supp(p) < minSupp OR nhp(p) < minNhp

then
26 return;
27 if p is a non-trivial GR and no more general

GR than p found then
28 update top[k] and minNhp if necessary;
29 RIGHT(p, tail(p.Att));

If we generate (a2, b2)→ (a2, b2) before generating any other
GRs with (a2, b2) on the LHS, supp((a2, b2) → (a2, b2))
will be available when generating g. Enforcing this order only
requires knowing the LHS of the current GR g, i.e., (a2, b2)
in this example, therefore, can be easily implemented.

In both cases, supp(l w−→ l[β]) is either already computed
or can be computed at the same node as for l w−→ r. Therefore,
nhp(l

w−→ r) can be computed at the node for l w−→ r.

V. ALGORITHM FRAMEWORK

We now present the algorithm framework, which partitions
the data stored in the format as in Fig.2 and leverages the
enumeration and pruning strategies presented in Section IV.

Our algorithm enumerates each attribute subset (LWR)
following the SFDF order as described in the last section. To
compute supp and nhp of the GRs at the node for LWR, it
partitions the data using the attribute set and then considers
each partition recursively. A linear sorting method, Counting
Sort [28], is adopted to sort and get the aggregate of each
partition. It sorts in O(N) time without any key comparisons.

Our algorithm prunes further partitioning using the thresholds
on supp and nhp as in Theorem 2(1) and Theorem 3. We
discussed how to compute nhp for a given partition in Section
IV-D. Below, we focus on how to partition the data using
LArray, EArray, and RArray as introduced in Section IV-A.

Algorithm 1, GRMiner, gives the pseudo-code of our
algorithm. The main procedure starts with loading LArray,
EArray and RArray into memory at line 2. tail() returns the
attributes (dimensions) that will be used to expand the attribute
set LWR, similar to tail(t) in Section IV-C. Initially, tail(nil)
returns all the attributes in the order in Eqn. (8). In our running
example, tail(nil) = {Br, Ar,W,Bl, Al}, where {Br, Ar} is
in RArray, {W} is in EArray, and {Bl, Al} is in LArray.

At the current node t of the tree, data denotes the data
partition generated by LWR at t. Since the attributes in
tail(t) are contained in the tables LArray, EArray, and RAr-
ray, we use three recursive procedures RIGHT(data, Tail),
EDGE(data, Tail) and LEFT(data, Tail) to partition data,
where Tail is a variable for tail(t). Initially, data is the entire
tables LArray, EArray, and RArray and Tail = tail(nil),
at lines 3 - 5. Partitioning data by an attribute in tail(t)
generates the partitions for a child node created as described
in Section IV-C. These calls then search recursively deeper
into the enumeration tree, explained below. On return from all
calls, top[k] contains the top-k GRs.

LEFT (data, Tail) partitions data using each dimension
occurring both in Tail and in LArray (line 8) (i.e., the
dimensions in Tail contained in LArray). By abuse of notation,
for each partition p, we also use p to denote the corresponding
GR. supp(p) returns the support of p and p.Att returns the
attributes on which p has been partitioned. p.Att corresponds
to path(t) in Section IV-C. If supp(p) < minSupp, the
procedure returns immediately (line 11), otherwise, p is re-
cursively partitioned on the next three lines. The functions
getRight(p) and getEdge(p) expand the partition p to the
records in RArray and EArray, respectively.

EDGE(data, Tail) is similar to LEFT (data, Tail) ex-
cept that it partitions data by each dimension occurring both
in Tail and in EArray, and recursively processes each partition
p by the calls RIGHT () and EDGE().

RIGHT (data, Tail) partitions data by each dimension
occurring both in Tail and in RArray, and recurs on each
partition. Line 25 checks if p meets the thresholds for support
and non-homophily preference, and Line 27 checks if p
represents a non-trivial GR and if a more general GR than
the GR for p was generated before. Since our enumeration
examines smaller subsets of attributes before examining larger
subsets, once a GR passes this checking, no later GR can be
more general than it, so every GR in top[k] is a most general
GR. Line 28 updates the top[k] list if the GR for p is among
the top k GRs so far, and upgrades minNhp by the non-
homophily preference of the least ranked GR in top[k].

Theorem 4: (1) top[k] returned by GRMiner contains the
top-k GRs. (2) A non-trivial GR is examined by Algorithm 1
only if it passes both minSupp and minNhp. �

The work of Algorithm 1 is proportional to the number of
GRs examined. (2) implies that no time is spent on examining
any non-trivial GRs that do not meet the thresholds minSupp
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and minNhp, thanks to the checking at lines 10, 18, 25,
and Theorem 3. Typically, much fewer GRs are examined
because minNhp is dynamically updated to the smallest non-
homophily preference of the current top-k GRs (line 28). We
will examine this effect of minNhp on real life data sets in
Section VI.

VI. EXPERIMENTS

We evaluated the GRMiner algorithm on real life data on
CentOS 6.4 with Intel 8-core processors 2.53GHz and 12G of
RAM. The programs were written in C++.

A. Data Sets

We used two public real-world data sets: Pokec Social
Network data4 and DBLP co-authorship data5 because the
domains of these data sets are easy to understand, which is
essential for interestingness studies.

Pokec Social Network Data. Pokec is the most popu-
lar online social network service in Slovakia for discover-
ing, chatting and dating with online friends. This data set
contains anonymized users with profile data and directed
friendships between users. We extracted 6 most important
node attributes: Gender (G,3), Age (A,11), Region
(R,188), Education (E,10), What-Looking-For
(L,11), and Marital Status (S,7), where the letter
and number in a bracket are the abbreviation and domain size
of an attribute. We specify A,R,E,L as homophily attributes.
While all attributes have drop lists for choosing their values,
E,L, S are also fillable with any text. We used the values from
the drop list whenever they were chosen, and otherwise, the
user-filled text subject to the following preprocessing in order:
(1) Remove all characters except letters and apply standard
IR pre-processing to the filled text. (2) For the words that
occur in more than 200 user profiles, replace them by their
English synonym and mark the other words as “invalid”. (3)
Use the highest level for E (for example, keep “Master” if
both “Bachelor” and “Master” are filled); and for L and S, use
the word with highest frequency. (4) Keep only user profiles
containing no “invalid” value. The final induced graph has
1,436,515 (87.98%) users and 21,078,140 (68.83%) directed
edges. In addition, we discretized the domain of Age into “0-
6”, “7-13”, “14-17”, “18-24”, “25-34”, “35-44”, “45-54”, “55-
64”, “65-79”, and “80 or older”.

DBLP Data. This is the co-authorship DBLP data set used
in [1], and it contains 28,702 authors and 66,832 directed co-
author relationships (we replace each undirected edge with two
directed edges in opposite directions). Each author has two
node attributes, Area (A) and Productivity(P), and
Area has 4 values DB, DM, AI and IR, and Productivity
has 4 values Poor, Fair, Good and Excellent. We use the
exact same criteria as in [1] to discretize the values for the
two attributes. Definitely, an author may belong to multiple
areas, we select one only among the four in which she/he
publishes most. We specify Area as a homophily attribute
since authors in the same areas tend to collaborate; while we
specify Productivity as a non-homophily one, since it is

4http://snap.stanford.edu/data/soc-pokec.html
5http://dblp.uni-trier.de/xml/

common that students and professors are co-authors but gener-
ally students have much fewer publications than professors. We
construct one edge attribute Collaboration Strength
(S) with three domain values: occasional (f = 1), moderate
(2 ≤ f < 5), often (f ≥ 5), where f is the number of papers
co-authored by the two authors at the ends of an edge.

We evaluated the interestingness of GRs in Sections VI-B
and VI-C, and evaluated the efficiency of the GRMiner algo-
rithm in Section VI-D.

B. Interestingness Study for Pokec Data

One of our claims is that the proposed non-homophily
preference metric (i.e., nhp) helps to identify interesting social
ties beyond the well-known homophily principle. We evaluate
this claim by comparing the top-k GRs ranked by nhp with
the top-k GRs ranked by the standard confidence, conf. Note
that when applying conf, homophily effect is not excluded.
We set minSupp = 0.1% (i.e., absolute minSupp = 21078),
minNhp and minConf at 50%, and k = 300. Table IIa shows
the top-5 GRs ranked by nhp (in boldface) and top-5 GRs
ranked by conf, plus one less ranked GR by nhp (the last
row). 4 of the top-5 GRs ranked by conf are trivially expected
from the homophily principle as both LHS and RHs contain
the same value; this trend continues further down the list
(not shown here). This suggests that the conf metric fails to
find interesting relationships beyond what is known from the
homophily effect. In contrast, the GRs ranked by nhp, i.e.,
P1-P5 and P207, tend to provide more insights. The conf of
these GRs are included for comparison. These GRs are found
because their nhp is high, even though their conf is low. Note
that the proportion of data covered by a GR is captured by
supp. We pick P2, P5, and P207 to discuss in details, other
GRs are interpreted in a similar way.

P2: (E:Basic)→ (E:Secondary). This GR indicates that for
people with Basic education, when not partnering with people
with the same education as their own, they preferred (in 68.7%
cases) those with Secondary education. With Training being
closer to Basic, this GR is less expected from homophily of
Education because Training is expected to be more popular
among people with Basic education. Further examination of
data reveals that the proportion of Secondary is 19.54% and
the proportion of Training is only 1.9%, which is probably the
reason for the high nhp of this GR.

P5: (L:Sexual Partner) → (G:Female). For this GR, nhp
degenerates into conf because β = ∅ (no homophily attribute
occurs on both sides). This GR suggests that for people
describing themselves as looking for sexual partners, 64.7% of
their partners are female. Starting with this GR and wondering
whether gender has any impact on this behavior, we formed
the following two hypothesis by varying P5, and queried their
nhp and supp from the data:

(G : Male, L : Sexual Partner)→ (G : Female)
nhp = 68.1%; supp = 392652

(G : Female, L : Sexual Partner)→ (G : Male)
nhp = 48.8%; supp = 71699

This pair suggests a big difference in the preference of opposite
sex partners by males and females when looking for sexual
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(a) Pokec data set

Ranked by nhp Ranked by conf

P1:
(L:Chat)→(L:Good Friend)
nhp = 69.5%; supp = 649723
(conf = 30.9%)

(R:27)→(R:27)
conf = 72.2%; supp = 250930

P2:
(E:Basic)→(E:Secondary)
nhp = 68.7%; supp = 682715
(conf = 15.4%)

(R:24)→(R:24)
conf = 66.1%; supp = 197374

P3:
(E:Preschool)→(E:Basic)
nhp = 66.1%; supp = 54765
(conf = 30.4%)

(R:32)→(R:32)
conf = 65.1%; supp = 143219

P4:
(E:Hardly Any)→(E:Basic)
nhp = 65%; supp = 34099
(conf = 30.7%)

(R:10)→(R:10)
conf = 65%; supp = 279623

P5:
(L:Sexual Partner)→ (G:Female)
nhp = 64.7%; supp = 468012
(conf = 64.7%)

(L:Sexual Partner)→ (G:Female)
conf = 64.7%; supp = 468012

P207:
(G:Male, A:25-34)→ (A:18-24)
nhp = 50.8%; supp = 593785
(conf = 33.9%)

(b) DBLP data set

Ranked by nhp Ranked by conf

D1:
(A:AI)→(P:Poor)
nhp = 74.3%; supp = 31330
(conf = 74.3%)

(A:AI)→(A:AI)
conf = 88.8%; supp = 37458

D2:
(A:DB) often−−−−→(A:DM)
nhp = 71.5%; supp = 98
(conf = 6.98%)

(A:DB)→(A:DB)
conf = 88.7%; supp = 44980

D3:
(P:Poor)→(P:Poor)
nhp = 70.6%; supp = 63174
(conf = 70.6%)

(A:IR)→(A:IR)
conf = 75.9%; supp = 16020

D4:
(P:Excellent)→(A:DB)
nhp = 68.1%; supp = 2744
(conf = 68.1%)

(A:AI)→(P:Poor)
conf = 74.3%; supp = 31330

D5:
(A:IR)→(P:Poor)
nhp = 68.1%; supp = 14368
(conf = 68.1%)

(A:DM)→(A:DM)
conf = 72.3%; supp = 14232

D16:
(A:AI, P:Good)→(A:DM)
nhp = 55.2%; supp = 272
(conf = 11.6%)

TABLE II: Comparison of top GRs ranked by nhp and conf

partners. Without first finding P5, it is difficult to find this
difference from the collection of GRs.

P207: (G:Male, A:25-34) → (A:18-24). Again, we form
hypothesis from the seed P207. We replace Male with Female
on the LHS and get nhp = 32.8% and supp = 204780, which
suggests that women much less preferred younger partners than
men. The next two variations show that this difference is even
bigger for partner with opposite sex:

(G : Male, A : 25-34)→ (G : Female, A : 18-24)
nhp = 39.1%; supp = 456201

(G : Female, A : 25-34)→ (G : Male, A : 18-24)
nhp = 12.8%; supp = 80070

C. Interestingness Study for DBLP Data

For DBLP data, we set minSupp = 0.1% (i.e., absolute
minSupp = 67), minNhp and minConf at 50%, and k = 20.
Table IIb shows the top GRs ranked by nhp (in boldface)
and conf. Similar to the study on Pokec Data, the top GRs
ranked by nhp are more interesting than those ranked by
conf. Recall that Area (A) is a homophily attribute and
Productivity(P) is not.

D1 & D3 & D5: On surface, D1 & D3 & D5 suggests the
preference to authors with Poor productivity. This is interesting
as it contradicts with the common sense. A quick check on the
data (by examining the values distribution on the attribute) tells
that 91.18% of the authors have the value Poor for P because
many authors are students and most co-authorship is between
supervisors and students.

D2: (A:DB)
often−−−−→(A:DM) D2 suggests that authors in the

DB area often collaborate with those in the DM area when
collaborating with those not in their own area. D16 is a similar
pattern for authors in AI area. In fact, DM has the least
proportion among all areas. Therefore, these GRs represent

a true preference to DM, not due to data skewness. A possible
reason is that DM is an interdisciplinary field that intersects
database and machine learning (a subarea of AI).

Remark 3: Finding top-k GRs typically serves the entry
point in pattern mining. In the above case studies, the human
analyst starts with top-k GRs found, forms new hypothesis
through varying the GRs found, and compares such hypothesis
as well as data distribution. This process can apply to the new
hypothesis recursively. This cycle of hypothesis formulation
and hypothesis comparison often leads to new insights into
the behaviors of different groups of actors or an explanation
of the presence of a GR. Unlike manual probing of a data
set, top-k GRs provide an entry point to this cycle by filtering
many uninteresting and trivial patterns.

D. Efficiency of Algorithms

Our algorithm finished running on the DBLP data set in no
more than 0.483 seconds for all parameter settings. Therefore,
our study below focuses on the Pokec data, which is much
larger than the DBLP data. GRMiner(k) denotes the algorithm
that pushes all the constraints of minSupp, minNhp, top-k,
and generality of GRs to prune search space, as described in
Section VI-D. GRMiner pushes all constraints except for the
top-k constraint. The difference will tell the effectiveness of
dynamically upgrading minNhp to that of top-k GRs.

We consider two baseline solutions. One stores the node
and edge attributes information in a single table, applies the
BUC algorithm [23] to mine the combinations of attribute
values above the threshold minSupp. We denote this baseline
by BL1. The second baseline, BL2, is similar to BL1 but works
with the node and edge attributes information separately stored
in three tables. Both baselines prune the search space using the
anti-monotonicity of support, but not minNhp, and find the
top-k GRs in a post-processing step.

Unless otherwise stated, we consider the four node
attributes with largest domain sizes, i.e., Age, Region,
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Fig. 4: Runtime for mining GRs for Pokec data

Education and What-looking-for, for examining var-
ious parameter settings. So the dimensionality of search space
for GRs is 8. We set the ranges of (absolute) minSupp,
minNhp, and k to [2, 10000], [0%,100%], [1,10000], respec-
tively, with the default settings 50, 50%, and 100. Fig. 4
summarizes the comparison on runtime of all algorithms.

minSupp. Fig. 4a presents runtime vs minSupp. For a
small minSupp, the runtime of BL1 and BL2 increases
quickly while the runtime of GRMiner(k) and GRMiner re-
mains relatively stable, even when minSupp reduces to 2. The
efficiency of GRMiner(k) and GRMiner in the case of a small
minSupp comes from the fact that these algorithms prune the
search space using minNhp. This is a huge advantage because
a small minSupp is often required for finding GRs with a high
non-homophily preference that typically exist between small
user groups.

minNhp and Top-k. Fig. 4b studies the effect of minNhp.
BL1 and BL2 do not benefit from a larger minNhp since
they employ only minSupp for pruning. GRMiner(k) and
GRMiner are significantly faster thanks to the minNhp based
pruning. For a small minNhp, GRMiner(k) is faster than
GRMiner by dynamically upgrading minNhp to the smallest
nhp of the top-k GRs found. Fig. 4c examines the joint effect
of k and minNhp on GRMiner(k). As long as one of the
two constraints is tight, i.e., a small k or a large minNhp, the
pruning is effective. With a small k, the smallest nhp of top-k
GRs is likely high, so the upgraded minNhp has a similar
effect to having a large user-specified minNhp.

Dimensionality. Fig. 4d shows the effect of the dimension-
ality 2l, when the first l node attributes listed in Section VI-A
are included and l varies from 2 to 6. All other parameters
are set to their default settings. As the data has more node at-
tributes, the runtime for GRMiner(k) and GRMiner increases
much slower than the two baselines. This is because, as more
attributes can occur on RHS, there is more room for minNhp

pruning in GRMiner(k) and GRMiner according to Theorem
3.

VII. EXTENSIONS

While non-homophily preference (nhp) is defined for the
problem of mining GRs beyond homophily in this paper,
the algorithm framework in Section V can be extended to
different interestingness metrics to solve different tasks. The
support-confidence metric has some drawbacks and several
alternatives have been suggested to address these drawbacks in
the literature. See [29], [30] for a discussion and motivation of
such alternatives. The following are several examples of such
alternative metrics after being adopted to a GR l

w−→ r:

laplace(l
w−→ r) =

supp(l
w−→ r) + 1

supp(l ∧ w) + k
(10)

where k is an integer greater than 1.

gain(l
w−→ r) = supp(l

w−→ r)− θ × supp(l ∧ w) (11)

where θ is a a fractional constant between 0 and 1.

Piatetsky Shapiro(l
w−→ r)

= supp(l
w−→ r)− supp(l ∧ w)supp(r)

|E|
(12)

conviction(l
w−→ r) =

|E| − supp(r)
|E|(1− conf(l w−→ r))

(13)

lift(l w−→ r) =
|E|conf(l w−→ r)

supp(r)
(14)

For example, a GR, l w−→ r, has a high confidence, but the
true reason for this is that the relevant attribute value on RHS
has a high population among all the edges, i.e., supp(r) or
conf(∅ w−→ r) = supp(r)

|E| is high. One example is the GR D1
found in Section VI-C, which does not represent an interesting
pattern. The lift metric, defined in Eqn. (14), can reduce the
influence of this data skewness.

To adopt these alternative metrics for our algorithms for
mining interesting GRs, a key observation is that all the above
alternative metrics are defined using three supports, namely,
supp(l

w−→ r), supp(l ∧ w), and supp(r), and these supports
are easily computed. Therefore, in principle, the algorithm for
mining top-k GRs presented in this paper can be applied as
well if the nhp is replaced with one of the above alternative
metrics. In addition, for laplace or gain, the anti-monotonicity
remains valid (proof omitted). This means that similar to
the regular confidence based pruning, candidate GRs can be
pruned based on a given threshold on laplace or gain. For
Piatetsky Shapiro, conviction, and lift, the corresponding
pruning is not available because these metrics do not have the
anti-monotonicity with respect to the RHS r, but the support
based pruning is still applicable. For such metrics, the top-k
GRs have to be found in a post-processing step after finding
all the GRs satisfying the threshold on support.
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VIII. CONCLUSION

Given the homophily observed on social interactions, we
considered the problem of mining interesting interaction pat-
terns that are not expected from homophily by excluding the
impact of homophily from the interestingness metrics of social
ties. We motivated and formulated this problem as mining top-
k group relationships from a social network with respect to a
specification of homophily attributes. We presented an efficient
solution to this problem with a focus on pushing the new
interestingness metric to prune the search space. We consider
finding top-k group relationships as the start of analysis, not
the end. However, this starting step is important as it provides
the user with some sorts of leads to start with. Our empirical
study on two real data sets demonstrated the potential of this
approach in finding interesting social patterns.
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