
Top-k Route Search through Submodularity Modeling
of Recurrent POI Features

Hongwei Liang

School of Computing Science

Simon Fraser University, Canada

hongweil@sfu.ca

Ke Wang

School of Computing Science

Simon Fraser University, Canada

wangk@cs.sfu.ca

ABSTRACT
We consider a practical top-k route search problem: given a collec-

tion of points of interest (POIs) with rated features and traveling

costs between POIs, a user wants to find k routes from a source to

a destination and limited in a cost budget, that maximally match

her needs on feature preferences. One challenge is dealing with the

personalized diversity requirement where users have various trade-

off between quantity (the number of POIs with a specified feature)

and variety (the coverage of specified features). Another challenge

is the large scale of the POI map and the great many alternative

routes to search. We model the personalized diversity requirement

by the whole class of submodular functions, and present an opti-

mal solution to the top-k route search problem through indices for

retrieving relevant POIs in both feature and route spaces and vari-

ous strategies for pruning the search space using user preferences

and constraints. We also present promising heuristic solutions and

evaluate all the solutions on real life data.

KEYWORDS
Location-based Search; Route Planning; Diversity Requirement

ACM Reference Format:
Hongwei Liang and Ke Wang. 2018. Top-k Route Search through Submodu-

larityModeling of Recurrent POI Features. In SIGIR ’18: The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval,
July 8–12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3209978.3210038

1 INTRODUCTION
The dramatic growth of publicly accessible mobile/geo-tagged data

has triggered a revolution in location based services [10]. An emerg-

ing thread is route planning, with pervasive applications in trip rec-

ommendation, intelligent navigation, ride-sharing, and augmented-

reality gaming, etc. According to [23], the travel and tourism indus-

try directly and indirectly contributed US$7.6 trillion to the global

economy and supported 292 million jobs in 2016. The majority of

current route planning systems yields shortest paths or explores

popular POIs [28], or recommends routes based on users’ historical

records [15] or crowdsourced experience [20].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR’18, July 2018, Ann Arbor, MI, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5657-2/18/07. . . $15.00

https://doi.org/10.1145/3209978.3210038

(0, 1, 0)

(0.8, 0, 0)

(0, 0.9, 0)

(0, 0.4, 0.6)

(1, 0, 0.2)

(0, 0, 0.9)

14

5

3v6

v5
v3

v1

v2

v4
Feature vector ()

Figure 1: A sample POI map. Each node vi represents a POI
with 3 features (Park, Museum, Restaurant). Each feature
has a numeric rating in the range [0, 1], indicated by the vec-
tor aside the POI. Each edge has an associated traveling cost.

A practical problem that has not been well studied is that, a

user wants to be suggested a small number of routes that not only

satisfy her cost budget and spatial constraints, but also best meet her

personalized requirements on diverse POI features. We instantiate

this problem with a travel scenario. Consider that a new visitor to

Rome wishes to be recommended a trip, starting from her hotel and

ending at the airport, that allows her to visit museums, souvenir

shops, and eat at some good Italian restaurants (not necessarily

in this order) in the remaining hours before taking the flight. She

values the variety over the number of places visited, e.g., a route

consisting of one museum, one shop, and one Italian restaurant is

preferred to a route consisting of two museums and two shops.

The above problem is actually generalizable to various route

planning scenarios, and they illustrate some common structures

and requirements. First, there is a POI map where POIs are con-

nected by edges with traveling cost between POIs, and each POI has

a location and is associated with a vector of features (e.g., museum)

with numeric or binary ratings. The POI map can be created from

Google Map, and features and ratings of POIs can be created from

user rating and text tips available on location-based services such

as Foursquare, or extracted from check-ins and user provided re-

views [7]. Second, the user seeks to find top-k routes {P1, · · · ,Pk },
from a specified source x to a specified destination y within a travel

cost budget b, that have highest values of a certain gain function

Gain(PiV) for the set of POIs PiV on the routes Pi . The user spec-

ifies her preference of routes through a weight vector w with wh
being the weight of a feature h, and a route diversity requirement,
which specifies a trade-off between quantity (the number of POIs

with a preferred feature) and variety (the coverage of preferred

features) for the POIs on a route. The gain function has the form

Gain(PV) =
∑
hwhΦh (PV), where Φh for each feature h aggre-

gates the feature’s scores of the POIs PV .

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

545

https://doi.org/10.1145/3209978.3210038
https://doi.org/10.1145/3209978.3210038

To better motivate the route diversity requirement, let us con-

sider the POI map in Figure 1 and a user with the source v1, des-
tination v5 and the budget b = 18. The user weights the features

Park and Museum using the vector w = (0.4, 0.6, 0), and values

both quantity and variety. If the sum aggregation Φh is used, the

route v1 → v6 → v4 → v5 will have the highest Gain. However,
the user may not prefer this route because it does not include any

park though it includes 3 museums. With the max aggregation used,

the route v1 → v3 → v5 has the highest Gain by including one

top scored museum and one top scored park, but this route does

not maximally use the entire budget available. Intuitively, the sum

aggregation is “quantity minded” but ignores variety, whereas the

max aggregation is the opposite; neither models a proper trade-off

between quantity and variety as the user considered. The above

user more prefers the route v1 → v2 → v3 → v5 that visits multi-

ple highly scored museums and parks, which will better address

both quantity and variety.

Solving the top-k route search problem faces two challenges.

Challenge I. One challenge is to design a general enough Φh
that includes a large class of aggregation functions to model a per-
sonalized route diversity requirement where each user has her own

quantity and variety trade-off. Our approach is treating the satisfac-

tion by visiting each POI as the marginal utility and modeling the

aggregation of such utilities of POIs with the diminishing marginal

utility property by submodular set functions Φh . The intuition is

that, as the user visits more POIs of the same, her marginal gain

from such visits decreases gradually. Submodularity has been used

for modeling user behaviors in many real world problems [14][11].

To the best of our knowledge, modeling user’s diversity requirement

on a route by submodularity has not been done previously.

Challenge II. The top-k route problem is NP-hard as it subsumes

the NP-hard orienteering problem [4]. However, users typically de-

mand the routes not only be in high quality, even optimal, but also

be generated in a timely manner (seconds to minutes). Fortunately,

the users’ preferences and constraints on desired routes provide

new opportunities to reduce the search space and find optimal top-k
routes with fast responses. For example, for a user with only 6-hour

time budget and preferring museums and parks on a route, all the

POIs in other types or beyond the 6 hours limit will be irrelevant.

The key of an exact algorithm is to prune, as early as possible, such

irrelevant POIs as well as the routes that are unpromising to make

into the top-k list due to a low gainGain(PV). However, this task is
complicated by the incorporation of a generic submodular aggrega-

tion function Φh motivated above in our objective Gain(PV), and
designing a tight upper bounding strategy onGain(PV) for pruning
unpromising routes is a major challenge.

Contributions. The main contributions of this paper are:

•We define the top-k route search problem with a new person-

alized route diversity requirement where the user can choose any

submodular function Φh to model her desired level of diminishing

return. As an instantiation, we show that the family of power-law

functions is a sub-family of submodular functions and can model a

spectrum of personalized diversity requirement. (Section 3)

• Our first step towards an efficient solution is to eliminate

irrelevant POIs for a query, by proposing a novel structure for

indexing the POI map on both features and travel costs. This index

reduces the POI map to a small set of POIs for a query.(Section 4)

• Our second step towards an efficient solution is to prune un-

promising routes, by proposing a novel optimal algorithm, PACER.
The novelties of the algorithm include an elegant route enumer-

ation strategy for a compact representation of search space and

the reuse of computed results, a cost-based pruning for eliminating

non-optimal routes, and a gain-based upper bound strategy for

pruning routes that cannot make into the top-k list. The algorithm

works for any submodular function Φh . (Section 5)

• To deal with the looser query constraints, we present two

heuristic algorithms with a good efficiency-accuracy trade-off, by

finding a good solution with far smaller search spaces. (Section 6)

• We evaluate our algorithms on real-world data sets. PACER
provides optimal answers while being orders of magnitude faster

than the baselines. The heuristic algorithms provide answers of

a competitive quality and work efficiently for a larger POI map

and/or a looser query constraint. (Section 7)

2 RELATEDWORK
Route recommendation/planning that suggests a POI sequence or

a path is related to our work. Works like [15] [6] learn from histori-

cal travel behaviors and recommend routes by either sequentially

predicting the next location via a Markov model or globally con-

structing a route. These works rely on users’ historical visit data,

thus, cannot be applied to a new user with no visit data or a user

with dynamically changed preferences. [1] interactively plans a

route based on user feedback at each step. Our approach does not

rely on user’s previous visit data or interactive feedback, and works

for any users by modeling the preferences through a query.

Several works recommend a route by maximizing user satisfac-

tion under certain constraints. [8] assumes that each POI has a

single type and searches for a route with POIs following a pre-

determined order of types. [25] allows the user to specify a mini-

mum number of POI types, instead of exact types, in a route. [19]

estimates temporal-based user preferences. [17] focuses on mod-

eling the queuing time on POIs. [3] constructs an optimal route

covering user-specified categories associated with locations. None

of them considers a general route diversity requirement for model-

ing user’s quantity and variety trade-off.

[24], perhaps most related to our work, adopts a keyword cover-

age function to measure the degree to which query keywords are

covered by a route, similar to ours. Their pruning strategies are

designed specifically for their specific keyword coverage function;

thus, does not address the personalized route diversity requirement,

where a different submodular function may be required. Our prun-

ing strategies apply to any submodular function Φh . Finally [24]

produces a single route, and its performance is only “2-3 times

faster than the brute-force algorithm", as pointed in [24].

Less related to our work is the next POI recommendation [26]

that aims to recommend the POI to be visited next, and the travel

package recommendation [18] that aims to recommend a set of

POIs. They are quite different from our goal of finding a route

as a sequence of featured POIs. Trajectory search either retrieves

existing (segments of) trajectories that match certain similarity

query [27] from a database, or constructs a route based on the

retrieved trajectories [5]. These works assume the existence of a

trajectory database, instead of a POI map for route construction.

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

546

Table 1: Nomenclature

Notation Interpretation
F ∈ R|V|×|H| POI-feature matrix F with POI set V and feature set H

Fi,h the rating on feature h ∈ H for POI i ∈ V
si staying cost on POI i
ti, j the traveling cost on edge ei, j ∈ E
Ti, j the least traveling cost from any POI i to any POI j
P, PV route P with the included POI set PV

Q =
(x, y, b,
w, θ, Φ)

user query with parameters:

x and y – source and destination location

b – travel cost budget

w ∈ R|H| – feature preference vector

θ ∈ R|H| – filtering vector on feature ratings

Φ – feature aggregation functions

VQ , n POI candidates set VQ retrieved by Q with its size n
F̃i,h Fi,h after filtered by θ

Gain(PV , Q) gain of a route P given query Q

The classical Orienteering Problem (OP), such as [4], studied

in operational research on theoretical level, finds a path, limited

in length, that visits some nodes and maximizes a global reward

collected from the nodes on the path. No POI feature or route

diversity requirement is considered in OP.

3 PRELIMINARY
Table 1 summarizes the notations frequently used throughout the

paper. The variables in bold-face are vectors or matrices.

3.1 Problem Statement
Definition 1. [A POI Map] A POI map G = (V, E) is a di-

rected/undirected and connected graph, whereV is a set of geo-tagged
POI nodes and E ⊆ V × V is a set of edges between nodes (i, j),
i, j ∈ V . H is a set of features on POIs. F ∈ R |V |×|H | denotes the
POI-feature matrix, where Fi,h ∈ [0, β] is the rating on a feature h for
the POI i . Each POI i ∈ V is associated with a staying cost si . Each
edge ei, j ∈ E has a travel cost ti, j . �

The choices of si and ti, j can be time, expenses, or other costs.

Definition 2. [Routes] A route P is a path x → · · · i · · · → y
in G from the origin x to the destination y through a sequence of
non-repeating POIs i except possibly x = y. PV denotes the set of POIs
on P. Ti, j denotes the least traveling cost from i to the next visited j,
where i, j are not necessarily adjacent in G. The cost of P is

cost(P) =
∑

i ∈PV
si +

∑
i→j ∈P

Ti, j . � (1)

A route P includes only the POIs i that the user actually “visits”

by staying at i with si > 0. Each i → j on a route is a path from i to
j with the least traveling cost Ti, j . The intermediate POIs between

i, j on path i → j are not included in P. The staying times at x
and/or y can be either considered or ignored depending on the user

choice. The latter case can be modeled by setting sx = sy = 0.

At the minimum, the user has an origin x and a destination y
for a route, not necessarily distinct, and a budget b on the cost of

the route. In addition, the user may want the POIs to have certain

features specified by a |H |-dimensional weight vector w with each

element wh ∈ [0, 1] and Σhwh = 1. The user can also specify a

filtering vector θ so that Fi,h is set to 0 if it is less than θh . F̃i,h
denotes Fi,h after this filtering. Finally, the user may specify a

route diversity requirement through a feature aggregation function

vector Φ, with Φh for each feature h. Φh (PV) aggregates the rating
on feature h over the POIs in PV . See more details in Section 3.2.

Definition 3. [Query andGain]AqueryQ is a 6-tuple (x ,y,b,w,
θ ,Φ). A route P is valid if cost(P) ≤ b. The gain of P w.r.t. Q is

Gain(PV ,Q) =
∑

h
whΦh (PV). � (2)

Note that only the specification of x ,y,b is required; if the speci-

fication of w,θ ,Φ is not provided by a user, their default choices

can be used, or can be learned from users’ travel records if such

data are available (not the focus of this paper).Gain(PV ,Q) is a set
function and all routes P that differ only in the order of POIs have

the same Gain, and the order of POIs affects only cost(P).
[Top-k route search problem]Given a queryQ and an integer

k , the goal is to find k valid routes P that have different POI sets

PV (among all routes having the same PV , we consider only the

route with the smallest cost(P)) and the highest Gain(PV ,Q) (if
ties, ranked by cost(P)). The k routes are denoted by topK .

In the rest of the paper, we use Gain(PV) for Gain(PV ,Q).

3.2 Modeling Route Diversity Requirement
To address the personalized route diversity requirement, we con-

sider a submodular Φh to model the diminishing marginal utility

as more POIs with feature h are added to a route. A set function

f : 2
V → R is submodular if for every X ⊆ Y ⊆ V and v ∈ V \ Y ,

f (X ∪{v})− f (X) ≥ f (Y ∪{v})− f (Y), and ismonotone if for every
X ⊆ Y ⊆ V , f (X) ≤ f (Y). The next theorem follows from [13] and

the fact that Gain(PV) is a nonnegative linear combination of Φh .

Theorem 1. If for every feature h, Φh (PV) is nonnegative, mono-
tone and submodular, so is Gain(PV).

We aim to provide a general solution to the top-k route search

problem for any nonnegative, monotone and submodularΦh , which
model various personalized route diversity requirement. To illus-

trate the modeling power of such Φh , for example, consider Φh
defined by the power law function

Φh (PV) =
∑

i ∈PV
Rh (i)

−α h F̃i,h , (3)

where Rh (i) is the rank of POI i on the rating of feature h among

all the POIs in PV (the largest value ranks the first), rather than

the order that i is added to P, and αh ∈ [0,+∞) is the power

law exponent for feature h. Rh (i)
−α h

is non-increasing as Rh (i)
increases. For a sample route P = A(3) → B(5) with the ratings

of feature h for each POI in the brackets, and αh = 1, the ranks

for A and B on h are Rh (A) = 2 and Rh (B) = 1. Thus, Φh (PV) =
2
−1 × 3 + 1−1 × 5, with a diminishing factor 2

−1
for the secondly

ranked A. If we use a larger αh = 2, Φh (PV) = 2
−2 × 3 + 1−2 × 5

has a larger diminishing factor for A.
In general, a larger αh means a faster diminishing factor for the

ratings F̃i,h on the recurrent feature, i.e., a diminishing marginal

value on h. Note that the sum aggregation (αh = 0) and the max

aggregation (αh = ∞) are the special cases. Hence, Eqn. (3) supports

a spectrum of diversity requirement through the setting of αh .

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

547

Note that Rh (i) for an existing POI i may decrease when a new

POI j is added to P, so it is incorrect to compute the new Φh (PV)
by simply adding the marginal brought by j to existing value of

Φh (PV). For ease of presentation, we assume αh has same value

for all h and use α for αh in the rest of the paper.

Theorem 2. Φh (PV) defined in Eqn. (3) is nonnegative, monotone
and submodular.

Proof. The nonnegativity and monotonicity of Φh (PV) in Eqn.

(3) is straightforward. For its submodularity, we omit the mathemat-

ical proof due to limited space and only present an intuitive idea.

Let X and Y be the set of POIs in two routes, X ⊆ Y . Intuitively, for
every i ∈ X , there must be i ∈ Y and i’s rank in X is not lower than

that in Y . Let v ∈ V \ Y so that X ′ = X ∪ {v} and Y ′ = Y ∪ {v}.
Similarly, v’ rank in X ′ is not lower than that in Y ′, thus the in-
crement brought by v to X is not less than that to Y , which means

Φh (X
′) − Φh (X) ≥ Φh (Y

′) − Φh (Y). Hence, it is submodular. �

The user can also personalize her diversity requirement by spec-

ifying any other submodular Φh , such as a log utility function

Φh (PV) = loд(1+
∑
i ∈PV F̃i,h) and the coverage functionΦh (PV) =

1−
∏

i ∈PV [1−F̃i,h]. Our approach only depends on the submodular-

ity of Φh , but is independent of the exact choices of such functions.

Our problem subsumes two NP-hard problems, i.e., the submod-

ular maximization problem [13] and the orienteering problem [4].

3.3 Framework Overview
To efficiently deal with the high computational complexity of this

problem, we divide the overall framework into the offline compo-

nent and the online component. Before processing any query, the

offline component carefully indexes the POI map on feature and

cost dimensions for speeding up future POI selection and travel cost

computation. The online component responds to the user query Q
with Sub-index Retrieval that extracts the sub-indices relevant to Q ,

and Routes Search that finds the top-k routes using the sub-indices.

For routes search, as motivated in Section 1, we consider both

the exact algorithm with novel pruning strategies, and heuristic

algorithms to deal with the worst case of less constrained Q .
We first consider an indexing strategy in Section 4, and then

consider routes search algorithms in Section 5 and Section 6.

4 INDEXING
In this section, we explain the offline indexing component and the

Sub-index Retrieval of the online component.

4.1 Offline Index Building
The POI map data is stored on disk. To answer user queries rapidly

with low I/O access and speed up travel cost computation, we build

two indices, FI and HI stored on disk.

FI is an inverted index mapping each feature h to a list of POIs

having non-zero rating onh. An entry (vi , Fi,h) indicates the feature
rating Fi,h for POI vi , sorted in descending order of Fi,h . FI helps
retrieving the POIs related to the features specified by a query.

The least traveling cost Ti, j between two arbitrary POIs i and
j is frequently required in the online component. To compute Ti, j
efficiently, we employ the 2-hop labeling [9] for point-to-point

2-Hop Index (HI)
v1: { (v1,0) (v2,12) (v6,12) (v4,14) }
v2: { (v2,0) (v6,4) (v3,5) }
v3: { (v3,0) (v4,4) (v6,4) }
v4: { (v4,0) (v6,3) }
v5: { (v5,0) (v3,1) (v4,3) (v6,5) }
v6: { (v6,0) }

Feature Index (FI)
park: { (v3,1) (v2,0.8) }

museum: { (v1,1) (v4,0.9) (v6,0.4) }

food: { (v5,0.9) (v6,0.6) (v3,0.2) }

Query specific Feature Index (FIQ)
park: { (v3,1) (v2,0.8) }

museum: { (v1,1) (v4,0.9) }

Q = (v6, v2, 13, (0.5, 0.5, 0), 0.6, 1)

Query specific 2-Hop Index (HIQ)
v1: { (v1,0) (v2,12) (v6,12) }
v2: { (v2,0) (v6,4) (v3,5) }
v3: { (v3,0) (v4,4) (v6,4) }
v4: { (v4,0) (v6,3) }
v6: { (v6,0) }

Offline Index Building
(stored on disk)

Online Sub-index Retrieval
(loaded to memory)

Figure 2: Left part: FI andHI built from the POImap in Figure
1. Right Part: Given a query Q , retrieve POI candidates VQ
by retrieving the subindices FIQ and HIQ from FI and HI.

shortest distance querying on weighted graphs. [9] shows scalable

results for finding 2-hop labels for both unweighted and weighted

graphs, and the constructed labels return exact shortest distance
queries. Our HI index is built using the 2-hop labeling method.

HI. For an undirected graph, there is one list of labels for each

nodevi , where each label (u,d) contains a node u ∈ V , called pivot,
and the least traveling cost d between vi and u. HI(vi) denotes the
list of labels for vi , sorted in the ascending order of d . According
to [9], Ti, j between vi and vj is computed by

Ti, j = min

(u,d1)∈HI(vi)∩(u,d2)∈HI(vj)
(d1 + d2). (4)

Figure 2 (left part) shows the FI and HI for the POI map in Figure

1. For example, to compute T2,5, we search for the common pivot

nodes u from the pivot label lists of v2 and v5 and find that v3
minimizes the traveling cost between v2 and v5, soT2,5 = 5+ 1 = 6.

In the case of a directed graph, each POI vi will have two lists

of labels in HI, HI(vouti) for vi as the source, and HI(vini) for vi as
the destination. And we simply replace vi with v

out
i and vj with

vinj in Eqn. (4) to compute Ti, j .

4.2 Online Sub-index Retrieval
Given a queryQ , the first thing is to retrieve the POI candidatesVQ
that are likely to be used in the routes search part. In particular, the

POIs that do not contain any feature in the preference vector w or

do not pass any threshold in θ will never be used, nor the ones that

cannot be visited on the way from the source x to the destination y
within the budget b. This is implemented by retrieving the query

specific sub-indices FIQ from FI and HIQ from HI.
Figure 2 (right part) shows how the retrieval works for a query

Q = (x = v6,y = v2,b = 13,w = (0.5, 0.5, 0),θ = 0.6,α = 1),

where the weights in w are for (Park, Museum, Food), and α is the

power law exponent in Eqn. (3). Here the elements in each vector

θ and α have the same value for all features.

FIQ, a sub-index of FI, is retrieved using w and θ . w directly

locates the lists for the user preferred (with wh > 0) features. θ is

used to cut off lower rated POIs on the sorted lists indicated by red

scissors.VQ = {v1,v2,v3,v4} contains the remaining POIs.

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

548

HIQ, a sub-index of HI, is then formed by retrieving the lists for

each POI inVQ and also those for x and y, and b is used to cut off

the sorted lists, indicated by red scissors. We also check whether a

POI i in currentVQ is actually reachable by checking the single-

point visit cost: if sx +Tx,i + si +Ti,y + sy > b, we remove i from
VQ and remove its list from HIQ , as indicated by the blue shading.

Then we get the final POI candidatesVQ . Typically, |VQ | ≪ |V|.

FIQ and HIQ are retrieved only once and kept in memory.

5 OPTIMAL ROUTES SEARCH
With POI candidate setVQ and the sub-indices extracted, the next

step is the Routes Search phase.We present an optimal routes search

algorithm in this section. Considering the complexity and general-

ity of the problem, a standard tree search or a traditional algorithm

for the orienteering problem does not work. An ideal algorithm de-

sign should meet the following goals: i. search all promising routes

in a smart manner without any redundancy; ii. prune unpromising

routes as aggressively as possible while preserving the optimality of

the top-k answers; iii. ensure that the search and pruning strategies

are applicable to any nonnegative, monotone and submodular ag-

gregation functions Φh . To this end, we propose a novel algorithm,

Prefix bAsed Compact statEs gRowth (PACER), that incorporates
the idea of dynamic programming and fuses a cost-based pruning

strategy and a gain-based pruning strategy in an unified way.

Next, we present our enumeration and pruning strategies, fol-

lowed by the detailed algorithm and the complexity analysis.

5.1 Prefix-based Compact State Growth
A route P is associated with several variables: PV , Gain(PV), the
ending POI end(P), and cost(P). If x is not visited, sx and F̃x,h for

every h are set to 0; the same is applied to y. A POI sequence is

an open route if it starts from x and visits several POIs other than

y; it is a closed route if it starts from x and ends at y. The initial
open route includes only x . An open route P is feasible if its closed
form P → y satisfies cost(P → y) ≤ b. In the following discussion,

P denotes either an open route or a closed route. An open route

P− with end(P−) = i can be extended into a longer open route

P = P− → j by a POI j < P−V ∪ {y}. The variables for P are
PV = P

−
V ∪ {j}

Gain(PV) =
∑
hwhΦh (PV)

end(P) = j
cost(P) = cost(P−) +Ti, j + sj .

(5)

Compact states C. PV and Gain(PV) depend on the POI set

of the route P but are independent of how the POIs are ordered.

Hence, we group all open routes sharing the same PV as a compact
state, denoted as C, and let CL denote the list of open routes having

C as the POI set. C is associated with the following fields:{
Gain(C) : the gain of routes grouped by C
CL : ∀P ∈ CL , end(P), cost(P). (6)

These information is cached in a hash map with C as the key.

We assume that the POIs inVQ are arranged in the lexicograph-

ical order of POI IDs. The compact states are enumerated as the

subsets ofVQ . x is included in every compact state, so we omit x .
Figure 3 shows a compact state enumeration tree for VQ =

{A,B,C,D}, excluding x and y. Each capital letter represents a POI,

0Ø

8{D}4{C}1{A} 2{B}

3{AB}{AB}
{A}→B

{B}→A
5{AC}{AC}

{A}→C

{C}→A
6{BC}{BC}

{B}→C

{C}→B
9{AD}

{A}→D

{D}→A
10{BD}{BD}

{B}→D

{D}→B

{C}→D12{CD}
{C}→D

{CD}
{D}→C

{AB}→C{AB}→C
7{ABC}{AC}→B

{BC}→A

11{ABD}

{AB}→D

{AD}→B

{BD}→A

13{ACD}

{AC}→D

{AD}→C

{CD}→A

14{BCD}

{BC}→D

{BD}→C

{CD}→B

15{ABCD}

{ABC}→D

{ABD}→C

{ACD}→B

{BCD}→A

Figure 3: The compact state enumeration tree for PACER.
The number indicates the order of enumeration.

each node represents a compact state. We define the set of POIs

that precede i , in the above order, in a POI set as the prefix of a POI

i , e.g., prefix of C is {AB}. The compact states are generated in a

specific prefix-first depth-first manner so that longer open routes are

extended from earlier computed shorter ones. Initially, the root is

the empty set ∅. A child node C of the current node C− is generated
by appending a POI i that precedes any POIs in C− to the front of

C−, and all child nodes are arranged by the order of i . For example,

Node 7 {ABC} is generated as a child node of Node 6 {BC} by
appending A to the front of {BC} because A precedes B and C .

At node C, the open routes in CL are generated by extending the

cached routes in every compact state C−j = C \ {j} where j ∈ C.
There are |C| such C−j . We generate each route P = P− → j by

selecting the routes P− from each C
−j
L and append j at the end, and

compute the gain and cost of P based on the accessed information

for C−j from the hash map. P is kept in CL if it is feasible.

For example, to generate the open routes at the node {ABC}, we
access the cached open routes at nodes {AB}, {AC} and {BC} and
append the missing POI. {AB} → C represents all the open routes

ended with C and the first two POIs in any order, i.e., x → A →
B → C and x → B → A → C . Note that it materializes only the

current expanded branch of the tree, instead of the entire tree.

A closed route P → y for each P ∈ CL is used to update the

top-k routes topK . If CL is empty, this compact state is not kept.

If no compact state is expandable, we stops the enumeration and

yield the final topK . Note that each CL can include |C|! open routes

and enumerating all the routes can be very expensive. We present

two strategies to prune unpromising routes.

5.2 Cost-based Pruning Strategy
Consider two feasible open routes P and P ′. We say P dominates
P ′ if PV = P

′
V , end(P) = end(P ′) and cost(P) ≤ cost(P ′). Be-

cause, if a route P ′ → ˆP is feasible, P → ˆP with the same exten-

sion
ˆP must be also feasible and cost(P → ˆP) ≤ cost(P ′ → ˆP).

Pruning-1: cost dominance pruning. Leveraging the above

dominance relationship, at the compact state C, when generating

P = P− → j for a given j, we only select the open route P− from

C
−j
L such that P is feasible and has the least cost, thus, dominates

all other routes P ′− → j with P ′− from C
−j
L . This reduces |C|!

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

549

open routes to at most |C| dominating open routes at the compact

state C, one for each j in C, without affecting the optimality. We

call this strategy cost dominance pruning.
For example, {AB} → C on node 7 {ABC} now represents only

one open route with the least cost chosen from A→ B → C and

B → A → C . Note that Pruning-1 is a subtree pruning, e.g., if

A → B on node 3 is pruned, all the open routes starting with

A→ B, such as A→ B → C on node 7 and A→ B → D on node

11, will never be considered.

Though all dominated open routes are pruned, many of the

remaining dominating open routes are still unpromising to lead to

the top-k closed routes. This further motivates our next strategy.

5.3 Gain-based Pruning Strategy
We can extend a dominating open route P step by step using the

remaining budget ∆b = b − cost(P) into a closed route P → ˆP.

The POIs used for extension at each step should be reachable from

the current end(P), therefore, chosen from the set

U = {i |Tend (P),i + si +Ti,y + sy ≤ ∆b}, (7)

where i is an unvisited POI other than y. Tend(P),i and Ti,y can be

computed through HIQ . P → ˆP has gain Gain(PV ∪ ˆPV). Then

the marginal gain by concatenating
ˆP to the existing P is

∆Gain(ˆPV |PV) = Gain(PV ∪ ˆPV) −Gain(PV). (8)

Let P → ˆP∗ denote the P → ˆP with the highest gain. If P → ˆP∗

ranks lower than the current k-th top routes topK[k], P is not

promising and all the open routes extended from P can be pruned.

Pruning-2: marginal gain upper bound pruning. However,
finding

ˆP∗ is as hard as finding an optimal route from scratch,

so we seek to estimate an upper bound UP of the marginal gain

∆Gain(ˆPV |PV), such that if Gain(PV) +UP is less than the gain

of topK[k], P is not promising, thus, P and all its extensions can

be pruned without affecting the optimality. We call this marginal
gain upper bound pruning. As more routes are enumerated, the gain

of topK[k] increases and this pruning becomes more powerful.

The challenge of estimating UP is to estimate the cost of the

extended part
ˆP without knowing the order of the POIs. Because

∆Gain(ˆPV |PV) is independent of the POIs’ order, we can ignore

the order and approximate the “route cost” by a “set cost”, i.e., the

sum of some cost c(i) of each POI i ∈ ˆPV , where c(i) is no larger

than i’s actual cost when it is included in
ˆP. We define c(i) as:

c(i) = si +min(tj,i)/2 +min(ti,k)/2, (9)

where tj,i is the cost on an in-edge ej,i and ti,k is the cost on an out-

edge ei,k . As the order of POIs is ignored, it is easy to verify thatmin
ensures the above property of c(i). The destination y is “one-sided”,

i.e., c(y) = sy +min(tj,y)/2. To make a tighter cost approximation,

we also count the half out-edge costmin(tend(P),k)/2 for end(P).
Then,UP is exact the solution, i.e., the maximum ∆Gain(S∗ |PV),

to the following optimization problem:

max

S ⊆U∪{y }
∆Gain(S |PV) s .t .

∑
i ∈S

c(i) ≤ B,
(10)

where U is defined in Eqn. (7) and B = ∆b − min(tend(P),k)/2.

Note that S should include y because end(ˆP) = y. As c(i) and
c(end(P)) are no larger than their actual costs, ∆Gain(S∗ |PV) ≥

∆Gain(ˆPV |PV) for any ˆP. Thus, using ∆Gain(S∗ |PV) asUP never

loses the optimality. To solve Eqn. (10), we first show the properties

of the marginal gain function ∆Gain.

Theorem 3. The marginal gain function ∆Gain as defined in Eqn.
(8) is nonnegative, monotone and submodular.

Proof. We only show that ∆Gain is submodular. According to

[13], if a set function д : 2
V → R is submodular, and X ,Y ⊂ V are

disjoint, the residual function f : 2
Y → R defined as f (S) = д(X ∪

S)−д(X) is also submodular. SinceGain is submodular (Theorem 1)

and since PV ,U ⊂ V are disjoint, ∆Gain(ˆPV |PV) = Gain(PV ∪
ˆPV) −Gain(PV) is residual on ˆPV , thus, is submodular. �

Apparently, Eqn. (10) is a submodular maximization problem

subject to a knapsack constraint, which unfortunately is also NP-

hard [13]. Computing ∆Gain(S∗ |PV) is costly, thus, we consider
estimating its upper bound.

One approach, according to [22], is to run a Ω(B |U|4) time (B is

defined in Eqn. (10)) greedy algorithm in [12] to obtain an approxi-

mate solution ∆Gain(S ′ |PV) for the above problem with approxi-

mation ratio of 1 − e−1, then the upper bound of ∆Gain(S∗ |PV) is
achieved by ∆Gain(S ′ |PV)/(1 − e

−1). A less costly version of this

algorithm runs in O(B |U|) but its approximation ratio is
1

2
(1−e−1).

Compared with the above mentioned offline bounds, i.e., 1 − e−1

and
1

2
(1 − e−1) that are stated in advance before running the actual

algorithm, the next theorem states that we can instead use the

submodularity to acquire a much tighter online bound.

Theorem 4. For each POI i ∈ U ∪ {y}, let δi = ∆Gain({i}|PV).
Let ri = δi/c(i), and let i1, · · · , im be the sequence of these POIs with
ri in decreasing order. Let l be such that C =

∑l−1
j=1c(i j) ≤ B and∑l

j=1c(i j) > B. Let λ = (B −C)/c(il). Then

UP =
∑l−1

j=1
δi j + λδil ≥ ∆Gain(S∗ |PV). (11)

Proof. [16] showed a theorem that a tight online bound for

arbitrary given solution Â (obtained using any algorithm) to a con-

strained submodular maximization problem can be got to measure

how far Â is from the optimal solution. By applying [16] to the

problem in Eqn. (10) and let Â = ∅, Theorem 4 is deduced. �

By this means, UP is computed without running a greedy algo-

rithm. We also empirically proved that this online bound in Eqn.

(11) outperforms the offline bounds on both tightness and compu-

tational cost. Thus, we finally choose the online bound.

5.4 Algorithm
Algorithm 1 incorporates the above enumeration and pruning strate-

gies. Given the global variables, PACER(C−, I) recursively enumer-

ates the subtree at the current compact state C− with the POI set I
available for extending C−, and finally return the k best routes in

topK . The initial call is PACER(∅,VQ), when only x is included.

As explained in Section 5.1, Line 1 - 3 extends C− by each i in
the set I in order, creating the child node C and computingGain(C).
Lines 4 - 11 generate the dominating and promising open routes

CL . Specifically, for each j ∈ C selected as the ending POI, Line 5 -

6 find the dominating route P− from the previously computed C
−j
L .

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

550

Algorithm 1: PACER(C−, I) (Recursive funcion)
Globals :Q = (x ,y,b,w,θ ,Φ),VQ , FIQ and HIQ to

compute Gain(C) and cost(P), and k
Parameters :compact state C− and the set of POIs I
Output :a priority queue topK

1 forall POI i in set I in order do
2 C← {i} ∪ C−;

3 compute Gain(C);

4 forall POI j in C do
5 C−j ← C \ {j};

6 P− ← the dominating route in C
−j
L such that

cost(P− → j) is minimum; // prune-1

7 P ← P− → j;

8 if cost(P → y) ≤ b then
9 ComputeUP using Eqn. (11);

10 if Gain(C) +UP ≥ Gain(topK[k]) then
11 insert route P into CL ; // prune-2

12 UpdateTopK(CL , topK);

13 PACER(C, prefix of i in I);

This corresponds to Pruning-1. Only when the new open route P

is feasible, Pruning-2 is applied to check if P has a promising gain,

and if so, P is inserted into CL (Lines 8 - 11). After CL is finalized,

it selects an open route P in CL such that P → y has the least cost

to update topK (Line 12). The information of the new compact state

C, as in Eqn. (6), is added to the hash map. At last, C is extended

recursively with the POIs in the prefix of i in current I (Line 13).
Summary of the properties of PACER. (1) PACER works for

any nonnegative, monotone, and submodular Gain function so

as to deal with the personalized diversity requirement. (2) Open

routes are enumerated as compact states in a prefix-first depth-

first order to construct open routes incrementally, i.e., dynamic
programming. (3) With Pruning-1, we compute at most |C| dom-

inating feasible open routes at each compact state C, instead of |C|!
routes. (4) Pruning-2 further weeds out the dominating feasible

open routes not having a promising estimated maximum gain.

5.5 Complexity Analysis
We measure the computational complexity by the number of routes

examined. Two main factors affecting this measure are the size of

the POI candidate set, i.e., |VQ | denoted by n, and the maximum

length of routes examined (excluding x and y), i.e., the maximum

|P | denoted by p. p ≪ n. We analyze PACER relatively to the

brute-force search and a state-of-the-art approximation solution.

PACER. The compact states on the l-th level of the enumeration

tree (Figure 3) compute the routes containing l POIs; thus, there
are at most

(n
l
)
compact states on level l . And thanks to Pruning-1,

each compact state represents at most l dominating open routes.

There are n dominating open routes with single POI on level l = 1.

Starting from l = 2, to generate each dominating open route on

level l , we need to examine (l −1) sub-routes having the same set of

POIs as the prefix and add the same ending to find the dominating

one, according to the cost dominance pruning. Hence, with p ≪ n

and the Pascal’s rule [2], the number of routes examined is at most

n +

p∑
l=2

l(l − 1)

(
n

l

)
= n + n(n − 1)

p∑
l=2

(
n − 2

l − 2

)
≈ n(n − 1)(

(
n − 2

p − 2

)
+

(
n − 2

p − 3

)
) = n(n − 1)

(
n − 1

p − 2

)
=

n − 1

(n − p + 1)(p − 2)!

n!

(n − p)!
.

(12)

Therefore, the computation cost of PACER is O(1

(p−2)!
n!
(n−p)!) with

p ≪ n. If Pruning-2 is also enabled and it prunes the γ percent of

the routes examined by PACER with Pruning-1, the computation

cost of PACER is O((1 − γ) 1

(p−2)!
n!
(n−p)!).

Brute-force algorithm (BF). The brute-force algorithm based

on the breadth-first expansion examines O(n!
(n−p)!) routes.

Approximation algorithm (AP). [4] proposed a quasi-polynomial
time approximation algorithm for the Orienteering Problem. We

modified AP to solve our problem. It uses a recursive binary search

to produce a single route with the approximation ratio ⌈logp⌉ + 1

and runs in O((n ·OPT · logb)logp), whereOPT and b are the num-

bers of discrete value for an estimated optimal Gain and for the

budget, respectively. The cost is expensive if b or OPT has many

discrete values. For example, for b = 512 minutes, n = 50, p = 8 and

OPT = 10.0 (100 discrete values with the single decimal point pre-

cision), the computation cost is (50 · 100 · log 512)log 8 = 9.11× 1013.

Lower precision leads to smaller computation cost, but also lower

accuracy. [21] noted that AP took more than 10
4
seconds for a small

graph with 22 nodes. Compared with AP, the computation cost of

PACER with Pruning-1 given by Eqn. (12) is only 50 × 49 ×
(
49

6

)
=

3.43× 1010. This cost is further reduced by Pruning-2. PACER finds

the optimal top-k routes whereas AP only finds single approximate

solution. We will experimentally compare PACER with AP.

6 HEURISTIC SOLUTIONS
PACER remains expensive for a large budget b and a large POI can-

didate setVQ . The above approximation algorithm is not scalable.

Hence, we design two heuristics when such extreme cases arise.

State collapse heuristic.The cost dominance pruning in PACER

keeps at most l open routes for a compact state representing a set

of l POIs (excluding x and y). A more aggressive pruning is to keep

only one open route having the least cost at each compact state,

with the heuristic that this route likely visits more POIs. We denote

this heuristic algorithm by PACER-SC, where SC stands for “State

Collapsing”. Clearly, PACER-SC trades optimality for efficiency, but

it inherits many nice properties from PACER and Section 7.2 will

show that it usually produces k routes with quite good quality.

Analogous to the complexity analysis for PACER in Section 5.5,

with p ≪ n, PACER-SC examines no more than

∑p
l=1 l

(n
l
)
≈ n

(n
p−1

)
routes, which is around 1/p of that for PACER.

Greedy algorithm. PACER-SC’s computation complexity re-

mains exponential in the route length p. Our next greedy algorithm
runs in polynomial time. It starts with the initial route x → y
and iteratively inserts an unvisited POI i to the current route to

maximize the marginal gain/cost ratio

Gain({i} ∪ C) −Gain(C)

si +Tx,i +Ti,y
, (13)

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

551

where C denotes the set of POIs on the current route. It inserts i
between two adjacent POIs in the current route so that the total cost

of the resulting route is minimized. The termTx,i +Ti,y constrains

the selected POIs i to be those not too far away from the two end

points. The expansion process is repeated until the budget b is used

up. The algorithm only produces a single route and examines O(pn)
routes because each insertion will consider at most n unvisited POIs.

7 EXPERIMENTAL EVALUATION
All algorithms were implemented in C++ and were run on Ubuntu

16.04.1 LTS with Intel i7-3770 CPU @ 3.40 GHz and 16G of RAM.

7.1 Experimental Setup
7.1.1 Datasets. We use two real-world datasets from [24]. Sin-

gapore denotes the Foursquare check-in data collected in Singapore,

and Austin denotes the Gowalla check-in data collected in Austin.

Singapore has 189,306 check-ins at 5,412 locations by 2,321 users,

and Austin has 201,525 check-ins at 6,176 locations by 4,630 users.

Same as suggested in [3, 24], we built an edge between two lo-

cations if they were visited on the same date by the same user.

The locations not connected by edges were ignored. We filled in

the edge costs ti, j by querying the traveling time in minute using

Google Maps API under driving mode. The staying time si were
generated following the Gaussian distribution, si ∼ N(µ,σ

2), with

µ = 90 minutes and σ = 15. The features are extracted based on

the user mentioned keywords at check-ins, same to [24]. We obtain

the rating of a feature h on POI i by

Fi,h = min{
NCh (i)

1/|Sh | ×
∑
j ∈Sh NCh (j)

×
β

2

, β}, (14)

where NCh (i) is the number of check-ins at POI i containing the

feature h, Sh is the set of POIs containing h, β is the maximum

feature rating and is set to β = 5 for both data sets. The calculation

scales the middle value
β
2
by the ratio of a POI’s check-in count

to the average check-in count on h. Table 2 shows the descriptive
statistics of the datasets after the above preprocessing.

Table 2: Dataset statistics

POI # Edges Average ti, j # Features
Singapore 1,625 24,969 16.24 minutes 202

Austin 2,609 34,340 11.12 minutes 252

Both datasets were used in [24], which also studied a route plan-

ning problem. The datasets are not small considering the scenario

for a daily trip in a city where the user has a limited cost budget.

Even with 150 POIs to choose from, the number of possible routes

consisting of 5 POIs can reach 70 billions. Compared to our work,

[17] evaluated its itinerary recommendation methods using theme

park data, where each park contains only 20 to 30 attractions.

7.1.2 Algorithms. We compared the following algorithms. BF
is the brute-force method (Section 5.5). PACER+1 is our proposed

optimal algorithm with only Pruning-1 enabled. PACER+2 enables
both Pruning-1 and Pruning-2. PACER-SC is the state collapse

algorithm and GR is the greedy algorithm in Section 6. AP is the

approximation algorithm proposed by [4] (see Section 5.5).A* is the

A* algorithm proposed by [24]. Since A* works only for its specific

keyword coverage function, it is not compared until Section 7.3

where we adapt their coverage function in our method. To be fair,

all algorithms use the indices in Section 4 to speed up. Note that BF,

PACER+1, PACER+2 and A* are exact algorithms, while PACER-SC,

GR, and AP are greedy or approximation algorithms.

7.1.3 Queries. A query Q has the six parameters x ,y,b,w, θ ,Φ.
For concreteness, we choose Φh in Eqn. (3) with α controlling the

diversity of POIs on a desired route. We assume θh and αh are the

same for all features h. For Singapore, we set x as Singapore Zoo

and y as Nanyang Technological University; and for Austin, we set
x as UT Austin and y as Four Seasons Hotel Austin.

For each dataset, we generated 50 weight vectorsw to model the

feature preferences of 50 users as follows. For each w, we drawm
features, wherem is a random integer in [1, 4], and the probability of

selecting each feature h is Pr(h) =
∑
i∈Sh

NCh (i)∑
h∈H

∑
i∈Sh

NCh (i)
. NCh (i) and

Sh are defined in Eqn. (14). LetHQ be the set of selected features.

For each h ∈ HQ , wh =

∑
i∈Sh

NCh (i)∑
h∈HQ

∑
i∈Sh

NCh (i)
.

Finally, we considerb ∈ {4, 5, 6, 7, 8, 9} in hours,θ ∈ {0, 1.25, 2.5,
3.75}, andα ∈ {0, 0.5, 1, 2}with the default settings in bold face. For
each setting ofb,θ ,α , we generated 50 queriesQ = (x ,y,b,w,θ ,α)
using the 50 vectors w above. All costs are in minutes, therefore,

b = 5 specifies the budget of 300 minutes.

We first evaluate the performance of our proposed algorithms

(Section 7.2), then we compare with the A* algorithm (Section 7.3).

7.2 Performance Study
Evaluation metrics. As we solve an optimization problem, we

evaluate Gain for effectiveness, CPU runtime and search space (in
the number of examined open routes) for efficiency.

For every algorithm, we evaluate the three metrics for processing

a query, and report the average for the 50 queries (i.e., vectors w)

under each setting of (b,θ ,α) chosen from the above ranges. GR

and AP only find single route, thus, we first set k = 1 to compare

all algorithms, and discuss the impact of larger k in Section 7.2.4.

Figures 4 and 5 report the experiments for Singapore and Austin,
respectively. Each row corresponds to various settings of one of

b,θ ,α while fixing the other two at the default settings. OPTIMAL

denotes the same optimal gain of PACER+2, PACER+1 and BF. We

terminated an algorithm for a given query after it runs for 1 hour

or runs out of memory, and used the label beside a data point to

indicate the percentage of finished queries. If more than a half of

the queries were terminated, no data point is shown.

7.2.1 Impact of budget b (Figure 4a - 4c and 5a - 5c). b affects

the length of routes (the number of POIs included).

AP is the worst. This is consistent with the analysis in Section 5.5

that AP suffers from a high complexity when b andOPT have many

discrete values. b = 6 has 360 discrete values in minute, a majority

of the queries cannot finish. The efficiency of BF drops dramatically

as b increases, since the number of open routes becomes huger and

processing them is both time and memory consuming.

PACER+1’s search space is two orders of magnitude smaller

than that of BF, thanks to the compact state enumeration and the

cost dominance pruning. PACER+2 is the best among all the exact

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

552

BF PACER+1 PACER+2

PACER-SC GR AP

OPTIMAL PACER-SC

GR AP

4 5 6 7 8 9
Time budget b (hour)

10-3

10-1

101

103

R
un

tim
e

(s
ec

) 31/5042/50

(a) Runtime vs. b

4 5 6 7 8 9
Time budget b (hour)

102

104

106

108

1010

of

 ro
ut

es

42/50
31/50

(b) # of routes vs. b

4 5 6 7 8 9
Time budget b (hour)

4
6
8

10
12
14

G
ai

n

(c) Gain vs. b

0 1.25 2.5 3.75
10-3

10-1

101

103

R
un

tim
e

(s
ec

)

(d) Runtime vs. θ

0 1.25 2.5 3.75
102

104

106

108

1010

of

 ro
ut

es

(e) # of routes vs. θ

0 1.25 2.5 3.75
4

6

8

10

G
ai
n

(f) Gain vs. θ

0 0.5 1 2
10-3

10-2

10-1

100

101

R
un

tim
e

(s
ec

)

(g) Runtime vs. α

0 0.5 1 2
101

103

105

107

of

 ro
ut

es

(h) # of routes vs. α

0 0.5 1 2
4

8

12

16

G
ai

n

(i) Gain vs. α

Figure 4: Experimental results for Singapore. Run time and
search space (# of routes) are in logarithmic scale. The labels
beside data points indicate the ratio of queries successfully
responded by the algorithmunder the parameter setting. No
label if no query fail. Data point or bar is not drawn if more
than half fail. AP can only respond queries with small b.

algorithms. Compared with PACER+1, the one order of magnitude

speedup in runtime and two orders of magnitude reduction in

search space clearly demonstrates the additional pruning power of

the Gain based upper bound pruning. PACER-SC trades optimality

for efficiency. Surprisingly, as shown in Figure 4c and 5c, PACER-SC

performs quite well with Gain being close to that of OPTIMAL.

GR always finishes in less than 10
−2

seconds. For Singapore, the
achieved gain is far worse than that of OPTIMAL, compared with

the difference for Austin. This is because x and y for Singapore
are relatively remote to the central city. GR will greedily select a

POI i not too far away from x and y (Eqn. (13)), thus, many POIs

with possibly higher feature ratings located in the central city are

less likely to be chosen. In contrast, x and y for Austin are in the

downtown area and this situation is avoided in most cases.

7.2.2 Impact of of filtering threshold θ . In Figure 4d - 4f and

5d - 5f, as θ increases, the POI candidate set becomes smaller and

all the algorithms run faster. The majority of the queries for AP

cannot finish and its results are not shown. The study suggests that

a reasonable value of θ , e.g., 2.5, reduces the searching cost greatly

while having little loss on the quality of the found routes.

7.2.3 Impact of route diversity parameterα (Figure 4g - 4i and 5g -
5i). PACER+2 and PACER-SC are slightly affectedwhenα varies. As

α increases, the marginal return diminishes faster and Φh behaves

more towards the max aggregation. In this case, Pruning-2 becomes

BF PACER+1 PACER+2

PACER-SC GR AP

OPTIMAL PACER-SC

GR AP

4 5 6 7 8 9
Time budget b (hour)

10-3

10-1

101

103

R
un

tim
e

(s
ec

) 37/50 40/50

(a) Runtime vs. b

4 5 6 7 8 9
Time budget b (hour)

102

104

106

108

1010

of

 ro
ut

es

37/50 40/50

(b) # of routes vs. b

4 5 6 7 8 9
Time budget b (hour)

4
6
8

10
12
14

G
ai

n

(c) Gain vs. b

0 1.25 2.5 3.75
10-3

10-1

101

103

R
un

tim
e

(s
ec

) 46/50

(d) Runtime vs. θ

0 1.25 2.5 3.75
102

104

106

108

1010

of

 ro
ut

es

46/50

(e) # of routes vs. θ

0 1.25 2.5 3.75
4

6

8

10

G
ai
n

(f) Gain vs. θ

0 0.5 1 2
10-3

10-2

10-1

100

101

R
un

tim
e

(s
ec

)

(g) Runtime vs. α

0 0.5 1 2
101

103

105

107

of

 ro
ut

es

(h) # of routes vs. α

0 0.5 1 2
4

8

12

16

G
ai

n

(i) Gain vs. α

Figure 5: Experimental results for Austin

less effective. When α = 0 (the sum aggregation), both Gain and

the difference between OPTIMAL and GR reach the maximum.

Figure 6 illustrates the effectiveness of our power law function in

Eqn. (3) for modeling the personalized route diversity requirement.

We run two queries on Singapore, one withα = 0.5, which specifies

a diversity requirement, and one with α = 0, which specifies the

usual sum aggregation. The other query parameters are the same.

The figures show the best routes found for each query, with the POIs

on a route labeled sequentially as A, B · · · . The red dots represent

the source x and destination y. The route for α = 0.5 covers all

specified features, i.e., two POIs for each feature, while maximizing

the total Gain. While the route for α = 0 has four parks out of five

POIs due to the higher weight of Park inw; thus, it is less preferred

by a user who values diversity. In fact, the second route’s Gain
value when evaluated using α = 0.5 is only 6.60.

7.2.4 Impact of k . We vary k in range [1, 100] while fixing

b,θ ,α at the default values and run the algorithms, except GR and

AP, on both datasets. As k only influences the gain-based pruning,

the performance of BF and PACER+1 are unchanged. For PACER+2

and PACER-SC, the change is limited (less than 25% slower for

k = 100). Because when k is small, the Gain of the k-th best route

is usually not far away to that of the best route, thus, the marginal

gain upper bound pruning is not seriously influenced. We omit the

figures due to limited space.

7.3 Comparison with A*
A* [24] only works for their keyword coverage function: Φh (PV) =
1 −

∏
i ∈PV [1 − F̃i,h], and finds single route. In [24], F̃i,h is in the

range [0, 1] and it is set to 1 if the number of check-ins on POI i for

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

553

Hilton Singapore;
Gain = 7.34115; Cost = 540 mins

Hilton Singapore

A: National Museum

B: Fort Canning Park

D: Esplanade Park

F: Tiong Shian Eating House

C: Singapore Art Museum

E: Peach Garden

Hilton Singapore →
A (M:5.0): National Museum →
B (P:4.1): Fort Canning Park →
C (M:5.0): Singapore Art Museum →
D (P:3.1): Esplanade Park →
E (R:3.6): Peach Garden →
F (R:5.0): Tiong Shian Eating House →

(a) α = 0.5 (with diversity requirement)

Hilton Singapore
A: National Museum

B: Fort Canning Park

E: Bukit Timah Nature Reserve

D: Tampines Eco Green

C: Bedok Reservoir Park

Hilton Singapore →
A (M:5.0): National Museum →
B (P:4.1): Fort Canning Park →
C (P:4.0): Bedok Reservoir Park →
D (P:5.0): Tampines Eco Green →
E (P:4.8): BukitTimah Nature Reserve →
Hilton Singapore;
Gain = 8.66; Cost = 535 mins

recompute its Gain, it is only 6.6045, which is smaller than that of
the trip in Figure ??.

8. CONCLUSIONS

9. REFERENCES
[1] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of

evolutionary computation. New York: Oxford, 1997.
[2] S. Basu Roy, G. Das, S. Amer-Yahia, and C. Yu. Interactive

itinerary planning. In ICDE, pages 15–26. IEEE, 2011.
[3] D. M. Burton. Elementary number theory. Tata McGraw-Hill

Education, 2006.
[4] X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-aware

optimal route search. Proceedings of the VLDB Endowment,
5(11):1136–1147, 2012.

[5] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective
spatial keyword querying. In Proceedings of the 2011 ACM
SIGMOD, pages 373–384. ACM, 2011.

recompute its Gain, it is only 6.6045, which is smaller than that of
the trip in Figure ??.

8. CONCLUSIONS

9. REFERENCES
[1] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of

evolutionary computation. New York: Oxford, 1997.
[2] S. Basu Roy, G. Das, S. Amer-Yahia, and C. Yu. Interactive

itinerary planning. In ICDE, pages 15–26. IEEE, 2011.
[3] D. M. Burton. Elementary number theory. Tata McGraw-Hill

Education, 2006.
[4] X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-aware

optimal route search. Proceedings of the VLDB Endowment,
5(11):1136–1147, 2012.

[5] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective
spatial keyword querying. In Proceedings of the 2011 ACM
SIGMOD, pages 373–384. ACM, 2011.

(b) α = 0 (without diversity requirement)

Figure 6: Two routes found from Singapore by PACER+2 for
the query Q = (x ,y,b = 9,w = (P : 0.4,M : 0.3,R : 0.3),θ =
2.5,α), where x and y are Hilton Singapore, and P, M and R
represent Park, Museum, and Chinese Restaurant.

4 5 6 7 8 9
Time budget b (hour)

10-1

101

103

R
un

tim
e

(s
ec

) PACER+2
A*

(a) Runtime - Singapore

4 5 6 7 8 9
Time budget b (hour)

10-1

101

103

R
un

tim
e

(s
ec

) PACER+2
A*

39/50

(b) Runtime - Austin

Figure 7: PACER+2 vs. A* (logarithmic scale).

feature h is above average. In this case, the single POI in P yields

the maximum Φh (PV) value; the feature h of other POIs will be

ignored. For a fair comparison, we set β = 0.5 in Eqn. (14) for both

algorithms, we also leverage our indices to speed up A*. Note that

the maximum b in [24] is 15 kilometers in their efficiency study,

which is about 20 minutes by Google Maps under driving mode.

Figure 7 shows the comparison between PACER+2 and the mod-

ified A* on both datasets. The report of Gain is omitted as they are

both exact algorithms. We also omit the comparison of search space

due to page limit (PACER+2 searches one to two orders of magni-

tude less than A*). Apparently, PACER+2 outperforms A*, especially

for a large b. A few queries of A* on Austin even failed for b = 9.

Although A* has a pruning strategy specifically for their keyword

coverage function, the search strategy itself is a bottleneck. Besides,

their pruning based on the greedy algorithm in [12] has a bound

looser than ours. In fact, the experiments in [24] showed that A* is

just 2-3 times faster than the brute-force algorithm.

8 CONCLUSION
We considered a personalized top-k route search problem. The large

scale of POI maps and the combination of search in feature space

and path space make this problem computationally hard. The per-

sonalized route diversity requirement further demands a solution

that works for any reasonable route diversity specification. We pre-

sented an exact search algorithm with multiple pruning strategies

to address these challenges. We also presented high-performance

heuristic solutions. The analytical evaluation suggested that our

solutions significantly outperform the state-of-the-art algorithms.

Acknowledgments. Ke Wang’s work was partially supported

by a discovery grant from The Natural Sciences and Engineering

Research Council of Canada (NSERC).

REFERENCES
[1] Senjuti Basu Roy, Gautam Das, Sihem Amer-Yahia, and Cong Yu. 2011. Interactive

itinerary planning. In ICDE. IEEE, 15–26.
[2] David M Burton. 2006. Elementary number theory. Tata McGraw-Hill Education.

[3] Xin Cao, Lisi Chen, Gao Cong, and Xiaokui Xiao. 2012. Keyword-aware optimal

route search. VLDB Endowment 5, 11 (2012), 1136–1147.
[4] Chandra Chekuri and Martin Pal. 2005. A recursive greedy algorithm for walks

in directed graphs. In FOCS. IEEE, 245–253.
[5] Jian Dai, Bin Yang, Chenjuan Guo, and Zhiming Ding. 2015. Personalized route

recommendation using big trajectory data. In ICDE. IEEE, 543–554.
[6] Munmun De Choudhury, Moran Feldman, Sihem Amer-Yahia, Nadav Golbandi,

Ronny Lempel, and Cong Yu. 2010. Automatic construction of travel itineraries

using social breadcrumbs. In ACM Hypertext and Hypermedia. ACM, 35–44.

[7] Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J Smola, Jing Jiang, and

Chong Wang. 2014. Jointly modeling aspects, ratings and sentiments for movie

recommendation (jmars). In the 20th ACM SIGKDD. ACM, 193–202.

[8] Aristides Gionis, Theodoros Lappas, Konstantinos Pelechrinis, and Evimaria Terzi.

2014. Customized tour recommendations in urban areas. InWSDM. 313–322.

[9] Minhao Jiang, AdaWai-Chee Fu, Raymond Chi-WingWong, and Yanyan Xu. 2014.

Hop doubling label indexing for point-to-point distance querying on scale-free

networks. VLDB Endowment 7, 12 (2014), 1203–1214.
[10] Iris A Junglas and Richard T Watson. 2008. Location-based services. Commun.

ACM 51, 3 (2008), 65–69.

[11] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In ACM SIGKDD. ACM, 137–146.

[12] Samir Khuller, Anna Moss, and Joseph Seffi Naor. 1999. The budgeted maximum

coverage problem. Inform. Process. Lett. 70, 1 (1999), 39–45.
[13] Andreas Krause and Daniel Golovin. 2012. Submodular function maximization.

Tractability: Practical Approaches to Hard Problems 3, 19 (2012), 8.
[14] Andreas Krause and Carlos Guestrin. 2008. Beyond convexity: Submodularity in

machine learning. ICML Tutorials (2008).
[15] Takeshi Kurashima, Tomoharu Iwata, Go Irie, and Ko Fujimura. 2010. Travel

route recommendation using geotags in photo sharing sites. In CIKM. 579–588.

[16] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-

Briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.

In Proceedings of the 13th ACM SIGKDD. ACM, 420–429.

[17] Kwan Hui Lim, Jeffrey Chan, Shanika Karunasekera, and Christopher Leckie.

2017. Personalized itinerary recommendation with queuing time awareness. In

Proceedings of the 40th ACM SIGIR. ACM, 325–334.

[18] Qi Liu, Yong Ge, Zhongmou Li, Enhong Chen, and Hui Xiong. 2011. Personalized

travel package recommendation. In ICDM. IEEE, 407–416.

[19] Eric Hsueh-Chan Lu, Ching-Yu Chen, and Vincent S Tseng. 2012. Personalized trip

recommendation with multiple constraints by mining user check-in behaviors.

In SIGSPATIAL. ACM, 209–218.

[20] Daniele Quercia, Rossano Schifanella, and Luca Maria Aiello. 2014. The shortest

path to happiness: Recommending beautiful, quiet, and happy routes in the city.

In ACM Hypertext and Social media. ACM, 116–125.

[21] Amarjeet Singh, Andreas Krause, Carlos Guestrin, William J Kaiser, and Maxim A

Batalin. 2007. Efficient Planning of Informative Paths for Multiple Robots.. In

IJCAI, Vol. 7. 2204–2211.
[22] Maxim Sviridenko. 2004. A note on maximizing a submodular set function subject

to a knapsack constraint. Operations Research Letters 32, 1 (2004), 41–43.
[23] World Travel and Tourism Council. 2017. Travel and Tourism Global Economic

Impact and Issues 2017. https://www.wttc.org/ (2017).
[24] Yifeng Zeng, Xuefeng Chen, Xin Cao, Shengchao Qin, Marc Cavazza, and Yanping

Xiang. 2015. Optimal Route Search with the Coverage of Users’ Preferences. In

24th IJCAI. AAAI Press, 2118–2124.
[25] Chenyi Zhang, Hongwei Liang, and Ke Wang. 2016. Trip recommendation meets

real-world constraints: POI availability, diversity, and traveling time uncertainty.

ACM TOIS 35, 1 (2016), 5.
[26] Wei Zhang and Jianyong Wang. 2015. Location and Time Aware Social Col-

laborative Retrieval for New Successive Point-of-Interest Recommendation. In

Proceedings of the 24th ACM CIKM. ACM, 1221–1230.

[27] Bolong Zheng, Nicholas Jing Yuan, Kai Zheng, Xing Xie, Shazia Sadiq, and Xiao-

fang Zhou. 2015. Approximate keyword search in semantic trajectory database.

In 31st ICDE. IEEE, 975–986.
[28] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. 2009. Mining interesting

locations and travel sequences from GPS trajectories. InWWW. 791–800.

 Session 5A: Location & Trajectory SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

554

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Problem Statement
	3.2 Modeling Route Diversity Requirement
	3.3 Framework Overview

	4 Indexing
	4.1 Offline Index Building
	4.2 Online Sub-index Retrieval

	5 Optimal Routes Search
	5.1 Prefix-based Compact State Growth
	5.2 Cost-based Pruning Strategy
	5.3 Gain-based Pruning Strategy
	5.4 Algorithm
	5.5 Complexity Analysis

	6 Heuristic Solutions
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Performance Study
	7.3 Comparison with A*

	8 Conclusion
	References

