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Trip Recommendation Meets Real-World Constraints: POI Availability,
Diversity, and Traveling Time Uncertainty

CHENYI ZHANG∗, HONGWEI LIANG∗, and KE WANG, Simon Fraser University

As location-based social network (LBSN) services become increasingly popular, trip recommendation that
recommends a sequence of points of interest (POIs) to visit for a user emerges as one of many important
applications of LBSNs. Personalized trip recommendation tailors to users’ specific tastes by learning from
past check-in behaviors of users and their peers. Finding the optimal trip that maximizes user’s experiences
for a given time budget constraint is an NP-hard problem and previous solutions do not consider three
practical and important constraints. One constraint is POI availability, where a POI may be only available
during a certain time window. Another constraint is uncertain traveling time, where the traveling time
between two POIs is uncertain. In addition, the diversity of the POIs included in the trip plays an important
role in user’s final adoptions. This work presents efficient solutions to personalized trip recommendation by
incorporating these constraints and leveraging them to prune the search space. We evaluated the efficiency
and effectiveness of our solutions on real-life LBSN datasets.
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1. INTRODUCTION

With the emerging development of location-based social network (LBSN) services such
as Yelp and Foursquare, users are able to “check in” at a certain point of interest (POI),
such as restaurant/museum/park, via their mobile devices. A user may rate and make
comments after visiting a POI and other users may consider those ratings and com-
ments to select the POIs for their visits at a later time. The availability of such rating
data and LBSN services open an array of new research problems in both academia and
industry, such as user behavior analysis, movement pattern study [Cheng et al. 2013;
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Fig. 1. Example of trip recommendation. Both the trips source → A → C → destination and source → A →
D → destination satisify the spatial and time constraints. However, if the user wants to visit at least two
categories of POIs, source → A → D → destination is feasible while source → A → C → destination cannot
meet user’s needs.

Leung et al. 2011], and various real-world applications [Cheng et al. 2011; Yuan et al.
2012; Zheng et al. 2011]. Among them, POI recommendation and trip recommendation
[Kurashima et al. 2010; Ye et al. 2010] are hot topics and require a location sensitive
solution. For example, recommending a highestrated Chinese restaurant in Beijing to
a user who is currently visiting New York City will fail, even if the user loves Chi-
nese food. Recommending a nearby Chinese restaurant with a reasonable rating score
makes more sense in this case.

In this article, we focus on the personalized trip recommendation problem. In this
problem, a user travels to a new region (e.g., on a business trip to a new city) and wants
to visit several POIs within a limited amount of time. The goal is to recommend a
trip route visiting several POIs according to not only the temporal-spatial constraints
(more details shortly), but also the user specific preferences on POIs.

1.1. Motivation

The trip recommendation is not trivial because of the following challenges:

—(Personalization) First, while a user has its own interests, explicitly soliciting this
information does not work in large scale applications because the user often does
not know what POIs are available and where they are. Modeling user preferences
by learning from historical rating and check-in behaviors of users and their peers to
predict the user’s preferences on unvisited POIs would be a preferred solution.

—(Order and spatial constraints of POIs) Second, the traditional POI recommendation
recommends individual POIs with highest scores. Such POIs may not form a feasible
trip due to the spatial and time constraints. For example, as illustrated in Figure 1,
though A (a national park) and B (a famous restaurant) have the highest scores indi-
vidually, it is not feasible to visit both A and B, and end at the specified destination,
due to the user’s time constraint and the long travel distance between the two. In
this case, recommending A and C (another park) is likely more suitable, even if C
may have a slightly lower score than B.

—(POI availability and uncertain traveling time) Third, the traditional trip recom-
mendation assumes that POIs are always available any time and the traveling time
between two POIs are known in advance; but in practice, a POI may be available
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only at certain times (say, due to opening hours and closing hours) and traveling
time is uncertain due to traffic conditions at the time of travel. As a result, whether
a POI can be visited will depend on its available time and predictability of the time
traveling to the POI. If the timeliness of finishing the trip is important to the user, a
trip with a more predictable traveling time would be preferred. For example, the user
may give up one more POI to visit in order to ensure a high probability of visiting
another more preferred POI or arriving at the specified destination on time.

—(POI diversity) Fourth, the diversity of POIs included in a trip also affects user
satisfaction since users are usually interested in different types of attractions or
expect a variety of activities such that they want to explore multiple categories of
POIs during the trip; otherwise, a trip consisting of too few (even single) categories of
POIs is boring. The category of POIs could be museum, park, shop, restaurant, and so
on. For example, if the user wants to visit at least two categories of POIs, in the case
of Figure 1, the trip with the green line cannot meet the user’s needs, while the trip
with the red line is feasible. Similar arguments are also suggested by a few previous
works, such as Ardissono et al. [2003] and Gionis et al. [2014]. However, they either
expect the user to manually select a POI from each desired category or assume a fixed
order on the categories of POIs, of which the restrictions are too strong. Specifying a
minimum number instead of (a fixed order of) exact POI categories is more practical.
One important fact is that users often do not have an idea about which categories
of POIs to visit before departure. Besides, specifying exact categories does not allow
surprise. Actually, specifying exact POI categories is even simpler. The reason is that
the user knows the exact categories of POIs to visit in advance so that we can simply
filter the POIs belonging to the undesired categories in a pre-processing step and
then recommend a trip using the remaining POIs.

—(Large search space) Finally, the POI availability and uncertain traveling time imply
each order of visiting a set of POIs may have a different consequence; thus, a brute-
force search of all candidate trips is prohibitive. For example, with 150 POIs in total,
the number of trips that consist of 5 POIs can reach billions (i.e., 150!). Most of these
candidate trips do not follow the POI availability or match user’s preferences, or
cannot be finished within a given time limit. A strategy that prunes such infeasible
and non-optimal trips based on user preferences, POI availability, and traveling time
uncertainty is essential for scaling a solution to large applications.

Trip recommendation has been studied recently. Liu et al. [2011] analyzed the char-
acteristics of travel packages and proposed a graphical model to extract the topics
conditioned on tourists, areas, and travel seasons for personalized travel package rec-
ommendation. Chen et al. [2013] developed a Bayesian learning model to extract travel
paths from photos and conducted personalized travel recommendations according to
user-specific profiles. All these works, however, adopt probabilistic models to generate
a possible travel package or path but do not consider the objective function to maximize
the user’s happiness under the trip and other constraints.

The recent work [Gionis et al. 2014] formulated the trip recommendation as a con-
strained objective function and presented a dynamic programming solution. Their as-
sumption is that POIs can be grouped into several categories and the user knows the
order of visiting POI categories and likes to visit POIs of each category exactly once
in a pre-determined order. The restriction of visiting each category exactly once in a
pre-determined order significantly reduces the search space. For example, for 150 POIs
falling into five categories equally, the original 150! possible routes are reduced to 305

if the order is fixed. In real world applications, however, the user may not provide this
order either because she does not care about the order or because she is concerned that
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such a fixed order may restrict her options. In addition, their work does not consider
the POI availability and the uncertainty of traveling time.

A detailed review of related work is presented in Section 8.

1.2. Contributions

In this article, we address the trip recommendation by taking into account the following
information and constraints: (1) the user’s personalized preferences on POIs; (2) the
user’s time budget that constrains the total traveling and visiting time; (3) the time
window for the POI availability; (4) the uncertainty of traveling time between POIs;
and (5) the diversity of POIs that constrains the minimum number of POI categories.
We formulate the above requirements in our TripRec problem. The goal of the problem
is to find an optimal trip that maximizes user happiness under the constraints that all
the POIs in the trip can be visited and the trip can be completed within the user time
budget with a probability no less than a user specified threshold; moreover, the trip
covers a user-specified minimum number of POI categories. This problem is NP-hard,
as it is a special case of either the Knapsack problem [Kellerer et al. 2004] or the
Orienteering problem [Vansteenwegen et al. 2011].

We solve this problem by using the information and constraints in (1)–(5) to prune
unpromising candidate trips. Our algorithm has an offline step and an online step. In
the offline step, we apply collaborative filtering to items with features to estimate user’s
preferences on unvisited POIs based on available check-in data. This step is performed
only once as it applies to all users. In the online step where the user’s time budget
constraint and start/destination locations are provided, we search for the optimal trip
route under the various constraints discussed above. We present two optimal solutions
that guarantee to find the optimal trip if it exists. One is based on a state expansion
approach and one is based on a prefix-based depth-first search (PDFS) strategy. We
also present two heuristic solutions that find “good trips” with a significantly better
runtime than the optimal solutions. We evaluated all solutions on two real-life LBSN
datasets, Yelp and Foursquare, and demonstrated the superiority over previous trip
recommendation algorithms.

1.3. The Road Map

The rest of the article is organized as follows: Section 2 defines the problem. Section 3.1
presents the personalized rating estimation for POIs, which corresponds to the offline
step, and Section 3.2–3.4 presents our modeling of POI availability, uncertain traveling
time, and diversity of POIs. These are the key factors that distinguish our modeling
of trip recommendation from previous ones. Section 4 presents the optimal solution
based on the state expansion approach, and the state relaxing strategy which sacrifices
optimality for efficiency. Section 5 introduces the second optimal solution based on
the PDFS strategy. We present an efficient heuristic solution in Section 6. Section 7
presents experimental evaluation of all solutions. Section 8 presents a review of related
works. Finally, we conclude the article with a discussion on extension to other scenarios
of trip recommendation.

2. PRELIMINARY

This section describes our data model and the trip recommendation problem. We begin
by summarizing the main notations and their corresponding interpretations to be used
throughout the article in Table I for easy reference.

2.1. Data Model

POI map: We assume that there are n POIs in a directed graph G = (V, E). V =
{1, . . . , n} is a set of POIs. Each POI i ∈ V is associated with the following information:
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Table I. Frequently Used Notations

Notation Gloss
G = (V, E) POI map G with POI set V and edge set E

mi touring time for POI i
[Oi, Ci] opening and closing time for POI i

ti j traveling time from POI i to j
rui or r∗

ui observed rating or estimated rating of user u for POI i
P a trip route

x, y source and destination location of a trip
T0 departure time of a trip
b time budget of a trip

F(P, u) score of a trip route P for user u
ψ(P) completion probability of trip route P

θ completion probability threshold
πi expected starting time of visiting POI i

Sat(i, j, πi) a function to check the accessibility of j followed by visiting i
φi category of POI i
β POI diversity threshold

a touring time mi, indicating the typical or average staying time for users, and opening
hours [Oi, Ci], indicating that i opens at time Oi and closes at time Ci. Each edge eij ∈ E
represents the route from i to j, where i, j ∈ V , and associates with a traveling time
E[tij], where tij follows a distribution with probability density function fij(·) and E[tij]
is its expectation. We assume that these functions fij(·) are given and that traveling
times for different routes eij are independent.

Rating matrix: We consider a set of users where a user u may rate a POI i after
visiting i. A rating matrix R contains all observed ratings rui. The rating matrix is
usually extremely sparse with most entries undefined, since a user may only rate a few
POIs. Besides, a user u could leave comments on POI i when rating i, represented by
a bag of words Bui (If a user u does not rate a POI i, Bui = ∅). The “content” of POI i
is defined as Bi = ⋃

u Bui. Based on the matrix R and comments, we could estimate a
user u’s rating for an unvisited POI j, denoted as r∗

uj .
A trip route: For a specified source location x and a destination location y, and a

departure time T0, where x and y are not necessarily distinct, a trip route has the
form x → · · · i · · · → y, that starts from x at the time T0, visits each POI i listed in
the route in order, and ends at y. We set r∗

ux = r∗
uy = 0, mx = my = 0, Ox = Oy = T0,

Cx = Cy = +∞. Such settings ensure that visiting x and y does not cost time because
they serve only as the departure and destination locations for a trip. The score of a trip
route P for a user u is defined by an additive function F(P, u) = ∑

i∈P r∗
ui. This function

simply sums up the estimated ratings r∗
ui for all POIs in the route, which models the

happiness of u with respect to the route P.
Constraints on a trip route: We have four types of constraints on a trip route.

—POI availability constraint: a user is considered to “visit” a POI i only if the user
spends mi time at i during the opening hours [Oi, Ci]. Therefore, if a user arrives at
i before Oi, she has to wait until the opening hour, and the user should arrive at i no
later than Ci − mi to gain the happiness score. We do not consider “passing by” an
intermediate POI i in order to visit the next POI as visiting the POI because it does
not need to spend mi time at i. For this reason, a trip route visits each POI at most
once, and all POIs that are passed by but not visited will not be included in a trip
route.
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—Time budget constraint: the whole trip is completed within a period of time b, includ-
ing traveling time E[tij] between POIs and touring time mi at POIs.

—Completion probability constraint: the probability that a trip finishes at the destina-
tion y by the time T0 + b is not less than a user-specified threshold θ ∈ [0, 1).

—POI diversity constraint: an integer specifies that the user wishes to visit at least β
different categories of POIs in a trip for touring diversity. Note that the threshold β
controls the minimum number of POI categories, not the minimum number of POIs.
As is discussed in the fourth point of Section 1.1, this diversity constraint is a more
general setting than specifying exact POI categories.

2.2. Problem Definition

PROBLEM 1. [TripRec] Given a POI map with graph G = (V, E), user u with the source
x and the destination y, a departure time T0, a time budget b, a completion probability
threshold θ ∈ [0, 1), and a diversity constraint β, we want to find an optimal trip route
P that maximizes user happiness F(P, u) under the following constraints: (1) it starts
at location x and ends at location y; (2) it satisfies the POI availability constraint; (3) it
completes within the time budget; (4) it satisfies the completion probability constraint;
and (5) it satisfies the POI diversity constraint.

We show the following simplified decision version of the TripRec problem, by ignoring
the touring time, the POI availability constraint, the uncertain traveling time, the
completion probability constraint and the POI diversity constraint, is NP-complete. In
particular, we assume that T0 = 0, mi = 0, [Oi, Ci] = [0,∞], r∗

ui = 1 for all POIs i ∈ V
(except the source and destination), x = y, the traveling time tij is a fixed constant, the
completion probability threshold θ = 0, and the diversity threshold β = 1.

The simplified decision TripRec problem is: Given a POI map with graph G = (V, E),
a user u with the source and destination x, and a time budget b, the task is to decide
whether there is any trip route P such that F(P, u) ≥ B and the trip is completed
within a period of time b.

THEOREM 1. The simplified decision version of the TripRec problem is NP-complete.

PROOF. First, we show that the simplified decision TripRec is in NP. This is so because
given a trip P, we can verify in polynomial time whether F(P, u) ≥ B and the trip is
completed within a period of time b.

Then, we show that the simplified decision TripRec is NP-hard. For this, we reduce the
decision version of the traveling salesman problem (TSP) [Applegate et al. 2007], which
is known to be NP-hard, to the simplified decision version of TripRec. The instance of
the decision TSP is as follows: Given an input graph G = (V, E), consisting of n cities
and edges with the weights representing the distance between cities, a distance bound
Dmax and the origin city x, the task is to decide whether there exists any route with
length no longer than Dmax that visits each city exactly once and returns to the origin
city.

For an instance of the decision TSP, we can create an instance of the simplified
decision TripRec: the graph G is the same as for the decision TSP. Let the traveling
time tij be equal to the weight on the edge from i to j, and let b = Dmax and B = n.

If the decision TSP is a “yes” instance, the user has a tour of the n cities with
length no more than Dmax. Since Dmax = b and B = n, this tour is a “yes” instance
of the corresponding simplified decision TripRec because F(P, u) ≥ B and the tour is
completed within a period of time b.

On the other hand, if the simplified decision TripRec instance is a “yes” instance,
there is a trip route P such that F(P, u) ≥ B and the trip is completed within the time
budget b. Since B = n and b = Dmax, these constraints imply that the trip must visit
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each city at least once and the total length is no more than Dmax. Since a trip does not
visit a node more than once, this trip visits each city exactly once. Thus, the instance
of decision TSP must be a “yes” instance.

Since the simplified decision TripRec is NP-complete, the optimization TripRec prob-
lem is at least NP-hard.

In the rest of the article, we first model the user’s personalized preferences and the
trip constraints; then, we present several approaches to search the optimal trip route
according to the estimated preferences for TripRec.

3. MODELING PREFERENCES AND CONSTRAINTS

In this section, we discuss our modeling of user preference and trip constraints.

3.1. Estimating User Preferences

Most existing POI recommendation methods either consider no content information of
POIs or treat content information as side information (more discussion in Section 8).
We believe that content information of POIs should play a more central role in user
preference in that a user likes a POI because of certain features of the POI. To this end,
we adopt the feature-centric collaborative filtering proposed in Zhang et al. [2015b].
Unlike the traditional collaborative filtering on POIs, this approach performs collabo-
rative filtering on the features of POIs and determines the rating on a POI using the
predicted ratings on the features of the POI.

First, we transform the original user-POI rating matrix R into a user-feature matrix
R′, where each row represents a user u and each column represents a feature f in

⋃
i Bi

for POIs i. We assume that the user may select some features of the POI when she
rates it. If the user rates the POI j but does not specifically select any feature of j, it is
assumed that all features of j are selected by default. An entry (u, f ) in R′ stores the
aggregated rating on the feature f over the POIs i such that Bi contains f and i and
are rated by u:

guf = agg({rui| f ∈ Bui and rui is defined}). (1)

In this work, agg(X) returns the average of the values in X, but other aggregation
operations are possible. agg(X) is undefined if X is empty.

Then, we apply matrix factorization [Koren et al. 2009] to R′ to extract the latent
user vectors pu for users u and the latent feature vectors qf for features f . The goal is to
minimize the regularized squared error loss between the rating guf and the predicted
rating pT

u qf :

� =1
2

∑
u, f

Iuf
(
guf − pT

u qf
)2 + αp

2

∑
u

‖pu‖2 + αq

2

∑
f

‖qf ‖2
, (2)

where αp and αq are regularization parameters; Iuf is a binary indicator that is equal
to 1 if guf is defined, and equal to 0 otherwise. Taking the gradient of E respectively to
the variables pu and qf , we get

∂�

∂pu
= αp pu −

∑
f

(
guf − pT

u qf
)
qf (3)

∂�

∂qf
= αqqf −

∑
i

(
guf − pT

u qf
)
pu. (4)

A local minimum of E is found by iteratively updating each variable with a step
proportional to the negative of the gradient based on the recent values with the
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learning rate η:

pκ+1
u = pκ

u − η
∂�

∂pκ
u
, qκ+1

f = qκ
f − η

∂�

∂qκ
f
. (5)

This iterative process stops until convergence. The outcome is the latent user vectors pu
for all users u and the latent feature vectors qf for all features f . The predicted rating
of a user u on a feature f is given by the inner product pT

u qf . To predict the rating of
user i on a POI i, we aggregate the predicted ratings pT

u qf over all the features f in Bi:

r∗
ui = agg

({
pT

u qf | f ∈ Bi
})

. (6)

We will use r∗
ui as the estimated rating of a user u on a POI i. Thus, if the user is

estimated to highly rate most features of a POI, the user is estimated to highly rate
the POI. Note that the estimation of user ratings is performed offline and only once.

3.2. Testing Time Constraints

We first assume the traveling time tij between two POIs is deterministic. Note that there
may be no direct edge between two POIs in the graph. To obtain any tij in advance, we
use any existing shortest-path algorithm, such as the Floyd-Warshal algorithm [Floyd
1962], to compute the pair-wise traveling time in a pre-processing step. This is a one-
time computation and the results are stored for further usage. It deals with general
graphing; even the triangle inequality is not enforced on the graph.

The basic idea of trip planning is to extend the route P gradually. Suppose that i
is the last POI of P, which satisfies the time budget and POI availability constraints,
and πi is the starting time of visiting i. We may extend the route by adding a new
POI j after visiting i. We use the Sat function to test if the POI availability and the
time budget constraints are satisfied after the extension. Sat(i, j, πi) returns true if
π j + mj ≤ Cj and π j + mj + tjy ≤ T0 + b, where π j = max{πi + mi + tij, Oj} indicates the
starting time of visiting j. This testing ensures that the user can get the full service at
the POI j and still reach the destination y within the time budget.

3.3. Modeling Uncertain Traveling Time

The above assumes that traveling time tij for a sub-route i → j is deterministic.
However, even the traveling time can be estimated from historical data and external
resources [Qu et al. 2014]; the real traveling time remains uncertain due to many
uncertain factors that could affect the traffic. To model this uncertainty, we shall treat
the traveling time tij as a random variable following a certain distribution with the
probability density function fij(·). Let E[tij] denote the expectation of tij . In this case, the
best one can guarantee is that the probability that a tripP can be finished within a given
time budget b is above some specified threshold θ . This probability, called completion
probability, is denoted by ψ(P) so that ψ(P) ≥ θ . Note that the pre-processing step of
computing the shortest paths, as in Section 3.2, is also required, where E[tij] is the
weight of each edge of the graph.

We can modify the above constraint testing function Sat for uncertain traveling time
as follows. Sat(i, j, πi) returns true if π j + mj ≤ C j , π j + mj + E[tjy] ≤ T0 + b, and
ψ(P) ≥ θ , where π j = max{πi + mi + E[tij], Oj} indicates the expected starting time of
visiting j.

Let us derive ψ(P) for a route P. Considering a sub-route i → j, we assume that the
probability density function fij(·) is known. For simplicity, we also assume that tij is
independent for different pairs (i, j). Let χ denote the traveling time of the sub-route.
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The probability of the traveling time less than t is given as follows:

P(χ < t) =
∫ t

0
fij(δ)dδ. (7)

Suppose that we extend i → j by a POI k, the probability of traveling time of i → j → k
less than t is given by the multiple integral:

P(χ < t) =
∫∫

D
fij(δ) f jk(γ )dδdγ, (8)

where the domain D = {(δ, γ ) ∈ R
2
>0 : 0 < δ + γ < t} and R>0 means positive real

number. In general, for any route P : i → j · · · j ′ → k with c sub-routes, the probability
of the total traveling time χ less than t is estimated by

P(χ < t) =
∫∫

· · ·
∫

D
fij(δ1) · · · f j ′k(δc)dδ1d · · · dδc, (9)

where D = {(δ1, . . . , δc) ∈ R
c
>0 : 0 < δ1 + · · · + δc < t}. This probability can be computed,

given all the probability density functions fij · · · f j ′k.

THEOREM 2 (COMPLETION PROBABILITY-BASED PRUNING). Let χ be the total traveling time
of a route P : i → · · · → j and let χ ′ be the total traveling time of another route
P ′ : i → · · · j → k obtained by adding a new POI k to the route P. Assume that both
routes start at i at the same time. P(χ ′ < t) ≤ P(χ < t).

PROOF. For simplicity, we consider a route i → j and the extension i → j → k,
but the proof for the general case is similar. Due to the independence of travel-
ing time at different sub-routes, P(χ ′ < t) = ∫∫

D fij(δ) f jk(γ )dδdγ , so P(χ ′ < t) =∫ t
0 fij(δ)

∫ t−δ

0 f jk(γ )dγ dδ ≤ ∫ t
0 fij(δ) · 1dδ = P(χ < t).

In other words, the probability of finishing a route within the time budget is never
increased by extending the route with one more POI at the end. This is because adding
a POI at the end of a route does not affect the traveling time between the previous POIs
of the route, but reduces the chance of completing the route within the time budget
due to the additional time of traveling to and visiting the new POI. We shall use this
property to prune the trips that have their completion probability below the specified
threshold θ .

Various studies and methods have been proposed to estimate travel time distribu-
tions in the literature. See Guessous et al. [2014] for a comparison of these methods.
Our method does not depend on the choices of such distribution, provided that the
probability P(χ < t) can be computed for a route P. For concreteness, we adopt the log-
normal distribution in Westgate et al. [2013]. The traveling time tz on the zth sub-route
in a route independently follows the log-normal distribution with parameter μz, σz,
that is, tz ∼ LN (μz, σ

2
z ). The expected traveling time E[tz] is given by exp(μz + σ 2

z /2).
The total traveling time χ of a route P made of multiple sub-routes is the sum of
the traveling time tz of each sub-route, i.e., χ = ∑

z tz. According to Marlow [1967], χ

can be approximated by another log-normal distribution LN (μχ, σ 2
χ ) with the following

parameters:

σ 2
χ = log

(∑
e2μz+σ 2

z (eσ 2
z − 1)(∑

eμz+σ 2
z /2

)2 + 1

)

μχ = log
(∑

eμz+σ 2
z /2

)
− σ 2

χ

2

. (10)
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With this distribution for the total traveling time χ , the probability of completing
a trip P is ψ(P) = P(χ < t), where t is the time available for traveling, that is,
t = b − ∑

mj . For the log-normal distribution,

P(χ < t) = 1
2

[
1 + erf

(
ln t − μχ

σχ

√
2

)]
, (11)

where erf(t) = 2√
π

∫ t
0 e−δ2

dδ [Westgate et al. 2013].
Note that the estimation of the probability of completing a trip, P(χ < t), is not costly.

Because we assume the parameters μz and σz of the distribution for tz are given, the
estimation of the parameters μχ and σχ of the other distribution for χ , in Equation (10),
takes no time. Then, with the result of μχ and σχ , the computation of Equation (11)
takes no time.

3.4. Modeling POI Categories

In some scenarios, each POI has an explicit category. For example, some tourism web-
sites may categorize POIs into different classes. We can simply apply this category
information. However, in most cases, these explicit categories are not available, there-
fore, requiring us to infer the category information from the contend description of each
POI. Let’s first discuss how the POI categories are inferred.

We classify the POI categories by Latent Dirichlet Allocation (LDA) [Blei et al. 2003],
a basic topic modeling method. The intuition behind LDA is that documents exhibit
multiple topics which are represented by distributions over words. Since each POI
i associates with a bag of words Wi, we can directly adopt LDA to infer the topic
distribution θi for each POI i. Refer to Blei et al. [2003] for more details.

θi is a probabilistic mixture of latent topics and each dimension θi(z) represents the
probability for a certain topic z. Then, the category of POI i, denoted as φi, is defined
as follows:

φi = arg max
z

{θi(z)}. (12)

The POI diversity constraint requires that a feasible route P consists of at least β
categories of POIs. Namely, |⋃i∈P φi| ≥ β. When β = 1, every route always satisfies the
diversity constraint.

4. STATE EXPANSION

In this section, we present a state expansion algorithm that guarantees to find an
optimal route, if it exists. The idea is to consider each partially generated route as a
state associated with some ending POI i, representing a trip route x → · · · → i → y
that has i as the ending POI before reaching the specified destination y. Each state is
labeled by s = (K, H, Z, T , ρ, i), where K is the set of POIs already visited, excluding
x and y, H is the overall happiness collected (i.e., F(K, u)), Z is the set of categories
covered by the POIs in K, T is the starting time of visiting at i (i.e., πi), ρ is the current
route x → · · · → i (without the sub-route i → y), and i is the ending POI. These
parameters are denoted as sK, sH , sZ sT , sρ , and si, respectively. Initially, there is only
one state s0 = (∅, 0,∅, T0, x, x), representing the trip route x → y.

At the κth iteration (κ > 0), the state expansion algorithm extends each state of
size κ − 1 into a new state of size κ by adding a new POI. Specifically, a state s =
(K, H, Z, T , ρ, i) is extended into a new state s′ associated with POI j ∈ sK ∪ {x, y}
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according to the following rules:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s′
K = sK ∪ { j}

s′
H = sH + r∗

uj

s′
Z = sZ ∪ {φ j}

s′
T = max{sT + mi + E[tij], Oj}

s′
ρ = sρ → j

. (13)

A new state s′ is feasible if Sat(i, j, sT ) returns true. Intuitively, this means that the
partial route of the state can be extended to j and then finished at the destination y
within the time budget with the completion probability no less than the threshold θ .

4.1. Dominance of States

It is possible that the same ending POI si could be reached by different states s of the
same POIs sK, corresponding to different visiting orders. Not all such states need to be
maintained because some do not lead to the optimal solution.

We say that a state s dominates a state s′ if

(si = s′
i) ∧ (sK = s′

K) ∧ (sT ≤ s′
T ) ∧ (ψ(s̄ρ) ≥ ψ(s̄′

ρ)), (14)

where ·̄ forms the complete trip by adding y into the route, say ρ̄ = ρ → y. Note that
sK = s′

K implies sH = s′
H and sZ = s′

Z, i.e., s and s′ give the same user happiness and
set of categories. Intuitively, s dominates s′ if all of the following conditions hold: the
two states s and s′ represent two routes ρ → y and ρ ′ → y containing the same set
of POIs, the starting visit time of i in s is no later than that in s′, and the completion
probability of s is no less than that of s′. Please note that the dominance applies also for
the case of a “tight”, i.e., all the terms in Equation (14) are equations. Thus, in the case
of a “tight,” the later extended state dominates an earlier extended one. We assume
that the procedure Check tests the dominance: Check(s, s′) returns true if s dominates
s′ (i.e., Equation (14)) and false, otherwise.

LEMMA 1. If a state s dominates a state s′ and let se and s′
e denote the states obtained

from extending s and s′ with a new POI j at the end, respectively, then se dominates s′
e.

PROOF. Suppose that s and s′ represent the routes ρ → y and ρ ′ → y. Then, se and
s′
e represent the routes ρ → j → y and ρ ′ → j → y. It is easy to see that the first

three conditions in Equation (14) remain true for se and s′
e. To see the last condition,

since s dominates s′, both ρ and ρ ′ have the same ending POI i. If we regard i as the
new source of the following identical trip i → j → y for both se and s′

e, the completion
probability of this trip in se is no less than that in s′

e because it starts earlier in se.
Combined with the previous trip ρ and ρ ′, this condition still holds.

By repeatedly applying Lemma 1, we have the next theorem.

THEOREM 3 (DOMINANCE-BASED PRUNING). Assume that a state s dominates a state s′.
If s′ can be extended into an optimal trip by a sequence of POIs, so is s by the same
sequence of POIs.

From the above theorem, it suffices to consider only non-dominated states. We will
use this property to remove all dominated states without affecting optimality. Note
that it’s possible that there are more than one optimal solutions.

4.2. Algorithm

Algorithm 1 summarizes the state expansion for TripRec. Starting at the initial state
S = {s0}, the algorithm extends the current set of states, S, by adding one new POI
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at the end of a route in S. If the states in S have the size κ, the new states in S′
have the size κ + 1. The two for loops extend each state in S with an unvisited POI
and only feasible states are kept. Meanwhile, Line 9–10 conducts the dominance
test and removes dominated states. Line 12–13 records the optimal route with the
maximal user happiness, and the optimal route must fulfil the diversity threshold β.
The time complexity of Algorithm 1 is O(n22n), which is exponential but much faster
than the brute-force search O(n!). However, due to the time budget and POI availability
constraints, each trip typically consists of only a small fraction of all POIs. If the
maximum number of POIs in a trip is τ , where τ � n, 2n is replaced with C(n, τ ) in the
above complexity. The diversity constraint β is one of the necessary conditions used to
check whether a trip is considered to be optimal. If β is not checked while the trips are
constructed, we need to first keep any trips who meet the other constraints and rank
them in descending order as the overall happiness, and then check the satisfaction of
diversity constraint for each kept trip from the top ranked to the bottom ranked in an
additional post-processing phase until one trip meeting constraint β is found. In this
case, unknown numbers of trips (could be very large) need to be maintained during
constructing the trips, which is a huge overhead.

ALGORITHM 1: State Expansion
input: POI map G, user u’s specific preferences r∗

ui for each POI i, departure time T0, time
budget b, diversity threshold β

output: optimal TripRec trip route, P
1 s0 ← (∅, 0, ∅, T0, x, x), s∗ ← s0;
2 S ← {s0}, S′ ← ∅;
3 while S = ∅ do
4 for s ∈ S do
5 for j ∈ V \sK do
6 if Sat(i, j, sT ) then // i ≡ si
7 s′

T ← max{sT + mi + E[tij], Oj};
8 s′ ← (sK ∪ { j}, sH + r∗

uj, sZ ∪ {φ j}, s′
T , sρ → j, j);

9 if ∃s′′ ∈ S′ : Check(s′, s′′)=true then
10 remove s′′ from S′;

11 add s′ to S′;
12 if s′

H > s∗
H and |s′

Z| ≥ β then
13 s∗ ← s′;

14 S ← S′, S′ ← ∅;

15 return s∗
ρ → y as P

4.3. State Relaxing

The above dominance-based pruning applies only to two states that have exactly the
same set of POIs, i.e., sK = s′

K. If we are willing to sacrifice optimality for efficiency,
it is possible to have a more aggressive pruning by replacing the condition sK = s′

K
with |sK| = |s′

K| (i.e., visiting the same number of POIs), sH ≥ s′
H and sZ ≥ s′

Z (i.e.,
s representing a more preferred route than s′). So, the dominance test condition in
Equation (14) is relaxed into

(si = s′
i) ∧ (|sK| = |s′

K|) ∧ (sH ≥ s′
H) ∧ (sZ ≥ s′

Z) ∧ (sT ≤ s′
T ) ∧ (ψ(s̄ρ) ≥ ψ(s̄′

ρ)). (15)

Intuitively, with this relaxed dominance relationship, the route for s takes less time,
generates a higher happiness, and covers more POI categories than the route for s′,
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Fig. 2. Prefix-based depth-first enumeration tree.

while reaching the same ending POI i. In other words, the route represented by s
gives the user more happiness, more remaining time, and more diversity than the
route represented by s′, thus, is preferred. We call the pruning based on this relaxed
dominance relationship state relaxing. State relaxing applies to all states ending at the
same POI through visiting the same number of POIs, which significantly reduces the
size of the set of states S in Algorithm 1 as each ending POI may only be associated
with a few states. So, the time complexity is decreased from O(n22n) to O(cn2) for some
constant c.

However, due to the POI availability constraint, state relaxing loses the optimality,
in some cases. For example, suppose A → D → C dominates A → B → C according
to Equation (15) (we omit the source x and destination y for simplicity), so the former
is kept and the latter is eliminated. Now suppose that B only opens in the morning
and D is open until midnight. Then the route A → D → C → B may be infeasible
due to the late visit to B while the route A → B → C → D could be the optimal
solution, but it cannot be generated because A → B → C was pruned. Section 7 will
study experimentally the trade-off between efficiency and user happiness for the state
relaxing strategy.

5. PREFIX-BASED DEPTH-FIRST SEARCH

If the states of size κ are represented by the nodes at level κ in a tree structure (with
the root at level 0), Algorithm 1 generates the states in a breadth-first manner in that
the states at level κ are generated before any state at level κ +1 is generated. For loose
time budget and POI availability constraints, this approach may have to keep many
“open” states in memory (i.e., all states of the same size), which imposes a bottleneck
on the memory requirement.

5.1. Prefix-Based Depth-First Enumeration Tree

To address this limitation, we present a prefix-based depth-first enumeration of states
in which a tree structure representing the states is searched in the depth-first manner
so that only the current branch at any level is searched at any time. First, for the given
user u, we order all POIs i by the estimated rating r∗

ui. This order together with our
tree enumeration strategy below ensures that POIs with larger ratings are considered
before those with smaller ratings in the construction of a route. For presentation, we
consider V = {A, B, C, D, E} of five POIs, excluding the source x and destination y, and
we assume that these POIs are ordered in the descending order of estimated ratings
for u. The prefix of a POI i refers to the set of POIs that precede i in this order.

Figure 2 shows the tree structure for enumerating all the subsets of V with POIs
arranged in the above order. The nodes in the tree are generated from left to right in
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a specific depth-first order, as indicated by the numbers aside the nodes. Each node is
labeled by a set of visited POIs arranged in the above order, and the root is labeled by
the empty set ∅. Intuitively, a node with the label K represents all the non-dominated
feasible routes that visit exactly all the POIs in K. These routes are divided into |K|
groups according to each ending POI in K. To grow the tree, for a node v with a label
ending at a POI i, a child node is generated by appending some POI j that precedes
i in the above order to the front of the label of v. For example, Node 7 with the label
ABC is generated as a child node of Node 6 with label BC by appending A to the front
of BC.

Subset first property. An important property of the above depth-first enumeration
is that a label K is always enumerated before any of its supersets. For example, the
proper subsets of ABC are enumerated at Nodes 0–6 and ABC is enumerated at Node 7.
This property ensures that, when computing the feasible routes at the node for a label
K with the ending POI i, the feasible sub-routes visiting all the POIs in K\i have
already been computed at the node with the label K\i; so, we can retrieve the stored
information for such feasible sub-routes to construct the feasible routes at the node for
K by checking the time budget and POI availability constraints and pruning dominated
states.

For example, Node 15 with the label ABCD is a child node of Node 14 with the label
BCD. There are 4! possible routes at Node 15, but many can be pruned since they either
violate the time budget and POI availability constraints, which can be tested by the
procedure Sat, or are dominated by other routes, which can be tested by the procedure
Check. The feasible routes at Node 15 can be divided into four groups corresponding to
the ending POIs A, B, C, and D, respectively. The group for the ending POI A can be
constructed by retrieving the feasible sub-routes from the already computed Node 14
and appending A to the end by checking the constraints. With the dominance pruning
discussed in Section 4 (i.e., Equation (14)), only the non-dominated routes will be kept
for this group. The groups for the ending POIs B, C, D can be constructed similarly by
retrieving the feasible sub-routes from the nodes with the labels ACD, ABD, ABC, i.e.,
Node 13, Node 11, Node 7. Note that these nodes were already computed because their
labels are subsets of ABCD.

The next theorem lays the foundation for our prefix-based depth-first enumeration
algorithm for computing the optimal route.

THEOREM 4. (1) Every non-dominated feasible route stored at a node with the label K
and ending POI i must have a prefix that is a non-dominated feasible route stored at
the node with the label K\i. (2) The node with the label K\i is enumerated prior to the
node with the label K.

PROOF. (1) Consider a non-dominated feasible route at a node with the label K,
written as ρ ′ = ρ → i, where ρ is the prefix containing the POIs in K\i. From Theorem 2,
ρ must satisfy all the constraints, and from Theorem 3, it suffices to consider only non-
dominated feasible route ρ at the node with the label K\i. This proves Part (1). Part (2)
follows from our discussion on the prefix-based depth-first enumeration.

This prefix based depth-first search (PDFS) tree is somewhat inspired by the subset-
first depth-first (SFDF) tree in Liang et al. [2016], which is used to partition attributes
to generate group relationships. In addition to the difference of applications, one major
difference is that the PDFS tree is proposed to deal with trips consisting of POIs in
different orders; however, the SFDF tree deals with a partition of attributes and the
order does not matter. Besides, the ways of materializing each node and the pruning
methods used are completely different.
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ALGORITHM 2: PrefixDFS(U , K)
1 for j ∈ U in order do
2 U − ← prefix of j in U ;
3 K+ ← K ∪ { j};
4 if |K+| = 1 then
5 if Sat(x, j, T0) = true then
6 �[K+]H ← r∗

uj ;
7 �[K+]Z ← φ j ;
8 add (max{E[txj] + T0, Oj}, x → j, j) to �[K+]L;
9 PrefixDFS(U −,K+);

10 else
11 for k ∈ K+ do
12 K− ← K+\k;
13 if �[K−] is not empty then
14 find l = (T , ρ, i) in �[K−]L such that Sat(i, k, T ) = true and ρ → k is

non-dominated;
15 if l is found then
16 T ′ ← max{T + mi + E[tik], Ok}
17 if �[K−]H + r∗

uk > H and |�[K−]Z ∪ {φk}| ≥ β) then
18 update P and H;

19 �[K+]H ← �[K−]H + r∗
uk;

20 �[K+]Z ← �[K−]Z ∪ {φk};
21 add (T ′, ρ → k, k) to �[K+]L;

22 if �[K+] is not empty then
23 PrefixDFS(U −,K+);

5.2. Implementation

Based on the above discussions, we design a hash map � to store the computed results
for each node in the tree, whose key is the label K of the corresponding node, and whose
value, �[K], contains the information about the non-dominated feasible routes for the
node. �[K] has three components, H, Z and L. H is the total happiness for the POIs in
K, and Z is the set of categories covered by the POIs in K. L is a list (l1, l2, . . .), where
each entry l in L has the form (T , ρ, i) and represents a non-dominated feasible route
ρ for the node. i ∈ K is the ending POI of ρ, and T is the starting time of visiting i.
Essentially, �[K] is a compact representation of all the states that have the same POI
set K in Section 4. Let �[K]H , �[K]Z, and �[K]L denote the H, Z, and L components of
�[K].

We implement the above PDFS in Algorithm 2 as a recursive procedure
PrefixDFS(U, K) with a set U of ordered POIs and a node label K as the parame-
ters. Intuitively, PrefixDFS(U, K) enumerates the subtree at the node with the label
K and U is the set of POIs available for extending the label K within the subtree. The
inputs to the algorithm are the POI map G, the departure time T0, the time budget b,
the diversity threshold β, and user-specific preferences r∗

ui. The output is the optimal
route and its happiness, stored in the global variables P and H. The main algorithm is
the call PrefixDFS(V,∅) with the set of POIs V in the POI map G.

The algorithm extends the label K by each available POI j in U , creating the child
node with the label K+ = K ∪ { j} and U− being the prefix of j in U . If K is empty,
Line 4–9 adds the route x → j → y to the hash entry for K+ and recursively calls
PrefixDFS(U−, K+). If K is not empty, Lines 11–21 add all non-dominated feasible

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 5, Publication date: September 2016.



5:16 C. Zhang et al.

routes having the POI set K+ to the hash entry for K+. In particular, for each k ∈ K+,
Line 14 searches for the non-dominated feasible route for the POI set K+ and ending
at k. This route consists of a non-dominated feasible route l = (T , ρ, i) for the POI set
K− = K+\k and the ending POI k (Theorem 4) such that it satisfies all the constraints,
i.e., Sat(i, k, T ) = true, and the route ρ → k is non-dominated (by the conditions in
Equation (14)). From Theorem 4, all non-dominated feasible routes for K− are stored
at the node K− and were computed already. If there exists such an l, (T ′, ρ → k, k) for
the extended route ρ → k is added to �[K+]L. After considering every k ∈ K+, if �[K+]
is not empty, the algorithm calls PrefixDFS(U−, K+), recursively.

Note that the algorithm does not actually materialize the entire enumeration tree;
instead, it enumerates the nodes in the tree in the depth-first order. The result at each
node is stored in the hash map.

6. HEURISTIC APPROXIMATION

In this section, we propose a simple heuristic algorithm that is essentially linear in
the total number of POIs while maintaining the quality of the route. The idea is
intuitive: starting with the initial trip route x → y, we insert one POI at a time
between two adjacent POIs in the current trip route so that (i) the insertion preserves
the satisfaction of all the constraints and (ii) some score of the route is maximized
(to be discussed shortly). For example, inserting a POI A into x → y gives the route
x → A → y, then inserting a POI B before A gives x → B → A → y, and so on. Let us
first ignore the POI diversity constraint, since it is never violated by inserting a POI
into the current trip route. We will discuss whether this algorithm can deal with the
diversity constraint later. The procedure is illustrated in Algorithm 3. Each calling of
insert results in one additional POI in the route, until it is impossible to add any new
POI into the route without violating the constraints. To avoid the local optimum, we
generate some small numbers of routes (say 2–3) by applying this method to the set of
remaining POIs not contained in the previously generated routes, and we choose the
best route from all the routes generated. The time complexity of this algorithm is O(cn),
where n is the number of POI and c is a constant, because each insertion considers at
most n unvisited POIs. Note that the length of a route is usually small due to the time
budget and POI availability constraints.

ALGORITHM 3: Heuristic Approximation
input: POI map G, user u’s preferences r∗

ui for each POI i, departure time T0, time budget b
output: TripRec trip route, P

1 initialize the route ρ : x → y;
2 repeat
3 ρ ′ ← Insert(ρ);
4 ρ ← ρ ′

5 until no more POIs in V can be inserted;
6 P1 ← ρ;
7 remove the POIs in the route P1 from V ;
8 generate another route P2 by repeating Line 2–5;
9 if F(P1, u) > F(P2, u) then

10 P ← P1
11 else
12 P ← P2

A remaining issue is to check whether inserting a POI k between two adjacent POIs
i and j (i.e., the sub-route i → j already exists in the trip) preserves the satisfaction of

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 5, Publication date: September 2016.



Trip Recommendation Meets Real-World Constraints 5:17

the time budget constraint, the POI availability constraint and the completion proba-
bility constraint. We focus on the POI availability constraint because it is easy to check
the other two constraints. We assume λi j = 1, that is, a visit to POI i is followed by
a visit to POI j. Before the insertion of k, the arrival time at POI j, denoted by aj , is
computed by

aj = πi + mi + E[tij], (16)

where πi is the starting time of visiting at POI i. The wait time at POI j, w j , is computed
by

w j = max{0, Oj − aj}. (17)

The maximum allowed delay time at i to preserve the satisfaction of constraints, de-
noted by vi, is computed by

vi = min{Ci − πi − mi, w j + v j}, (18)

where Ci − πi − mi is the maximum allowed delay time to keep the visit to i available
(before it closes), and w j + v j is the maximum allowed delay time to keep the visit to j
available.

For example, if πi = 10am, Ci = 2pm, mi = 1h, the maximum allowed delay time for i
itself is 3h, i.e., the user can at most delay to arrive at 1pm. However, a delay at i may
affect the visit to the next POI j. If w j + v j = 2h, that is, the visit to j can be delayed
at most 2h, then the maximum allowed delay time at i is vi = min{3h, 2h} = 2h.

The insertion of k between i and j is possible only if the new route satisfies the
probability constraint according to Equation (11) and the extra time caused by the
insertion does not exceed the maximum allowed delay time at j, i.e., w j + v j . The extra
time εk for inserting POI k is given by

εk = E[tik] + wk + mk + E[tkj] − E[tij]. (19)

If εk ≤ w j + v j , k can be inserted between i and j and the insertion transforms i → j
into i → k → j, thus, λik = λkj = 1, λi j = 0.

To determine the score of the insertion of k, we calculate the ratio γk as follows:

γk = (r∗
uk)2/εk. (20)

This ratio measures the gain of happiness per unit of extra time of visiting k. The
square of r∗

uk places more emphasis on the rating. Since a smaller εk has less effect on
the feasibility of the whole route, the POI k with a larger ratio γk is preferred. We try
every adjacent (i, j) in the current route to find the best γk.

After each insertion, the arrival time, wait time, and maximum allowed delay time of
all affected POIs in the route should be updated according to Equations (16)–(18). For
example, if k is inserted to form a new route x → i1 → i2 · · · → k → j1 → j2 · · · → y, the
arrival time, the wait time, and the maximum allowed delay time of any POIs after k
( j1, j2, · · · ) should be updated, and the maximum allowed delay time of any POIs before
k (i1, i2, · · · ) should be updated. Moreover, the updates must follow the orders imposed
by the dependency in Equations (16) through (18). For example, Equation (18) requires
first updating a later POI before updating an early POI in a route.

Then, we discuss whether the heuristic approximation algorithm can deal with the
diversity constraint. The answer is no. In each iteration, the algorithm chooses a POI
to insert to maximize the ratio γk, as in Equation (20), while satisfying all the other
constraints. But this ratio is not conditioned on the POI categories. In some cases, the
POIs to be inserted (have the maximum value of γk) in each iteration belong to the
same category. As a result, the final recommended trip includes very few, even only one
category of POIs. This trip probably fails to satisfy the diversity constraint.
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7. EXPERIMENTS

This section presents the empirical evaluation of the proposed methods.

7.1. Experimental Setup

We adopt the Yelp1 and Foursquare2 datasets in our experiments. Both datasets were
previously used for recommendation evaluation in Hu and Ester [2013]. The Yelp
dataset contains 45,981 users; 229,906 ratings of 1–5 scales; 11,537 POIs; plus, text
reviews on POIs. We pre-processed the reviews by removing stop words and infrequent
words occurring in <100 reviews, and using the remaining 8,519 keywords as the
features. The feature set or content of a POI, Bi, consists of all keywords contained
in the reviews about the POI. The Foursquare dataset contains 20,784 users; 153,477
binary 0/1 ratings; 7,711 POIs; and user published tweets when checking-in at a POI.
We obtained 1,377 features after pre-processing the tweets.

For each POI i, the touring time mi is set to 1 hour and the opening hours were
generated from a Gaussian distribution, (Ci − Oi) ∼ N (μ, δ), with the mean μ =
5 hours and the standard error δ = 1. The open time Oi was generated using a uniform
distribution, Oi ∼ U(8, 12). We set the departure time T0 to 8am. The expected traveling
time E[tij] for a pair of POIs (i, j) is estimated using Google Maps3 with the driving
mode. We assume that Google Maps produces shortest paths between POIs; therefore,
the pre-processing step of computing the shortest paths, as stated in Section 3.2, is
unnecessary. All the experiments were run on a PC with 2.53GHz Quad-Core CPU and
12G memory.

7.2. Rating Accuracy of Individual POIs

First, we evaluate the first step of our approach, that is, the accuracy of estimated rat-
ings of POIs produced by the feature-centric collaborative filtering. For both datasets,
we keep 90% rating data for training to conduct matrix factorization and use the
remaining 10% rating data for testing the accuracy of estimated ratings. As in the
literature [Shani and Gunawardana 2011], we use the standard root mean squared
error (RMSE) and mean absolute error (MAE) as the accuracy metrics for POI recom-
mendation. These two metrics are defined as follows:

RMSE =
√√√√ 1

N

∑
u,i

(rui − r∗
ui)2 (21)

MAE = 1
N

∑
u,i

|rui − r∗
ui|, (22)

where rui is the true rating value, r∗
ui is the predicted rating value, and N is the number

of ratings in the testing set. The smaller these values are, the better the result is.
Many POI recommendation approaches are based on topic modeling; for example,

STM [Hu and Ester 2013] and LCA [Yin et al. 2013] predict the probability of visiting
a POI for which the error specific metrics, such as RMSE/MAE, are incomputable
because probabilities are not comparable with ratings. For this reason, we evaluate the
following methods.

Probabilistic matrix factorization (PMF): This is the classic matrix factorization
on the user-item rating utility matrix [Salakhutdinov and Mnih 2008] where POIs are

1http://www.yelp.com/dataset_challenge/.
2https://foursquare.com/.
3https://www.google.com/maps.
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Table II. RMSE and MAE. Lower Values are Better

Yelp Foursquare
Method RMSE MAE RMSE MAE

PMF 1.3169 1.0491 0.6197 0.5160
CTR 1.2850 1.0277 0.6000 0.5018
FCF 1.2152 0.9720 0.5154 0.4402

improvement of FCF over PMF 7.7% 7.3% 16.8% 14.7%
improvement of FCF over CTR 5.4% 5.4% 14.1% 12.2%

Table III. Paired t-Test (2-Tail) of FCF and Baselines

Yelp Foursquare
Method RMSE MAE RMSE MAE

FCF/PMF 7.4 × 10−6 4.2 × 10−6 6.7 × 10−7 2.1 × 10−6

FCF/CTR 1.1 × 10−5 1.2 × 10−5 2.0 × 10−6 3.8 × 10−6

treated as items. In PMF, matrix factorization is generalized as a probabilistic model
where a latent user vector pu ∼ N (0, α−1

p ID) and a latent item vector qi ∼ N (0, α−1
q ID).

The predicted user u’s rating on item i is given by r∗
ui = pT

u qi. We adopt the default
settings in Salakhutdinov and Mnih [2008] and set D = 10, the dimensionality of user
and item latent factors.

Collaborative topic regression (CTR): This is the matrix factorization with topic
modeling applied to the content of items described in Wang and Blei [2011]. For our
data sets, items are POIs and content of user reviews on POIs. LDA is employed on
POI i’s content to learn the latent topic vector θi, which is incorporated into the PMF
framework to confine the search of latent item vectors by setting qi ∼ N (θi, α

−1
q ID). We

adopt the default settings in Wang and Blei [2011] and set D = 10.
Feature centric collaborative filtering (FCF): This is the proposed algorithm in

Section 3.1. All the parameter settings are the same as in PMF.
Table II shows the results of accuracy of the above three methods. FCF achieves the

best performance and has a significant improvement in terms of RMSE/MAE on both
data sets. The improvement of FCF against any baseline on RMSE is measured by
the following equation (RMSE(baseline) − RMSE(FCF))/RMSE(baseline) ∗ 100%. The
improvement on MAE is computed in the same way. So, we believe that the estimated
rating by FCF is closer to the true rating.

t-Test. To further verify the statistical significance of the improvement introduced
by FCF, we conducted the paired t-Test (2-tail) on FCF and the two baselines. Table III
shows that all p-values in the t-Test results are less than 0.01, which suggests that the
improvement of FCF over PMF and CTR is statistically significant. In the rest of the
experiments, we study the performance of trip recommendations with the estimated
rating r∗

ui being generated by FCF.

7.3. The Fixed Traveling Time Model without Diversity Constraint

In this section, we evaluate the trip route P found by TripRec under the fixed traveling
time model without considering the diversity constraint, where the traveling time tij
for a pair of POIs i and j is fixed and the diversity threshold is set as a special case
β = 1. The reason we use this deterministic setting is that all the baselines consider
fixed traveling time and none of them has a constraint on the minimum number of
categories covered by the trip. In this deterministic setting, a feasible route always
satisfies the completion probability constraint and the diversity constraint. The model
for uncertain traveling time will be considered in Section 7.4, and the effect of diversity
constraint is shown in Section 7.5.

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 5, Publication date: September 2016.



5:20 C. Zhang et al.

We focus on three major cities for trip planning—Phoenix (PX) in Yelp, and New York
City (NY) and Los Angeles (LA) in Foursquare, and choose Central City, Central Park,
and Hollywood as both the source and the destination in these cities, respectively. For
each city, we randomly pick up 100 users from the testing data, and for each user,
we select the top n = 150 unvisited POIs, ranked by their estimated ratings, for trip
recommendation. This n is a suggested number in Basu Roy et al. [2011]. Even with
this restriction, the number of trips that consist of five POIs can reach billions, which
is certainly infeasible for a brute-force search. We compare the following methods in
terms of user happiness F(P, u) and runtime. All the methods adopt the personalized
estimated ratings for each POI, learned by FCF as input.

Greedy algorithm (Greedy): This is the greedy algorithm from the operation
research literature [Tsiligirides 1984], which iteratively picks up a POI j with the
highest ratio of r∗

j /tij , where i is the location selected at the last step. Note that we
have added the POI availability constraint, which is not considered by Tsiligirides
[1984].

Dynamic programming (DP): This is the dynamic programming approach pro-
posed in Gionis et al. [2014]. We adapt to the order constraint by setting a “global”
category to each POI and fix the visiting order that is from “global” category to “global”
category. However, by filling up a 2-dimensional array, the dynamic programming
[Gionis et al. 2014] still cannot deal with the POI availability constraint.

Heuristic approximation (HA): This is the heuristic algorithm proposed in Section
6. HA is designed for fast approximation and does not guarantee the optimality of
solution.

State expansion (SE): This is Algorithm 1 proposed in Section 4. Let SE-SR denote
SE with state relaxing. SE guarantees the optimality of solution, but SE-SR does not.

PDFS: This is Algorithm 2 in Section 5 that uses the prefix-based depth-first enu-
meration of POIs. PDFS guarantees the optimality of solution.

7.3.1. User Happiness. Let us recall that the happiness of user u with respect to route
P is defined as F(P, u) = ∑

i∈P r∗
ui, which sums up the estimated ratings r∗

ui for all POIs
in route P. Figure 3 (left column) presents the user happiness score of the trips found
by all methods, with y-axis being the happiness score averaged over all testing users
and x-axis being the time budget b of a trip (hours). Note that SE and PDFS generate
exactly the trips of the same happiness score, due to their optimality.

Overall, the number of POIs in the recommended route varies from three to seven
depending on the setting of the time budget b. As the time budget increases, the
happiness of users generally increases. PDFS/SE is the best performer, since they
guarantee the global optimum. Interestingly, SE-SR yields a nearly optimal solution
as the happiness is only slightly (<1%) lower than that of the optimal PDFS/SE. SE-SR
appears close to the optimal solutions because we select the top 150 POIs for each user
and the ratings on these 150 POIs likely have minor differences; therefore, in many
cases, the happiness for the trips consisting of the same number of POIs and the same
ending POI are close.

HA performs in the third place and there is an obvious gap between HA and the
best two. This is because HA only maintains one route during search, which makes it
easy to fall into a local optimum. We will further explain this in the case study below.
Greedy performs about 10% worse than HA, as its search strategy is rather simple.
DP performs poorly on on all the testing cities because it cannot deal with the POI
availability constraint. In fact, only partial happiness is gained for such routes that
some of the POIs are already closed when the user arrives, thus, leading to the low
happiness scores for many users. Meanwhile, DP cannot guarantee a better result for
a larger time budget.
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Fig. 3. The fixed traveling time model: (left) happiness of trip routes found (y-axis) vs. time budget (x-axis);
(right) average runtime (y-axis) vs. time budget (x-axis).

7.3.2. Runtime. Figure 3 (right column) presents the average runtime per user, with
y-axis being the runtime (seconds) and x-axis being the time budget of a trip b (hours).
HA and Greedy have a fast and stable runtime because both HA and Greedy only
maintain one route, but this feature also overlooks other possible combinations of
POIs, thus, hardly finding optimal solutions. SE suffers the out of memory problem
when the time budget is over 7 hours because there are too many “open” states in each
iteration, which exhausts the memory when the time budget is large. PDFS avoids this
problem by the prefix-based depth-first enumeration. Although it takes the longest
time at b = 5h, PDFS finds the optimal solution without having the steep increase of
runtime encountered by SE. SE-SR takes substantially less time than SE by trading
optimality for efficiency.
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Table IV. Pruning Power of the SE/PDFS Algorithms in Various Time
Budget Settings, the Numbers are the Percentage of the Pruned

States by the Algorithms

ι

b PX NY LA
5h 99.30% 99.29% 99.25%
6h 99.23% 99.26% 99.20%
7h 99.20% 99.22% 99.17%
8h 99.18% 99.21% 99.15%
9h 99.16% 99.19% 99.11%

Fig. 4. Case study of recommended trips for LA. The number in bracket is the happiness of the trip.

7.3.3. Pruning Power. The algorithms’ SE and PDFS apply the same pruning strategy,
i.e., dominance-based pruning as in Theorem 4, to reduce the potential state number
when computing the optimal trip. In this section, we investigate how powerful the
pruning strategy is. We take the SE algorithm as an example for illustration. Let Sall
denote all the states that can be enumerated using the POI set in each iteration, i.e.,
the enumeration space, and let Skept denote the set of the states that are feasible (by
checking whether the function Sat() returns true) and are non-dominated. Explicitly,
Sall represents the states enumerated by Line 3–Line 5 in Algorithm 1, and Skept
represents only the states that go deeper and pass the check of Line 9. Then, the
pruning power, ι, is defined as:

ι = |Sall| − |Skept|
|Sall| × 100%. (23)

Table IV shows the experimental study of the pruning power over the three datasets.
As we can see from the results, for all the datasets, over 99% of the states are pruned
by our SE/PDFS algorithm; in other words, only around 0.8% of the states are kept.
Therefore, the search space and runtime of searching the optimal solution is being
greatly reduced. Another fact we can observe is that as the time budget (b) increases,
the pruning power becomes weaker. For instance, for the PX dataset, ι = 99.16% when
b = 9h, which is smaller than ι = 99.30% when b = 5h. The reason is that a longer
time budget allows for more POIs being visited in a trip and more trip routes become
feasible and cannot be dominated owing to the longer budget.

7.3.4. Case Study. For a randomly selected user with b = 8h, Figure 4 shows the trip
routes designed by PDFS and HA on the local map of LA, where Location 1 is the source
and the destination. The visit follows the increasing order 1 → 2 → · · · → 1. PDFS and
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HA share many POIs in their recommended trip routes (e.g., POIs 2, 3, 6, 7 for PDFS)
due to the fact that both methods adopted the personalized preferences. However, HA
maintains only one route and easily falls into a local optimum. For example, while
POIs 1 and 3 are spatially far away from POIs 2 and 6 in Figure 4(b), HA visits
these POIs in the order 1 → 2 → 3 → 6 → 1, in which every sub-route is between
two POIs that are far away, thus, too much time is spent on traveling. In contrast,
PDFS designs the route in a circle, which reduces the number of sub-routes with long
traveling time and allows the user to visit one more POI than HA within the same time
budget.

In summary, PDFS finds the optimal solution with less runtime than SE; SE-SR
is a very good tradeoff for efficiency at a slightly lower happiness than the optimal
solution; HA is very efficient, but sometimes has a significantly lower happiness.
Overall, PDFS and SE-SR are the two best performers considering both quality and
efficiency.

7.4. The Uncertain Traveling Time Model

In this section, we study the effect of the uncertain traveling time on SE-SR and PDFS.
The diversity threshold, β, is still set as 1. For the traveling time distribution of tij for a
sub-route i → j, we adopt the log-normal distribution tij ∼ LN (μi j, σ

2
i j) in Section 3.3.

Note that E[tij] = exp(μi j + σ 2
i j/2). σi j is generated from a uniform distribution to

introduce the uncertainty, i.e., σi j ∼ U(0.5, 2).
Figure 5 (left column) presents the happiness scores of SE-SR and PDFS with various

threshold θ on completion probability. A color represents a method and a pattern
represents a threshold θ on completion probability. Compared to the case for the fixed
traveling time in Section 7.3, the happiness of both methods becomes lower given the
same time budget. For example, there is about a 20%–40% reduction of happiness from
the fixed time cases at θ = 0.9 and b = 5h. This is because the route designed in
the previous section, although having a higher happiness, may violate the completion
probability constraint due to the variance of traveling time, and a more strict constraint
(i.e., higher threshold) results in less happiness. In practice, if the user prefers a more
reliability of a trip, a route with higher completion probability but a bit less happiness
is acceptable.

The uncertain traveling time model also accelerates the runtime of both methods, as
shown in Figure 5 (right column). As the completion probability threshold θ increases,
there are fewer feasible routes and both methods prune the routes with the probability
below the threshold earlier. A cross examination with Figure 3 indicates that at θ = 0.7,
the runtime of these methods with modeling uncertain traveling time is close to that
with the fixed traveling time model. However, it is almost an order of magnitude less
in runtime at θ = 0.9.

7.5. Effect of Diversity Constraint

The previous sections evaluated the methods for TripRec in the special case of β = 1,
where β is the minimum number of categories of POIs in a trip, specified by the diversity
constraint. In this section, we study the effect of the diversity constraint by comparing
the results for the special case of β = 1 and the more general case of β > 1. The
fixed travelling time model is applied. We consider the results of PDFS only because
SE generates the same results. Greedy, DP, and HA cannot deal with the diversity
constraint. As there are a total of five different categories of POIs, we vary β from two
to four.

Table V shows the averaged happiness values of PDFS for both the case of β = 1
and β > 1. The numbers in brackets indicate, among the recommended routes for the
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Fig. 5. The uncertain traveling time model: (left) happiness of trip routes found (y-axis) by SE-SR and PDFS
vs. time budget b (x-axis); (right) average runtime (y-axis) vs. time budget b (x-axis).

100 testing users with the setting β = 1, how many routes also satisfy the specified
diversity constraint, with β equal to 2, 3, or 4. Note that if a route is optimal with
the setting β = 1, but it actually contains k (k > 1) categories, then the route is also
optimal for the case of β = k. For example, for PX with β = 1, the entry 16.35 (73)
means that the averaged happiness of the 100 routes that have at least 1 category (i.e.,
β = 1) is 16.35, and out of them, 73 consist of 2 or more categories of POIs. As we can
see in Table V, for β = 2, there are many overlapped routes for β = 1 and β = 2, since a
route has a high chance to contain two categories of POIs. As β increases, there exists
fewer overlapped routes, so more gap on the happiness can be observed. At b = 5h, no
route satisfies the diversity constraint of β = 4, since at most three POIs can be visited
within 5 hours.
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Table V. Comparison of the Averaged Happiness Over the 100 Testing
Users for the Case of β = 1 and β > 1, Gained from the Optimal

Routes Recommended by PDFS

PX NY LA
b β = 1 β = 2 β = 1 β = 2 β = 1 β = 2

5h 11.63 (100) 11.63 2.98 (99) 2.98 2.50 (55) 2.49
6h 12.96 (100) 12.96 3.81 (99) 3.81 3.26 (97) 3.25
7h 16.35 (73) 16.32 4.37 (96) 4.35 3.97 (97) 3.96
8h 19.39 (99) 19.38 4.99 (99) 4.99 4.66 (100) 4.66
9h 20.36 (100) 20.36 5.73 (100) 5.73 5.26 (100) 5.26

PX NY LA
b β = 1 β = 3 β = 1 β = 3 β = 1 β = 3

5h 11.63 (38) 11.61 2.98 (8) 2.91 2.50 (11) 2.47
6h 12.96 (26) 12.93 3.81 (71) 3.79 3.26 (4) 3.19
7h 16.35 (38) 16.30 4.37 (84) 4.34 3.97 (5) 3.92
8h 19.39 (97) 19.38 4.99 (6) 4.94 4.66 (13) 4.62
9h 20.36 (89) 20.35 5.73 (78) 5.72 5.26 (96) 5.23

PX NY LA
b β = 1 β = 4 β = 1 β = 4 β = 1 β = 4

5h 11.63 (0) - 2.98 (0) - 2.50 (0) -
6h 12.96 (4) 12.17 3.81 (0) 3.77 3.26 (1) 3.19
7h 16.35 (0) 15.51 4.37 (3) 3.91 3.97 (1) 3.91
8h 19.39 (40) 19.37 4.99 (0) 4.83 4.66 (4) 4.59
9h 20.36 (19) 20.33 5.73 (23) 5.69 5.26 (38) 5.19

The numbers in brackets indicate that among the 100 generated optimal
results with the constraint β = 1 for the testing users how many are also
optimal with the constraint β Equal to 2, 3, or 4.

8. RELATED WORK

8.1. POI Recommendation

Most location-based recommendation falls into this category, which scores each POI
individually and recommends top-k POIs to a user. Some examples in this category
include Cheng et al. [2012] and Kurashima et al. [2013], which consider no content
information, and Hu and Ester [2013], Liu et al. [2013], and Yin et al. [2013], which
consider content as side information. The key difference between trip recommendation
and POI recommendation is that POI recommendation considers neither the order
of visiting POIs nor the time budget of users and the POI availability constraint.
Recommending a visiting order of several POIs to maximize user satisfaction under
such time constraints is the main focus of trip recommendation.

8.2. Travel Package Recommendation

Travel package or itinerary recommendation focuses on a tour of POIs instead of iso-
lated POIs, which is similar to trip recommendation. Ge et al. [2011] and Liu et al.
[2011] developed several probabilistic models to generate possible packages by consid-
ering cost, season, area, and so on. A major difference between trip recommendation
and travel package recommendation is that travel package recommendation considers
neither the order of visiting POIs nor the realistic constraints, such as travelling time
between two location and time budget. Kurashima et al. [2010] and Yoon et al. [2012]
applied spatio-temporal streams, such as tagged photo streams or GPS trajectories, to
seek for a feasible path by topic modeling or Markov models. Basu Roy et al. [2011]
used user feedback to improve results on interactive tour recommendation. None of
these works focuses on the objective to maximize user’s happiness.
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De Choudhury et al. [2010], Gionis et al. [2014], and Lu et al. [2012] maximized user’s
happiness in travel recommendations. Gionis et al. [2014] assumes a fixed order on the
categories of POIs visited, which is not suitable in the presence of constraints such as
opening hours of POIs. The greedy algorithm proposed in De Choudhury et al. [2010]
cannot guarantee the global optimality. Lu et al. [2012] adopted memory-based collab-
orative filtering to estimate user-specific preferences, which are dynamic with time.
All these works do not consider the POI availability and uncertain time constraints.
The first two works do not consider user specific preferences, thus, generate the same
itinerary to all users. The POI diversity or multiple categories of POIs is considered by
Ardissono et al. [2003] and Gionis et al. [2014]. However, Ardissono et al. [2003] expect
the user to manually select a POI from each desired category and Gionis et al. [2014]
assumes a fixed order on the categories of POIs. A discussion about whether to specify
a minimum number of POI categories or to specify exact POI categories is presented
in the fourth point of Section 1.1.

This article is primarily extended from the previous work [Zhang et al. 2015a].
One major addition is that the POI diversity constraint is considered in this work by
allowing users to specify a threshold on the minimum number of categories of POIs that
the recommended trip route covers. In particular, the motivation of the POI diversity,
the methods used to classify POI categories, and the empirical evaluation of the POI
diversity constraint are presented. Besides, more details, such as formal proof of the
NP-hardness of the problem and experiment studies about the pruning power are
included in this extension.

8.3. Operation Research and Scheduling

The orienteering problem (OP) [Golden et al. 1987; Vansteenwegen et al. 2011] studied
in operation research and theoretical computer science is related to our problem. In
OP, a set of vertices is given, each with a score. The goal is to determine a path,
limited in length, that visits some vertices and maximizes the sum of the collected
scores. However, there are some important differences between trip recommendation
and OP. First, OP does not consider personalized user preferences, so only a global trip
is planned. Second, OP has no touring time for each location, which is an important
factor affecting the number of POIs visited. Finally, we consider the uncertain traveling
time between POIs through the completion probability constraint, which is absent in
OP. While most works on OP focus on heuristic approaches [Souffriau et al. 2008;
Tsiligirides 1984] to estimate the global optimum of OP, we present an optimal solution
to trip recommendation through a PDFS strategy with a focus on efficiency through
incremental reconstruction and dominance-based pruning of routes.

Other works on real-life scheduling problems are related to our modeling of the
uncertain traveling time. For example, Botea et al. [2013] considered multiple types
of transport within a single trip and adopted the Monte-Carlo simulation to estimate
the probability of catching the trip in non-deterministic transport networks. Westgate
et al. [2013] introduced a Bayesian model to estimate the distribution of ambulance
traveling time on the road in a city.

9. CONCLUSION AND EXTENSION

We formulated the personalized trip recommendation problem, which is NP-hard, to
retrieve a sequence of POIs that maximizes user’s satisfaction according to user’s his-
toric activities with various constraints, including user’s time budget, POI availability
and diversity, and uncertain traveling time. We presented both optimal solutions and
heuristic solutions to this problem. Our evaluation on real-life datasets suggested that
PDFS is the most efficient algorithm for optimal solutions and SE-SR improves effi-
ciency at a slightly lower quality than optimal solutions.
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Several variations are possible in the presented trip recommendation model. One
variation is to factor the touring time of a POI in the happiness score; that is, it is more
important for a POI with a longer staying time to be preferred by the user than a POI
with a shorter staying time. We can also factor the completion probability of a trip in
the score, in addition to a threshold on the probability. Another variation is adding a
financial budget constraint of a user, in addition to the time budget, assuming a cost
for traveling and a cost for visiting a POI. Besides, the opening/closing hours can also
depend on the day of the week. This can be done by simply using the opening/closing
hours at the time when the POI is visited. In addition to the uncertainty of traveling
time, we can also model the uncertainty of the POI touring time via a separate random
variable by the same way we did for the traveling time tij , then can merge the uncer-
tainty of the POI touring time and the uncertainty of the travelling time together to
estimate the completion probability of the whole trip. These variations or extensions
require only a minor modification to our current algorithms.
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