
0nil

16A

24B

23B

22A

20W

13A

15A

14B

12W

8B

17B

19B

18A

25B

27B

26A

29B

31B

30A

28W11B

9B 10A

21B

4W1B 2A

5B 6A

7B

3B

! ! ! 	

… … … …

Al Bl Out IndID Ar Br

W Ptr

5

Social	
Networks

1

2

3

4

….

… …

… …

! 	
! 	 ! 	

! ! ! 	

Introduction & Motivation

Problem Definition

Experiments

A Toy Dating Network with Node Attributes Info
(Sex, Race, Location)

 Simon Fraser University Singapore Management University

Solutions

Homophily In Social Ties

ü  Contacts between similar people occur at higher rate
ü  Homophily is attribute specific: e.g. Race : non-homophilic
 Location: homophilic

•  Homophily principle: love of the same

dating

dating

Social Ties (Group Relationships)

“All men except Asians preferred Asian women”

R1 : (Sex: M) (Sex: F, Race: Asian)
conf = 7/14; supp = 7/15

R2 : (Sex: M, Race: Asian) (Sex: F, Race: Asian)
conf = 0; supp = 0

Leverage both graph topology and attributes information

Challenges

ü  Space = , if single table storage
•  Storage

3.3 Top-k GRs
Since the number of GRs is usually very large, we use

a threshold of support and divergent confidence to prune
uninteresting GRs and return the k most interesting GRs,
for a user specified k. This problem is formulated below.

Definition 5. For two GRs r1: a
L
1

w1��! aR
1 and r2: a

L
2

w2��!
aR
2 , if a

L
1 ✓ aL

2 , w1 ✓ w2, and aR
1 = aR

2 , we say that r1 is
more general than r2, and r2 is more special than r1. 2

Definition 6. [Top-k GRs] Given a set of homophily at-
tributes, a support threshold minSupp, a divergent confi-
dence threshold minDivConf , and an integer k, a non-
trivial aL w�! aR is a top-k GR if the three conditions hold:

• (1) supp(aL w�! aR) � minSupp and

• (2) divConf(aL w�! aR) � minDivConf ;

• (2) no non-trivial GR is more general than aL w�! aR

while satisfying (1);

• (3) no more than k � 1 non-trivial GRs have a higher
rank while satisfying (1) and (2), where the rank is
measured by divergent confidence, followed by support,
followed by the alphabetical order of GRs.

We want to find the top-k GRs. 2

4. MINING TOP-K GRS
A straightforward algorithm for finding top-k aL w�! aR is

to apply Apriori-like algorithms such as [1] to find frequent
sets aL^w and aL^w^aR using the support threshold and
construct GRs in a post-processing step. This approach does
not work. First, for a small support threshold, the Apriori
based pruning is not e↵ective and it is important to prune
the search using the threshold on divConf as well. Unfor-
tunately, divergent confidence does not have the usual anti-
monotonicity required by Apriori-like algorithms. Second,
the standard frequent set mining requires collecting all infor-
mation in one table. For graph data, this means replicating
the node information for every edge adjacent to a node and
the size of this table is |E|⇥ (2⇥#AttrV +#AttrE), where
#AttrV is the number of attributes in V and #AttrE is the
number of attributes in E. For a large and dense graph with
high dimensional nodes, the term |E|⇥ 2⇥#AttrV imposes
a bottleneck for most graph algorithms.

We present an e�cient algorithm for mining top-k GRs
in two steps. In this section we assume that the data is
represented in a single table and we focus on the enumera-
tion and pruning strategies. In Section 5 we will consider an
implementation based on a more e�cient data structure.

4.1 Pruning Strategies
The following properties can be used to prune GRs.

Theorem 2. (1) supp(aL w�! aR) is not increased by
adding an attribute value to aL or aR or w. (2) If � 6= ;,
divConf(aL w�! aR) is not increased by adding a value to

aR. (3) If � = ;, divConf(aL w�! aR) is not increased by
adding a value to aR for a non-homophily attribute or for a
homophily attribute not occurring in aL.

Proof. (1) is straightforward. If � 6= ;, divConf is

equal to supp(aL w�!aR)

supp(aL^w)�supp(aL
w�!aL[�])

(Definition 4). Adding

a value to aR does not a↵ect supp(aL ^ w), and never in-

creases supp(aL w�! aL[�]) and supp(aL w�! aR). This shows
(2). If � = ;, adding a value to aR for a non-homophily
attribute or a homophily attribute not occurring in aL will
preserve � = ;. In this case, divConf degenerates into
conf . conf is never increased by adding an attribute value
to aR.

Remark 3. Theorem 2(1) provides the anti-monotonicity
of supp, and Theorem 2(2,3) provides the anti-monotonicity
of divConf when expanding the RHS aR of a GR. Two is-
sues remain. First, Theorem 2 does not cover the case of
� = ; and adding a value to aR for a homophily attribute
occurring in aL. In this case, divConf does not have the
anti-monotonicity. Consider aL w�! aR where aL contains
a value b for some homophily attribute B and aR contains
a value a for some attribute A. supp(aL w�! aL[�]) = 0 be-
cause � = ;. Since the homophily attribute B occurs in aL,
adding a di↵erent value b0 for B to aR leads to � = {B}, so
supp(aL w�! aL[�]) changes from zero to a non-zero value,

which may increase or decrease divConf(aL w�! aR). Sec-

ond, computing divConf(aL w�! aR) (Definition 4) requires

enumerating aL w�! aL[�] before enumerating aL w�! aR.

In the rest of this section, we propose a novel enumeration
strategy of GRs such that the anti-monotonicity of divConf
is restored and aL w�! aL[�] is enumerated before aL w�! aR.

4.2 Subset-First Depth-First Enumeration
We use a tree structure to represent all subsets LWR of

attributes where L,W,R represent the attribute sets (possi-
bly empty) for aL, w and aR of GRs. Each node in the tree

for the subset LWR represents all GRs aL w�! aR such that
Att(aL) = L,Att(w) = W,Att(aR) = R. We enumerate the
nodes of this tree to ensure two properties:

• Property 1 : Generate LWR by adding attributes in
the order of those in L, W , and R. This property en-
ables the anti-monotonicity in Theorem 2(1,2,3) where
the values for aR are added last.

• Property 2 : Enumerate all subsets LWR before enu-
merating any subset L0W 0R0, where L ✓ L0, W ✓
W 0, and R ✓ R0. This order ensures that the node
for aL w�! aL[�] is enumerated before the node for

aL w�! aR (because � is a subset of Att(aR)), hence,

supp(aL w�! aL[�]) was computed before computing

divConf(aL w�! aR). This addresses the second issue
in Remark 3.

The regular depth-first enumeration generates longer sub-
sets LWR first, thus, does not provide these properties. The
breadth-first enumeration meets these requirements but has
to keep all nodes and their GRs at the same level, which
imposes a bottleneck on memory size. Our enumeration is
subset-first depth-first because it enumerates subsets before
enumerating supersets like the breadth-first enumeration,
but is depth-first. We assume that all attributes are ordered
left to right by the following categories

⌧ : NH 0, H 0,W,NH,H (6)

ü  Subset-First: some kind of reverse order, all parts of supp, including
that for homophily effect, are available when computing nhp

ü  Depth-First: only materialize the current branch

Data Model

ü  supp based pruning
ü  nhp based pruning
ü  Top-k pruning tights up the nph threshold

Mining Top-k GRs

ü  Goal: discover the top-k interesting GRs, ranked by nph followed by supp, and each of
them satisfies the supp and nhp thresholds

ü  Given: an information network, the setting of homophily for attributes, a supp threshold,
a nhp threshold and an integer k

Datasets

ü  1,436,515 users and 21,078,140 edges
ü  6 node attributes

•  Pokec Social Network Data

•  Top-k GRs results ranked by nhp vs. the results ranked by standard conf

Interestingness Evaluation

Efficiency Study (running time)

•  Test the power of minSupp, minNhp, k pruning respectively and study the scalability of
GR-Miner(k) when # of node attributes vary

 Hongwei Liang, Ke Wang Feida Zhu

16-05-13	 ICDE2016	Helsinki,	Finland	 21	

US� Canada�

Asian� La<no� White�

UK�

3�1� 2

M�

F�

54 7�6�

12�11�8� 9� 10� �3� �4�

•  Homophily effect is well-known and often “dominant”
dating R3 : (Sex: M, Location: US) (Sex: F, Location: US)

conf = 4/6; supp = 4/15

Beyond Homophily
dating R4 : (Sex: M, Location: US) (Sex: F, Location: Canada)

standard confidence?

conf = 2/6, not interesting

new metric that remove homophily?

nhp = 2/ (6 – 4) = 100%, interesting !
VS

support of the homophily effect (Sex: F, Location: US) (Sex: M, Location: US) is 4/15 dating

Reads as: if a female from US does NOT want her partner to be from US,

there is a high chance that she prefers a partner from Canada.

ü  Non-homophily preference (nhp): a conditional probability that EXCLUDE “homophily”

•  New Interestingness Metric

𝑛ℎ𝑝 $𝑙
𝑤
→ 𝑟) =

𝑠𝑢𝑝𝑝(𝑙
𝑤
→ 𝑟)

𝑠𝑢𝑝𝑝(𝑙 ∧ 𝑤) − 𝑠𝑢𝑝𝑝(ℎ𝑜𝑚𝑜𝑝ℎ𝑖𝑙𝑦 𝑒𝑓𝑓𝑒𝑐𝑡)
	

Example: (Sex: F, Location: US) (Sex: M, Location: Canada)
 (Sex: F, Location: US) (Sex: M, Location: US)

ü  Capture “secondary bonds” beyond “primary bonds”
ü  nhp does not have the regular anti-monotonicity

ü  Storage: favourable data modeling
ü  Computation: ingenious enumeration with efficient pruning strategies

•  How to deal with?

ü  Exponential order of attributes value combination
ü  nhp does not have anti-monotonicity
ü  If only supp pruning: small threshold, and post-processing is needed

•  Computation

ü  Combine profile data and graph topholgy
ü  No redundancy, data linked by pointers
ü  Space =

•  Compact 3-table data presentation

Case 2: � = Att(aR). In this case, supp(aL w�! aL[�]) is

computed at the current node t for aL w�! aR. An example
is a GR g at t27: (a2, b2) ! (a1, b1), where a2, a1 are di↵er-
ent values for attribute A, and b2, b1 are di↵erent values for
attribute B.

divConf(g) =
supp((a2, b2) ! (a1, b1))

supp((a2, b2))� supp((a2, b2) ! (a2, b2))
(8)

If we generate (a2, b2) ! (a2, b2) before generating any other
GRs with (a2, b2) on the LHS, supp((a2, b2) ! (a2, b2)) will
be available when generating g. Enforcing this order only
requires knowing the LHS of the current GR g, i.e., (a2, b2)
in this example, therefore, can be easily implemented.

In both cases, supp(aL w�! aL[�]) is either already com-

puted or can be computed at the same node as for aL w�! aR.
Therefore, divConf(aL w�! aR) can be computed at the node

for aL w�! aR.

Figure 3: Data structure: LArray, EArray and RArray

5. ALGORITHMS
Until now, we assume that the graph data is represented in

a single table. In this section, we present the full algorithm
for mining top-k GRs by leveraging the enumeration and
pruning strategies presented in Section 4, but representing
the graph data using a more e�cient data structure.

We shall store the node and edge information separately.
Fig. 3 shows the data structure for our running example.
LArray contains the records for individuals that could occur
in the LHS of GRs and RArray contains the records for
individuals that could occur in the RHS of GRs. Out is the
out-degree of a record and Ind is the starting position of
the outgoing edges in EArray. EArray contains one record
for each edge and Ptr is the pointer to the record for the
destination node in RArray. This data structure has the size
|V | ⇥ (#AttrV + 2) + |E| ⇥ (#AttrE + 1) + |V | ⇥#AttrV ,
which is more compact than the single table at the beginning
of Section 4 by eliminating the term |E|⇥ 2⇥#AttrV . We
assume that this structure is held in memory. We use these
tables to partition the data for counting the supports for
GRs. For example, the first row in LArray represents the
record 1 for LHS, which connects to the destination records
2, 4 and 5 for RHS, found by the pointers Ptr kept in the
entries [Ind, Ind+Out� 1] of EArray.

Our algorithm enumerates each attribute subset LWR fol-
lowing the subset-first depth-first order as described in the
previous section. To compute supp and divConf of the GRs
at the node for LWR, it partitions the data using the at-

Algorithm 1: GR-Mine

1 Procedure Main()
2 initiate LArray, EArray and RArray;
3 RIGHT(RArray, tail(nil));
4 EDGE(EArray, tail(nil));
5 LEFT(LArray, tail(nil)));
6 Output(top[k]);

7 Procedure LEFT(data, Tail)
8 forall the dimension d both in Tail and in LArray do
9 forall the partition p of data on dimension d do

10 if supp(p) < minSupp then
11 return;

12 RIGHT(getRight(p), tail(p.Att));
13 EDGE(getEdge(p), tail(p.Att));
14 LEFT(p, tail(p.Att));

15 Procedure EDGE(data, Tail)
16 forall the dimension d both in Tail and in EArray do
17 forall the partition p of data on dimension d do
18 if supp(p) < minSupp then
19 return;

20 RIGHT(getRight(p), tail(p.Att));
21 EDGE(p, tail(p.Att));

22 Procedure RIGHT(data, Tail)
23 forall the dimension d both in Tail and in RArray do
24 forall the partition p of data on dimension d do
25 if supp(p) < minSupp OR divConf(p) <

minDivConf then
26 return;

27 if p is a non-trivial GR and no more general
GR than p found then

28 update top[k] and minDivConf using p if
necessary;

29 RIGHT(p, tail(p.Att));

tribute set LWR and then considers each partition recur-
sively. It prunes further partitioning using the thresholds
on supp and divConf as in Theorem 2(1) and Theorem 3.
We discussed how to compute divConf for a given partition
in Section 4.3. Below, we focus on how to partition the data
using our data structure of LArray, EArray, and RArray.
Algorithm 1, GR-Mine, gives the pseudo-code of our al-

gorithm. The main procedure starts with loading LArray,
EArray and RArray into memory at line 2. tail() returns
the attributes that will be used to expand the attribute set
LWR, similar to tail(t) in Section 4.2. Initially, tail(nil)
returns all the attributes in the order ⌧ in Eqn. (7). In
our running example, tail(nil) = {B0, A0,W,B,A}, where
{B0, A0} is in RArray, {W} is in EArray, and {B,A} is in
LArray.
At the current node t of the enumeration tree, data de-

notes the current data partition generated by LWR at t.
Since the attributes in tail(t) are contained in the tables
LArray, EArray, and RArray, we use three recursive proce-
dures to partition data

RIGHT (data, Tail)
EDGE(data, Tail)

Subset-First Depth-First Enumeration

! !" 	0nil

16A

13A

15A

14B

12W

8B

17......

11B

9B 10A

4W1B 2A

5B 6A

7B

3B

! !! 	 dynamic ordering 0nil

16A

13A

15A

14B

12W

8B

17......

11A

9A 10B

4W1B 2A

5B 6A

7B

3B

Dynamic Ordering

!ℎ! ! ! ! 	

ü  Dynamically order the homophily attributes, on the basis of whether the same
attributes were enumerated in the LHS

ü  for the GRs with same becomes anti-monotone ! !
	

Multiple Pruning Strategies

ü  28,702 authors and 66,832 directed edges
ü  2 node attributes and 1edge attribute

•  DBLP Co-authorship Data

(a) Pokec data set

Ranked by nhp Ranked by conf

P1:
(L:Chat)!(L:Good Friend)
nhp = 69.5%; supp = 649723
(conf = 30.9%)

(R:27)!(R:27)
conf = 72.2%; supp = 250930

P2:
(E:Basic)!(E:Secondary)
nhp = 68.7%; supp = 682715
(conf = 15.4%)

(R:24)!(R:24)
conf = 66.1%; supp = 197374

P3:
(E:Preschool)!(E:Basic)
nhp = 66.1%; supp = 54765
(conf = 30.4%)

(R:32)!(R:32)
conf = 65.1%; supp = 143219

P4:
(E:Hardly Any)!(E:Basic)
nhp = 65%; supp = 34099
(conf = 30.7%)

(R:10)!(R:10)
conf = 65%; supp = 279623

P5:
(L:Sexual Partner) ! (G:Female)
nhp = 64.7%; supp = 468012
(conf = 64.7%)

(L:Sexual Partner) ! (G:Female)
conf = 64.7%; supp = 468012

P207:
(G:Male, A:25-34) ! (A:18-24)
nhp = 50.8%; supp = 593785
(conf = 33.9%)

(b) DBLP data set

Ranked by nhp Ranked by conf

D1:
(A:AI)!(P:Poor)
nhp = 74.3%; supp = 31330
(conf = 74.3%)

(A:AI)!(A:AI)
conf = 88.8%; supp = 37458

D2:
(A:DB) often����!(A:DM)
nhp = 71.5%; supp = 98
(conf = 6.98%)

(A:DB)!(A:DB)
conf = 88.7%; supp = 44980

D3:
(P:Poor)!(P:Poor)
nhp = 70.6%; supp = 63174
(conf = 70.6%)

(A:IR)!(A:IR)
conf = 75.9%; supp = 16020

D4:
(P:Excellent)!(A:DB)
nhp = 68.1%; supp = 2744
(conf = 68.1%)

(A:AI)!(P:Poor)
conf = 74.3%; supp = 31330

D5:
(A:IR)!(P:Poor)
nhp = 68.1%; supp = 14368
(conf = 68.1%)

(A:DM)!(A:DM)
conf = 72.3%; supp = 14232

D16:
(A:AI, P:Good)!(A:DM)
nhp = 55.2%; supp = 272
(conf = 11.6%)

TABLE II: Comparison of top GRs ranked by nhp and conf

partners. Without first finding P5, it is difficult to find this
difference from the collection of GRs.

P207: (G:Male, A:25-34) ! (A:18-24). Again, we form
hypothesis from the seed P207. We replace Male with Female
on the LHS and get nhp = 32.8% and supp = 204780, which
suggests that women much less preferred younger partners than
men. The next two variations show that this difference is even
bigger for partner with opposite sex:

(G : Male, A : 25-34) ! (G : Female, A : 18-24)
nhp = 39.1%; supp = 456201

(G : Female, A : 25-34) ! (G : Male, A : 18-24)
nhp = 12.8%; supp = 80070

C. Interestingness Study for DBLP Data

For DBLP data, we set minSupp = 0.1% (i.e., absolute
minSupp = 67), minNhp and minConf at 50%, and k = 20.
Table IIb shows the top GRs ranked by nhp (in boldface)
and conf. Similar to the study on Pokec Data, the top GRs
ranked by nhp are more interesting than those ranked by
conf. Recall that Area (A) is a homophily attribute and
Productivity(P) is not.

D1 & D3 & D5: On surface, D1 & D3 & D5 suggests the
preference to authors with Poor productivity. This is interesting
as it contradicts with the common sense. A quick check on the
data (by examining the values distribution on the attribute) tells
that 91.18% of the authors have the value Poor for P because
many authors are students and most co-authorship is between
supervisors and students.

D2: (A:DB) often����!(A:DM) D2 suggests that authors in the
DB area often collaborate with those in the DM area when
collaborating with those not in their own area. D16 is a similar
pattern for authors in AI area. In fact, DM has the least
proportion among all areas. Therefore, these GRs represent

a true preference to DM, not due to data skewness. A possible
reason is that DM is an interdisciplinary field that intersects
database and machine learning (a subarea of AI).

Remark 3: Finding top-k GRs typically serves the entry
point in pattern mining. In the above case studies, the human
analyst starts with top-k GRs found, forms new hypothesis
through varying the GRs found, and compares such hypothesis
as well as data distribution. This process can apply to the new
hypothesis recursively. This cycle of hypothesis formulation
and hypothesis comparison often leads to new insights into
the behaviors of different groups of actors or an explanation
of the presence of a GR. Unlike manual probing of a data
set, top-k GRs provide an entry point to this cycle by filtering
many uninteresting and trivial patterns.

D. Efficiency of Algorithms

Our algorithm finished running on the DBLP data set in no
more than 0.483 seconds for all parameter settings. Therefore,
our study below focuses on the Pokec data, which is much
larger than the DBLP data. GRMiner(k) denotes the algorithm
that pushes all the constraints of minSupp, minNhp, top-k,
and generality of GRs to prune search space, as described in
Section VI-D. GRMiner pushes all constraints except for the
top-k constraint. The difference will tell the effectiveness of
dynamically upgrading minNhp to that of top-k GRs.

We consider two baseline solutions. One stores the node
and edge attributes information in a single table, applies the
BUC algorithm [23] to mine the combinations of attribute
values above the threshold minSupp. We denote this baseline
by BL1. The second baseline, BL2, is similar to BL1 but works
with the node and edge attributes information separately stored
in three tables. Both baselines prune the search space using the
anti-monotonicity of support, but not minNhp, and find the
top-k GRs in a post-processing step.

Unless otherwise stated, we consider the four node
attributes with largest domain sizes, i.e., Age, Region,

(a) Pokec data set

Ranked by nhp Ranked by conf

P1:
(L:Chat)!(L:Good Friend)
nhp = 69.5%; supp = 649723
(conf = 30.9%)

(R:27)!(R:27)
conf = 72.2%; supp = 250930

P2:
(E:Basic)!(E:Secondary)
nhp = 68.7%; supp = 682715
(conf = 15.4%)

(R:24)!(R:24)
conf = 66.1%; supp = 197374

P3:
(E:Preschool)!(E:Basic)
nhp = 66.1%; supp = 54765
(conf = 30.4%)

(R:32)!(R:32)
conf = 65.1%; supp = 143219

P4:
(E:Hardly Any)!(E:Basic)
nhp = 65%; supp = 34099
(conf = 30.7%)

(R:10)!(R:10)
conf = 65%; supp = 279623

P5:
(L:Sexual Partner) ! (G:Female)
nhp = 64.7%; supp = 468012
(conf = 64.7%)

(L:Sexual Partner) ! (G:Female)
conf = 64.7%; supp = 468012

P207:
(G:Male, A:25-34) ! (A:18-24)
nhp = 50.8%; supp = 593785
(conf = 33.9%)

(b) DBLP data set

Ranked by nhp Ranked by conf

D1:
(A:AI)!(P:Poor)
nhp = 74.3%; supp = 31330
(conf = 74.3%)

(A:AI)!(A:AI)
conf = 88.8%; supp = 37458

D2:
(A:DB) often����!(A:DM)
nhp = 71.5%; supp = 98
(conf = 6.98%)

(A:DB)!(A:DB)
conf = 88.7%; supp = 44980

D3:
(P:Poor)!(P:Poor)
nhp = 70.6%; supp = 63174
(conf = 70.6%)

(A:IR)!(A:IR)
conf = 75.9%; supp = 16020

D4:
(P:Excellent)!(A:DB)
nhp = 68.1%; supp = 2744
(conf = 68.1%)

(A:AI)!(P:Poor)
conf = 74.3%; supp = 31330

D5:
(A:IR)!(P:Poor)
nhp = 68.1%; supp = 14368
(conf = 68.1%)

(A:DM)!(A:DM)
conf = 72.3%; supp = 14232

D16:
(A:AI, P:Good)!(A:DM)
nhp = 55.2%; supp = 272
(conf = 11.6%)

TABLE II: Comparison of top GRs ranked by nhp and conf

partners. Without first finding P5, it is difficult to find this
difference from the collection of GRs.

P207: (G:Male, A:25-34) ! (A:18-24). Again, we form
hypothesis from the seed P207. We replace Male with Female
on the LHS and get nhp = 32.8% and supp = 204780, which
suggests that women much less preferred younger partners than
men. The next two variations show that this difference is even
bigger for partner with opposite sex:

(G : Male, A : 25-34) ! (G : Female, A : 18-24)
nhp = 39.1%; supp = 456201

(G : Female, A : 25-34) ! (G : Male, A : 18-24)
nhp = 12.8%; supp = 80070

C. Interestingness Study for DBLP Data

For DBLP data, we set minSupp = 0.1% (i.e., absolute
minSupp = 67), minNhp and minConf at 50%, and k = 20.
Table IIb shows the top GRs ranked by nhp (in boldface)
and conf. Similar to the study on Pokec Data, the top GRs
ranked by nhp are more interesting than those ranked by
conf. Recall that Area (A) is a homophily attribute and
Productivity(P) is not.

D1 & D3 & D5: On surface, D1 & D3 & D5 suggests the
preference to authors with Poor productivity. This is interesting
as it contradicts with the common sense. A quick check on the
data (by examining the values distribution on the attribute) tells
that 91.18% of the authors have the value Poor for P because
many authors are students and most co-authorship is between
supervisors and students.

D2: (A:DB) often����!(A:DM) D2 suggests that authors in the
DB area often collaborate with those in the DM area when
collaborating with those not in their own area. D16 is a similar
pattern for authors in AI area. In fact, DM has the least
proportion among all areas. Therefore, these GRs represent

a true preference to DM, not due to data skewness. A possible
reason is that DM is an interdisciplinary field that intersects
database and machine learning (a subarea of AI).

Remark 3: Finding top-k GRs typically serves the entry
point in pattern mining. In the above case studies, the human
analyst starts with top-k GRs found, forms new hypothesis
through varying the GRs found, and compares such hypothesis
as well as data distribution. This process can apply to the new
hypothesis recursively. This cycle of hypothesis formulation
and hypothesis comparison often leads to new insights into
the behaviors of different groups of actors or an explanation
of the presence of a GR. Unlike manual probing of a data
set, top-k GRs provide an entry point to this cycle by filtering
many uninteresting and trivial patterns.

D. Efficiency of Algorithms

Our algorithm finished running on the DBLP data set in no
more than 0.483 seconds for all parameter settings. Therefore,
our study below focuses on the Pokec data, which is much
larger than the DBLP data. GRMiner(k) denotes the algorithm
that pushes all the constraints of minSupp, minNhp, top-k,
and generality of GRs to prune search space, as described in
Section VI-D. GRMiner pushes all constraints except for the
top-k constraint. The difference will tell the effectiveness of
dynamically upgrading minNhp to that of top-k GRs.

We consider two baseline solutions. One stores the node
and edge attributes information in a single table, applies the
BUC algorithm [23] to mine the combinations of attribute
values above the threshold minSupp. We denote this baseline
by BL1. The second baseline, BL2, is similar to BL1 but works
with the node and edge attributes information separately stored
in three tables. Both baselines prune the search space using the
anti-monotonicity of support, but not minNhp, and find the
top-k GRs in a post-processing step.

Unless otherwise stated, we consider the four node
attributes with largest domain sizes, i.e., Age, Region,

•  Case study
ü  P5: it derives

and minNhp, thanks to the checking at lines 10, 18, 25,
and Theorem 3. Typically, much fewer GRs are examined
because minNhp is dynamically updated to the smallest non-
homophily preference of the current top-k GRs (line 28). We
will examine this effect of minNhp on real life data sets in
Section VI.

VI. EXPERIMENTS

We evaluated the GRMiner algorithm on real life data on
CentOS 6.4 with Intel 8-core processors 2.53GHz and 12G of
RAM. The programs were written in C++.

A. Data Sets

We used two public real-world data sets: Pokec Social
Network data4 and DBLP co-authorship data5 because the
domains of these data sets are easy to understand, which is
essential for interestingness studies.

Pokec Social Network Data. Pokec is the most popu-
lar online social network service in Slovakia for discover-
ing, chatting and dating with online friends. This data set
contains anonymized users with profile data and directed
friendships between users. We extracted 6 most important
node attributes: Gender (G,3), Age (A,11), Region
(R,188), Education (E,10), What-Looking-For

(L,11), and Marital Status (S,7), where the letter
and number in a bracket are the abbreviation and domain size
of an attribute. We specify A,R,E,L as homophily attributes.
While all attributes have drop lists for choosing their values,
E,L, S are also fillable with any text. We used the values from
the drop list whenever they were chosen, and otherwise, the
user-filled text subject to the following preprocessing in order:
(1) Remove all characters except letters and apply standard
IR pre-processing to the filled text. (2) For the words that
occur in more than 200 user profiles, replace them by their
English synonym and mark the other words as “invalid”. (3)
Use the highest level for E (for example, keep “Master” if
both “Bachelor” and “Master” are filled); and for L and S, use
the word with highest frequency. (4) Keep only user profiles
containing no “invalid” value. The final induced graph has
1,436,515 (87.98%) users and 21,078,140 (68.83%) directed
edges. In addition, we discretized the domain of Age into “0-
6”, “7-13”, “14-17”, “18-24”, “25-34”, “35-44”, “45-54”, “55-
64”, “65-79”, and “80 or older”.

DBLP Data. This is the co-authorship DBLP data set used
in [1], and it contains 28,702 authors and 66,832 directed co-
author relationships (we replace each undirected edge with two
directed edges in opposite directions). Each author has two
node attributes, Area (A) and Productivity(P), and
Area has 4 values DB, DM, AI and IR, and Productivity
has 4 values Poor, Fair, Good and Excellent. We use the
exact same criteria as in [1] to discretize the values for the
two attributes. Definitely, an author may belong to multiple
areas, we select one only among the four in which she/he
publishes most. We specify Area as a homophily attribute
since authors in the same areas tend to collaborate; while we
specify Productivity as a non-homophily one, since it is

4http://snap.stanford.edu/data/soc-pokec.html
5http://dblp.uni-trier.de/xml/

common that students and professors are co-authors but gener-
ally students have much fewer publications than professors. We
construct one edge attribute Collaboration Strength

(S) with three domain values: occasional (f = 1), moderate
(2 f < 5), often (f � 5), where f is the number of papers
co-authored by the two authors at the ends of an edge.

We evaluated the interestingness of GRs in Sections VI-B
and VI-C, and evaluated the efficiency of the GRMiner algo-
rithm in Section VI-D.

B. Interestingness Study for Pokec Data

One of our claims is that the proposed non-homophily
preference metric (i.e., nhp) helps to identify interesting social
ties beyond the well-known homophily principle. We evaluate
this claim by comparing the top-k GRs ranked by nhp with
the top-k GRs ranked by the standard confidence, conf. Note
that when applying conf, homophily effect is not excluded.
We set minSupp = 0.1% (i.e., absolute minSupp = 21078),
minNhp and minConf at 50%, and k = 300. Table IIa shows
the top-5 GRs ranked by nhp (in boldface) and top-5 GRs
ranked by conf, plus one less ranked GR by nhp (the last
row). 4 of the top-5 GRs ranked by conf are trivially expected
from the homophily principle as both LHS and RHs contain
the same value; this trend continues further down the list
(not shown here). This suggests that the conf metric fails to
find interesting relationships beyond what is known from the
homophily effect. In contrast, the GRs ranked by nhp, i.e.,
P1-P5 and P207, tend to provide more insights. The conf of
these GRs are included for comparison. These GRs are found
because their nhp is high, even though their conf is low. Note
that the proportion of data covered by a GR is captured by
supp. We pick P2, P5, and P207 to discuss in details, other
GRs are interpreted in a similar way.

P2: (E:Basic)! (E:Secondary). This GR indicates that for
people with Basic education, when not partnering with people
with the same education as their own, they preferred (in 68.7%
cases) those with Secondary education. With Training being
closer to Basic, this GR is less expected from homophily of
Education because Training is expected to be more popular
among people with Basic education. Further examination of
data reveals that the proportion of Secondary is 19.54% and
the proportion of Training is only 1.9%, which is probably the
reason for the high nhp of this GR.

P5: (L:Sexual Partner) ! (G:Female). For this GR, nhp
degenerates into conf because � = ; (no homophily attribute
occurs on both sides). This GR suggests that for people
describing themselves as looking for sexual partners, 64.7% of
their partners are female. Starting with this GR and wondering
whether gender has any impact on this behavior, we formed
the following two hypothesis by varying P5, and queried their
nhp and supp from the data:

(G : Male, L : Sexual Partner) ! (G : Female)
nhp = 68.1%; supp = 392652

(G : Female, L : Sexual Partner) ! (G : Male)
nhp = 48.8%; supp = 71699

This pair suggests a big difference in the preference of opposite
sex partners by males and females when looking for sexual

This pair suggests a big difference in the preference of
opposite sex partners by males and females

ü  D2: this suggests that authors in the DB area often
collaborate with those in the DM area when collaborating
with those not in their own area

A: supp based pruning B: compact 3-table data storage C: nhp based pruning D: top-k pruning

•  Properties of algorithms

100 102 104
100

200

300

400

500

600

GRMiner(k) GRMiner BL2 BL1
 A+B+C+D A+B+C A+B A

1 10 100 1000 10000
100

200

300

400

500

600

minSupp (absolute value)

T
i
m
e

(
s
e
c
)

(a) Time vs minSupp

0 20 40 60 80 100
100

150

200

250

300

minNhp (%)

T
i
m
e

(
s
e
c
)

(b) Time vs minNhp

(c) Time vs k and minNhp (d) Time vs dimensionality

Fig. 4: Runtime for mining GRs for Pokec data

Education and What-looking-for, for examining var-
ious parameter settings. So the dimensionality of search space
for GRs is 8. We set the ranges of (absolute) minSupp,
minNhp, and k to [2, 10000], [0%,100%], [1,10000], respec-
tively, with the default settings 50, 50%, and 100. Fig. 4
summarizes the comparison on runtime of all algorithms.

minSupp. Fig. 4a presents runtime vs minSupp. For a
small minSupp, the runtime of BL1 and BL2 increases
quickly while the runtime of GRMiner(k) and GRMiner re-
mains relatively stable, even when minSupp reduces to 2. The
efficiency of GRMiner(k) and GRMiner in the case of a small
minSupp comes from the fact that these algorithms prune the
search space using minNhp. This is a huge advantage because
a small minSupp is often required for finding GRs with a high
non-homophily preference that typically exist between small
user groups.

minNhp and Top-k. Fig. 4b studies the effect of minNhp.
BL1 and BL2 do not benefit from a larger minNhp since
they employ only minSupp for pruning. GRMiner(k) and
GRMiner are significantly faster thanks to the minNhp based
pruning. For a small minNhp, GRMiner(k) is faster than
GRMiner by dynamically upgrading minNhp to the smallest
nhp of the top-k GRs found. Fig. 4c examines the joint effect
of k and minNhp on GRMiner(k). As long as one of the
two constraints is tight, i.e., a small k or a large minNhp, the
pruning is effective. With a small k, the smallest nhp of top-k
GRs is likely high, so the upgraded minNhp has a similar
effect to having a large user-specified minNhp.

Dimensionality. Fig. 4d shows the effect of the dimension-
ality 2l, when the first l node attributes listed in Section VI-A
are included and l varies from 2 to 6. All other parameters
are set to their default settings. As the data has more node at-
tributes, the runtime for GRMiner(k) and GRMiner increases
much slower than the two baselines. This is because, as more
attributes can occur on RHS, there is more room for minNhp

pruning in GRMiner(k) and GRMiner according to Theorem
3.

VII. EXTENSIONS

While non-homophily preference (nhp) is defined for the
problem of mining GRs beyond homophily in this paper,
the algorithm framework in Section V can be extended to
different interestingness metrics to solve different tasks. The
support-confidence metric has some drawbacks and several
alternatives have been suggested to address these drawbacks in
the literature. See [29], [30] for a discussion and motivation of
such alternatives. The following are several examples of such
alternative metrics after being adopted to a GR l

w�! r:

laplace(l
w�! r) =

supp(l
w�! r) + 1

supp(l ^ w) + k
(10)

where k is an integer greater than 1.

gain(l
w�! r) = supp(l

w�! r)� ✓ ⇥ supp(l ^ w) (11)

where ✓ is a a fractional constant between 0 and 1.

Piatetsky Shapiro(l
w�! r)

= supp(l
w�! r)� supp(l ^ w)supp(r)

|E| (12)

conviction(l
w�! r) =

|E|� supp(r)

|E|(1� conf(l w�! r))
(13)

lift(l w�! r) =
|E|conf(l w�! r)

supp(r)
(14)

For example, a GR, l w�! r, has a high confidence, but the
true reason for this is that the relevant attribute value on RHS
has a high population among all the edges, i.e., supp(r) or
conf(; w�! r) = supp(r)

|E| is high. One example is the GR D1
found in Section VI-C, which does not represent an interesting
pattern. The lift metric, defined in Eqn. (14), can reduce the
influence of this data skewness.

To adopt these alternative metrics for our algorithms for
mining interesting GRs, a key observation is that all the above
alternative metrics are defined using three supports, namely,
supp(l

w�! r), supp(l ^ w), and supp(r), and these supports
are easily computed. Therefore, in principle, the algorithm for
mining top-k GRs presented in this paper can be applied as
well if the nhp is replaced with one of the above alternative
metrics. In addition, for laplace or gain, the anti-monotonicity
remains valid (proof omitted). This means that similar to
the regular confidence based pruning, candidate GRs can be
pruned based on a given threshold on laplace or gain. For
Piatetsky Shapiro, conviction, and lift, the corresponding
pruning is not available because these metrics do not have the
anti-monotonicity with respect to the RHS r, but the support
based pruning is still applicable. For such metrics, the top-k
GRs have to be found in a post-processing step after finding
all the GRs satisfying the threshold on support.

(a) Time vs minSupp (b) Time vs minNhp

0
20

40
60

80
100 1

100

10000
100

150

200

250

kminNhp (%)

T
i
m
e

(
s
e
c
)

(c) Time vs k and minNhp

4 6 8 10 12
0

500

1000

1500

2000

2500

3000

Dimension

T
i
m
e

(
s
e
c
)

(d) Time vs dimensionality

Fig. 4: Runtime for mining GRs for Pokec data

Education and What-looking-for, for examining var-
ious parameter settings. So the dimensionality of search space
for GRs is 8. We set the ranges of (absolute) minSupp,
minNhp, and k to [2, 10000], [0%,100%], [1,10000], respec-
tively, with the default settings 50, 50%, and 100. Fig. 4
summarizes the comparison on runtime of all algorithms.

minSupp. Fig. 4a presents runtime vs minSupp. For a
small minSupp, the runtime of BL1 and BL2 increases
quickly while the runtime of GRMiner(k) and GRMiner re-
mains relatively stable, even when minSupp reduces to 2. The
efficiency of GRMiner(k) and GRMiner in the case of a small
minSupp comes from the fact that these algorithms prune the
search space using minNhp. This is a huge advantage because
a small minSupp is often required for finding GRs with a high
non-homophily preference that typically exist between small
user groups.

minNhp and Top-k. Fig. 4b studies the effect of minNhp.
BL1 and BL2 do not benefit from a larger minNhp since
they employ only minSupp for pruning. GRMiner(k) and
GRMiner are significantly faster thanks to the minNhp based
pruning. For a small minNhp, GRMiner(k) is faster than
GRMiner by dynamically upgrading minNhp to the smallest
nhp of the top-k GRs found. Fig. 4c examines the joint effect
of k and minNhp on GRMiner(k). As long as one of the
two constraints is tight, i.e., a small k or a large minNhp, the
pruning is effective. With a small k, the smallest nhp of top-k
GRs is likely high, so the upgraded minNhp has a similar
effect to having a large user-specified minNhp.

Dimensionality. Fig. 4d shows the effect of the dimension-
ality 2l, when the first l node attributes listed in Section VI-A
are included and l varies from 2 to 6. All other parameters
are set to their default settings. As the data has more node at-
tributes, the runtime for GRMiner(k) and GRMiner increases
much slower than the two baselines. This is because, as more
attributes can occur on RHS, there is more room for minNhp

pruning in GRMiner(k) and GRMiner according to Theorem
3.

VII. EXTENSIONS

While non-homophily preference (nhp) is defined for the
problem of mining GRs beyond homophily in this paper,
the algorithm framework in Section V can be extended to
different interestingness metrics to solve different tasks. The
support-confidence metric has some drawbacks and several
alternatives have been suggested to address these drawbacks in
the literature. See [29], [30] for a discussion and motivation of
such alternatives. The following are several examples of such
alternative metrics after being adopted to a GR l

w�! r:

laplace(l
w�! r) =

supp(l
w�! r) + 1

supp(l ^ w) + k
(10)

where k is an integer greater than 1.

gain(l
w�! r) = supp(l

w�! r)� ✓ ⇥ supp(l ^ w) (11)

where ✓ is a a fractional constant between 0 and 1.

Piatetsky Shapiro(l
w�! r)

= supp(l
w�! r)� supp(l ^ w)supp(r)

|E| (12)

conviction(l
w�! r) =

|E|� supp(r)

|E|(1� conf(l w�! r))
(13)

lift(l w�! r) =
|E|conf(l w�! r)

supp(r)
(14)

For example, a GR, l w�! r, has a high confidence, but the
true reason for this is that the relevant attribute value on RHS
has a high population among all the edges, i.e., supp(r) or
conf(; w�! r) = supp(r)

|E| is high. One example is the GR D1
found in Section VI-C, which does not represent an interesting
pattern. The lift metric, defined in Eqn. (14), can reduce the
influence of this data skewness.

To adopt these alternative metrics for our algorithms for
mining interesting GRs, a key observation is that all the above
alternative metrics are defined using three supports, namely,
supp(l

w�! r), supp(l ^ w), and supp(r), and these supports
are easily computed. Therefore, in principle, the algorithm for
mining top-k GRs presented in this paper can be applied as
well if the nhp is replaced with one of the above alternative
metrics. In addition, for laplace or gain, the anti-monotonicity
remains valid (proof omitted). This means that similar to
the regular confidence based pruning, candidate GRs can be
pruned based on a given threshold on laplace or gain. For
Piatetsky Shapiro, conviction, and lift, the corresponding
pruning is not available because these metrics do not have the
anti-monotonicity with respect to the RHS r, but the support
based pruning is still applicable. For such metrics, the top-k
GRs have to be found in a post-processing step after finding
all the GRs satisfying the threshold on support.

Understanding how individuals form connections in a social network holds the key in many emerging applications. The literature
primarily focused on the connections resulting from the homophily principle observed on social ties. In this work, we took a step in
the direction that how to extract “novel” connections that are not expected from homophily by modeling the impact of homophily in
the interestingness measure of connections. We formulated this problem as mining top-k group relationships from a social network
and presented an efficient solution. This work is helpful in user behavior analysis, friend/products recommendation, missing value
inference, etc.

ü  Alternative metrics other than nhp
ü  Deal with unstructured data
ü  Predictive model

Conclusion & Future Work
Conclusion

Future work

ICDE	2016	
May	16-20,	2016	·	Helsinki,	Finland

