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Abstract. The research related to age estimation using face images has
become increasingly important. We propose an age estimator using two
kinds of local features, the gradient features which well describe the lo-
cal characteristic, and the Gabor wavelets which reflect the multi-scale
directional information. The RealAdaBoost algorithm with a complexity
penalty term in the feature selection module is applied to choose mean-
ingful regions from human face for feature extraction, while balancing the
discriminative capability and the computation cost at the same time. Fur-
thermore, the hierarchical classifier, which is composed of an age group
classification (e.g., 15-39 years old, 40-59 years old etc.) and a detailed
age estimation (e.g. 19, 53 years old, etc.) are utilized to get the final
age. Experimental results show that the proposed approach outperforms
the methods using single feature on PAL and FG-NET database. It also
achieves competitive accuracy with the state-of-the-art algorithms.

1 Introduction

Systems based pattern recognition have been proven to be very useful in many
areas such as security and access control, human detection, human computer
interaction, and brain computer interface. Recently, the research related to age
estimation using face images is more important than ever. The potential appli-
cations include automatic guest enrollment, parent TV program control, video
surveillance, etc.

In general, age estimation systems consist of two steps: feature extraction and
classification/regression. The features used in age estimation can be categorized
into the local features and the global features. The local features are extracted on
some regions which might contain specific facial characteristic, such as wrinkles
and freckles. They have been used to classify people into age groups. Conversely,
the global features are extracted based on whole face shape or all facial feature
points. They are generally used to estimate the exact age. Some researchers also
use hybrid features to improve the estimation accuracy, which is the combination
of local features and global features.

After feature extraction, the classification/regression module is utilized to
train the age estimator. The commonly-used algorithms include the age group
classification, single-level estimation and the hierarchical age estimation. Age
group classification is an approach that roughly predicts an age group, whereas
single-level method focuses on detailed age prediction. The hierarchical method is
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a coarse-to-fine method which integrates the single-level and age group methods
together.

Regarding the efficiency issue, local features based methods perform better
compared to global features based methods utilizing ASM [1] or AAM [2]. Un-
fortunately, the use of the local features for age estimation has not been well
investigated. The methods extracting a dense feature vector for each local re-
gion in the aligned face might lead to dimension redundant. In addition, using
dense feature is relatively slow. Some other algorithms use AdaBoost to select
key dimensions [3] from the dense features. But it is difficult to describe a spe-
cific pattern using single dimensional feature in complicate recognition tasks. It
also leads to potential risk of weakening the discriminative power of the resulting
classifier.

To solve this problem, we focus on selecting the meaningful regions in hu-
man face for feature extraction, while dealing with the accuracy and efficiency
at the same time. This paper has two contributions. Firstly, we integrate three
kinds of localized features together for age estimation, including SIFT, HOG,
and Gabor. In addition, different from simply mixing or concatenating these fea-
tures, we use the complexity-aware RealAdaBoost algorithm, which includes a
complexity penalty term in the process of feature selection. As a result, both the
discriminative power and the computation cost of the features are evaluated in
the training procedure. We divide the training samples into 4 age groups, 0-15,
16-40, 41-59, and 60+. The above complexity-aware RealAdaBoost is applied to
select the meaningful regions on each age group respectively. Then the support
vector machine is utilized to train a hierarchical age estimator based on these
selected features. Plenty of experiments on public datasets are used to evaluate
our method. The experimental results show that our approach achieves signifi-
cant improvement on the estimation accuracy compared to using single features.
The result is also competitive with the state-of-the-arts approaches in PAL and
FG-NET database.

The rest of this paper is organized as follows. Section 2 is the related work.
Section 3 presents the features used in this paper. Section 4 introduces the
RealAdaBoost algorithm with the complexity-aware criterion. Section 5 shows
our experimental results. Conclusion is given in the last section.

2 RELATED WORK

There has been a great number of work about feature extraction for age esti-
mation. Kwon and Lobo [4] classify facial images into three age groups using
the distance ratio of facial components and the wrinkles. Hayashi et al. [5] use
histogram equalization and Hough transform for skin extraction and wrinkle
detection. A lookup table containing the wrinkle state against appearance at a
given age and gender is utilized for age estimation. Fukai et al. [6] adopt fast
Fourier transform to extract features from a face image by genetic algorithms.
Gao et al. [7] integrate Gabor features and a fuzzy version of Linear Discrimi-
nant Analysis (LDA) to classify face into various age classes. Mu et al. [8] use
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biologically inspired features and introduced a new operator to model the aging
process. Yan et al. [9] combine the local feature and global feature together and
utilize a hierarchical classifier to improve the performance.

The problem of age estimation can be converted into a classification/regression
problem. Classification can be in groups such as babies, teens, adults or 1-5, 5-
10, 10-15, while the regression method predicts the exact age based on a set of
coefficients learnt by using suitable loss functions. Lanitis et al. [10] approach the
problem of age estimation in a regression way. They propose a quadratic function
where age is dependent on feature vector extracted from the face. Ueki et al. [11]
introduce a two phased approach based on LDA and 2D-LDA and have used only
the first four dimensions of the extracted features to make Gaussian classifier
to classify images in various age groups. Wang et al. [12] propose a novel data
selection of the Furthest Nearest Neighbour (FNN) that generalizes the margin-
based uncertainty to the multi-class case to handle large data efficiently in age
classification. Guo et al. [13] and Liu et al. [14] solve the problem by Support
Vector Machines (SVM) and Support Vector Regression(SVR). Kohli et al. [15]
propose a technique which extracts features based on AAM and use a global
classifier to obtain a rough estimate distinguishing between child/teen-hood and
adulthood. An improved version of their work based on hierarchical classifier is
published in [16].

3 FEATURES USED FOR FACE DESCRIPTION

In this section, we will introduce the three localized features used in our method,
SIFT, HOG, and Gabor.

3.1 Gradient features

Scale Invariant Feature Transform (SIFT) is invariant to scaling, translation and
rotation, and partially invariant to illumination changes and affine projection.
Using these descriptors, objects can be reliably recognized even in the case of
different views, low illumination or occlusion. In SIFT feature extraction, we
first build a scale space by convolving it with multi-scale Gaussian kernels and
then calculate the Difference of Gaussian (DoG) between each two adjacent
scale spaces. The maximum and minimum of the DoG are selected as candidate
interest points, from which elements with low contrast and edge responses are
excluded.

After key points detection, we summarize information about local gradient
around each key point, as shown in Fig. 1. The histogram of gradient orientation
is computed as the resulting feature vector. In our work, we extract 4 × 4 his-
tograms with 8 orientation bins for each candidate region. The final dimension
of SIFT feature is 4× 4× 8 = 128.

Histogram of Oriented Gradient (HOG) divides the image region into a cell-
block structure and generates histogram based on the gradient orientation and
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Fig. 1. SIFT feature extraction

spatial location. The input region (block) is divided into small connected re-
gions, called cells, and for each cell a histogram of edge orientations is com-
puted. The histogram channels are evenly spread from 0 to 180 degrees. The
histogram counts are normalized for illumination compensation. This can be
done by accumulating a measure of local histogram energy over the somewhat
larger connected regions and using the results to normalize all cells in the block.
The concatenation of these histograms yields the final HOG descriptor. In our
case, we extract 4 cells and 8 gradient orientation bins for each candidate block,
as shown in Fig. 2. The dimension of HOG is 4× 8 = 32.

Fig. 2. HOG feature extraction

HOG is not invariant to rotation, but the computation cost is only 1/5 com-
pared to SIFT. This will be considered in the complexity-aware process of the
RealAdaBoost procedure.

3.2 Gabor filters

The Gabor wavelets, whose kernels are similar to the 2D receptive field profiles
of the mammalian cortical simple cells, exhibit desirable characteristics of spatial
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Fig. 3. Gabor filters using 3 scales and 6 orientations

locality and orientation selectivity, and are optimally localized in the space and
frequency domains. The Gabor wavelets are defined in equation (1)

φk(z) =
k2

σ2
e

k2z2

2σ2 [eikz − e−σ2

2 ], . . . (1)

where σ decides the ratio of the window width and the wave length, z is the
normalization vector, k controls the width of the Gaussian function, the wave
length and direction of the shocking part, defined as follows:

k = kve
iφu ,

where kv = kmax/fv and φu = πu/n. kmax is the maximum frequency, f is
the spacing factor between kernels in the frequency domain, n is the maximum
orientation number.

The Gabor wavelets in (1) can be generated from the mother wavelet, by scal-
ing and rotation via the wave vector k. Each kernel is a product of a Gaussian
envelope and a complex plane wave, while the first term in the square brackets
in (1) determines the oscillatory part of the kernel and the second term com-
pensates for the DC value. The effect of the DC term becomes negligible when
the parameter σ, which determines the ratio of the Gaussian window width to
wavelength, has sufficiently large values. In our case, we utilize three scales and
six orientations to represent the components. And we set
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σ = 2π kmax =
π

2
f =
√

2.

An example of the extracted Gabor features of an input face are illustrated in
Fig. 3.

The feature dimension of dense Gabor feature depends on the size of the
block, it will be quite high if we want to extract features in a large region. So
we utilize a sub-sampling strategy, which applies a 2× 2 to 6× 6 sub-sampling
based on the block size. The Gabor features are extracted only on the sub-
sampled pixels. Using this strategy, the minimum feature dimension of Gabor
is 3 × 6 × 9 = 162 (6 × 6 block with 2 × 2 sub-sampling), and the maximum is
3× 6× 30 = 540 (32× 40 block with 6× 6 sub-sampling).

4 LEARNING THE FEATURES USING
REALADABOOST WITH COMPLEXITY PENALTY
TERMS

We utilize RealAdaBoost to select the key features classifying each age group
respectively. In RealAdaBoost, an image feature can be seen as a function from
the image space to a real valued range f : x→ [fmin, fmax]. The weak classifier
based on f is a function from the feature vector x to a real valued classification
confidence space. For the binary classification problem, suppose the training
data as (x1, y1), . . . , (xn, yn) where xi is the training sample and y ∈ {−1, 1}
is the class label, we first divide the sample space into Nb several equal sized
sub-ranges Bj

Xj = {x|f(x) ∈ Bj}, j = 1, . . . , Nb. . . . (2)

The weak classifier is defined as a piecewise function

h(x) =
1

2
ln(

W j
+ + ε

W j
− + ε

), . . . (3)

where ε is the smoothing factor, W± is the probability distribution of the feature
value for positive/negative samples, implemented as a histogram

W j
± = P (x ∈ Xj , y ∈ {−1, 1}), j = 1, . . . , Nb. . . . (4)

The best weak classifier is selected according to the classification error Z of
the piecewise function in equation (5)

Z = 2
∑
j

√
W j

+W
j
−. . . . (5)

We adopt RealAdaBoost to learn the key regions and the type of feature
extraction methods. In consideration of the efficiency, we add a complexity-
aware criteria into the decision term of RealAdaBoost, as shown in equation
(6)
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Z = 2
∑
j

√
W j

+W
j
− + a · fp · C, . . . (6)

where C is the computation cost of the features, a is the complexity-aware factor
to balance the discriminative capability and the computation complexity, fp is
the false positive rate of current stage. In the training procedure, features with
minimum Z are selected.

The equation (5) could be explained as follows, in the first stages of RealAd-
aBoost, the age group of faces are still easy to be classified, so efficient features
are preferred. In the following stages, the patterns of the training samples are
complicated. Then the features with high computation cost are considered.

We apply the above RealAdaBoost on the 4 age group classification tasks
respectively. In each task, the positive samples are the samples in that age group,
while the negative samples are the combination of all samples in other 3 groups.
To evaluate the computation cost, we test the execution time of different feature
extraction modules and set the C of SIFT to 10, HOG to 2, and Gabor to
3-6 based on its dimension. The complexity-aware factor a is set to 0.15 in
our experiment. The diagram of the whole complexity-aware RealAdaBoost is
illustrated in Fig. 4.

Parameters
N number of training samples
M number of evaluated features each iteration
T maximum number of weak classifiers

Input: Training set

{(xi, yi)}, i = 1, . . . , N,xi ∈ Rd, yi ∈ {−1, 1}
1. Initialize sample weight, classifier output, and false positive rate

wi = 1
N
, F (xi) = 0, i = 1, . . . , N ,fp0 = 1

2. Repeat for t = 1, 2, . . . , T

2.1 Update the sample weight wi using the hth weak classifier output

wi = wie
−yihi(xi)

2.2 For m = 1 to M
2.2.1 Generate a random region with a specific feature extraction method (SIFT,

HOG, or Gabor)

2.2.2 Extract features and do least square to yi ∈ {−1, 1}
2.2.3 Build the predict distribution function W+ and W−

2.2.4 Select the best feature which minimizes Z in equation (6)

2.3 Update weak classifier using (3)

2.4 Update strong classifier Ft+1(xi) = Ft(xi) + ht(xi)

2.5 Calculate current false positive rate fpt

3. Output classifier F (x) = sign[
∑T

j=1 hj(x)]

Fig. 4. Learning the features using RealAdaBoost with complexity penalty term
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5 Experiments

5.1 Experiments setup

In the experiments, two databases are used to evaluate the performance of the
proposed method: the PAL aging database and the FG-NET aging database. The
PAL aging database contains 430 Caucasians with age range 18-93 years old [17].
The images in the database were captured using a digital camera with fixed light
and position conditions. The resolution of the images is 640 × 480 pixels. This
database includes various expressions such as smiling, sadness, anger, or neutral
faces. In the experiments, we used only neutral faces in order to exclude the
facial expression effect. Sample images used in our experiments are shown in
Fig. 5.

Fig. 5. Sample images in PAL aging database

The FG-NET aging database [18] is one of the most frequently used database
for estimating age in the previous works. The database has 1,002 images com-
posed of 82 Europeans in the age range 0-69 years old. Individuals in the database
have one or more images included at different ages. These Images were obtained
by scanning. Therefore, there are extreme variations in lighting, expression, back-
ground, pose, resolution and noise from scanning. Sample images of the FG-NET
aging database are shown in Fig. 6.

With the PAL aging databases, five-folds cross validations are performed to
evaluate the performance, which is similar to [19]. The age and gender are evenly
distributed each fold. With the FG-NET aging database, Leave-One-Person-Out
(LOPO) is performed because it contains a number of images of the same person.
That means, 82-folds are used on the FG-NET aging database.

We divide the training samples into 4 age groups, 0-15, 16-40, 41-59, and
60+. The complexity-aware RealAdaBoost is applied on each group classification
to select the meaningful features. Moreover, a two-steps hierarchical classifier is
further adopted to generate the final age estimator. Firstly, linear support vector
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Fig. 6. Sample images in FG-NET aging database

machine based age group classification is trained based on the selected features.
Then we use the support vector regression to estimate the exact age in each age
group.

The evaluation is based on the Mean Absolute Error (MAE) and the Cumu-
lative Score (CS). The MAE is defined as the mean of the absolute difference
between the estimated age and the real age, as

MAE =

∑N
i=1 |ei − gi|

N
,

where N is the number of the test images, ei is the estimated age of the test
image i and gi is the ground-truth age. The Cumulative Score(CS) is defined as
the ratio of the number of data whose errors are lower than a threshold, as

CS =
Nerror≤threshold

N
.

Table 1. MAE in PAL database. Units: years old

Approach Mean Absolute Error (MAE)

SIFT 5.98

HOG 6.14

Gabor 5.88

SIFT + HOG 5.54

SIFT + Gabor 5.05

HOG + Gabor 5.57

All three features 4.29

[19] 5.36

[9] 4.33

[20] 4.52
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5.2 Experimental results

We train 7 age estimators using the proposed framework, which includes the
classifiers utilizing single feature (SIFT, HOG, and Gabor), the combination of
two features, and all of the three features. There are no complexity-aware pro-
cedure if single feature is adopted. Table 1 and table 2 present the MAE of
these age estimators in the PAL database and FG-NET database. It can be seen
that using the complexity-aware feature combination, the estimation accuracy is
significantly improved compared to using SIFT, HOG, or Gabor independently.
Using all three features, the MAE is further reduced. The accuracy is also com-
parable with the state-of-the-art algorithms in both of the two datasets.

Table 2. MAE in FG-NET database. Units: years old

Approach Mean Absolute Error (MAE)

SIFT 5.97

HOG 5.86

Gabor 5.68

SIFT + HOG 5.27

SIFT + Gabor 5.09

HOG + Gabor 5.10

All three features 4.49

[21] 5.05

[9] 4.66

[22] 4.67

We also plot the curve of the cumulative scores for the above 7 age estimators
in Fig. 7. It can been seen that the cumulative score moved up at a clear border on
the PAL database and FG-NET database using the proposed complexity-aware
method (black curve). This result also shows the effectiveness of our method.

5.3 Analysis

We draw the first 7 features selected by the RealAdaBoost algorithm in LFW
database, as shown in Fig. 8. There are 2 SIFT features, 3 HOG features, and 2
Gabor features. It could be seen that most of the features lays on the eyes and
mouth region. This result is reasonable, because it is much easier to estimate the
age from eye and mouth rather than other face regions such as nose or eyebrow.

We test the resulting classifiers on a desktop PC with a 2.5 GHz I3 PC and 2
GB memory. The execution speed is shown in Table 3. We find that the estimator
based on SIFT is relatively slow compared to the one using HOG or Gabor. If
we combine these features together and use the complexity-aware strategy, the
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Fig. 7. CS on PAL and FG-NET database

Fig. 8. The first 7 features selected by RealAdaBoost in human face
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execution time will be reduced, shown as the rows with asterisks. Furthermore, if
all three features are used, the speed is significantly improved from 26.88ms per
face to 12.22ms per face using the complexity-aware RealAdaBoost. So we can
get the conclusion that the proposed method contributes to both the accuracy
and the efficiency of age estimation.

Table 3. Execution Speed of age estimators. Item with * denotes that the complexity-
aware strategy is adopted.

Approach Recognition time(ms)

SIFT 37.54

HOG 13.09

Gabor 20.13

SIFT + HOG (*) 22.11

SIFT + Gabor (*) 16.22

HOG + Gabor (*) 15.09

All three features 26.88

All three features (*) 12.22

6 Conclusion

In this paper, we proposed a local feature-based face representation for age
estimation. We used a RealAdaBoost algorithm with the complexity penalty
term to select the meaningful features, which successfully balances the accuracy
and efficiency. High age estimation accuracy were reported in comparison to
previously published results on two famous datasets. 4.29 MAE was achieved for
PAL, and 4.49 was achieved for FG-Net.

The approach proposed in this paper could be further studied. We have
already found that the proposed framework is also effective on other recognition
tasks, such as gender recognition and emotion recognition.
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