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Abstract

In this paper, we propose a high-accuracy object detec-
tor based on co-occurrence features. Firstly, we introduce
three kinds of local co-occurrence features constructed by
the traditional Haar, LBP, and HOG respectively. Then the
boosted detectors are learned, where each weak classifier
corresponds to a local image region with a co-occurrence
feature. In addition, we propose a Generalization and Effi-
ciency Balanced (GEB) framework for boosting training. In
the feature selection procedure, the discrimination ability,
the generalization power, and the computation cost of the
candidate features are all evaluated for decision. As a re-
sult, the boosted detector achieves both high accuracy and
good efficiency. It also shows the performance competitive
with the state-of-the-art methods for pedestrian detection
and general object detection tasks.

1. Introduction

Object detection is an indispensable technology in many
applications such as artificial intelligence, multimedia sys-
tems, and video surveillance. The major problem is that
the object appearances vary greatly because of different il-
luminations, view points, poses, and the presence of oc-
clusions. This has motivated the invention of various ap-
proaches. Among them, a commonly used paradigm is to
train a boosted classifier based on local features [14][26].
For example, Viola et al. [26] used AdaBoost algorithm to
train a cascade classifier based on the Haar feature. Zhang
et al. [36] proposed an improved version of the Haar fea-
ture based on up-right human body to construct a cascade
pedestrian detector. Dollar et al. [7] enabled neighbouring
detectors to communicate by a proposed crosstalk cascade
for pedestrian detection.

Boosting family algorithms achieve considerable perfor-
mance for some object detection tasks. However, since the
difficulty of the training samples increases stage by stage,
it gets more and more difficult to find appropriate features

to describe the object characteristic effectively. For those
more complicated objects such as multi-view and multi-
pose pedestrian, the problem becomes much more serious
that in later training rounds the classification task may be
beyond the descriptive ability of traditional features [31].
As a result, many researchers propose to use more pow-
erful features, such as high-order gradient features, het-
erogeneous features and feature fusion. Recently, the co-
occurrence features [18][20][35] have become a hot topic.
The co-occurrence information extracted by these features
are able to capture some complicate object characteristics.
Unfortunately, they also lead to heavy computation cost be-
cause the dense feature vector is time-consuming to calcu-
late. In addition, we know that the performance of an ob-
ject detector is decided not only by the discrimination abil-
ity of the features, but also by their generalization power,
which is defined as the ability to deal with the cases that
are not part of the training process. Due to the fact that
some diverse co-occurrence patterns are sensitive to back-
ground noise, most of the co-occurrence features have poor
generalization power. The detector succeeding in one scene
might fail in another scene with different conditions, such
as pose, illumination, etc. This is actually a trade-off prob-
lem. Although using stronger features may contribute to the
training accuracy, it will increase the risk of both low gen-
eralization power and high computation cost.

The major contributions of this paper are two folds.
Firstly, we design a set of localized co-occurrence features
which can be computed efficiently. Three kinds of co-
occurrence features, CoHaar, CoLBP, and CoHOG are con-
structed. In addition, a new Generalization and Efficiency
Balanced (GEB) framework is proposed, which is utilized
to evaluate the accuracy, efficiency, and robustness of dif-
ferent weak classifiers at the same time. As a result, the
boosted detector based on GEB not only achieves high ac-
curacy, but also has good generalization power and consid-
erable efficiency. The experiments on public datasets show
that our method achieves competitive performance with the
state-of-the-art approaches in both pedestrian and general
object detection tasks.
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2. Related Work
In object detection, utilizing appropriate machine learning
methods with discriminative local features is a commonly-
used framework. Many local features were proposed for
various object detection tasks. Most of them reflect the
characteristic of some pre-defined local patterns, for exam-
ple, Haar [26][36], SIFT [12][13], HOG [5], and covariance
matrix [17][23]. Lowe [13] designed the Scale Invariant
Feature Transform (SIFT) for object recognition. Dalal &
Triggs [5] proposed the basic form of the HOG with 2×2
cells. Multi-size versions were developed in [1][37], and
further extended to pyramid structure [4][6][15][33]. Tuzel
et al. [25] utilized the covariance matrix projected on Rie-
mann manifolds for detection. Sometimes these features
are combined with each other to enhance the discriminative
power. For instance, Levi et al. [11] utilized an accelerated
version of the feature synthesis method. Paisitkriangkrai et
al. [21] built features on the basis of low-level visual fea-
tures combination and spatial pooling, which improved the
translational invariance and thus the robustness of the de-
tection process.

Recently, many co-occurrence features are proposed.
According to whether the spatial neighbouring relationship
among features is used in computing the co-occurrence
statistics, existing co-occurrence features can be sorted into
two categories: global co-occurrence features and local co-
occurrence features. In [35], Yuan et al. proposed to mine
the co-occurrence statistics of SIFT words for visual recog-
nition. Rasiwasia et al. [19] calculated the co-occurrence
information for every pixel in the whole image. These
works fall into the category of global co-occurrence fea-
tures. In [18][20][34][38], the spatial co-occurrences are
computed within locally adjacent neighbours instead of on
the whole image. Mita et al. [38] designed a face detector
based on co-occurrence of multiple Haar-like features. Ren
et al. [20] utilized the local co-occurrence of gradient ori-
entation to build a co-occurrence HOG histogram for object
detection. Xu et al. [32] designed a co-occurrence LBP fea-
ture which detected co-occurrence orientation through gra-
dient magnitude calculation. A rotation invariant version
was proposed by Nosaka et al. [16] for texture classifica-
tion and face recognition, and further improved by Qi. et
al. [18]. Most of the above co-occurrence features are de-
signed for specific object categories. Dense co-occurrence
patterns and high dimensional vectors are utilized, so that
the generalization power and efficiency of the resulting de-
tectors may be relatively low. Few of them work well in the
general object detection task.

Boosting framework is widely used in training the cas-
cade classifier for fast object detection. The cascade clas-
sifier is well performed on the object classes with small
intra-class variation, e.g., the frontal-view faces or side-
view cars. To strengthen the classification ability, some

Figure 1. The pixel pairs in co-occurrence patterns. Each black
pixel and center pixel correspond to a pixel pair. The highlight
parts show the pairs with offsets U ≤ 4, V ≤ 4.

previous approaches follow the divide-and-conquer strategy
to build strong classifiers with more complicate structures.
For example, Wu et al. [30] proposed the cluster boosted
tree method, in which the sample space is divided by unsu-
pervised clustering based on discriminative image features.
Heng et al. [10] proposed a shrink boost method solving
a sparse regularization problem with the boosting step for
weak classifier construction, and the shrinkage step for fea-
ture dimension reduction. These algorithms emphasize the
discrimination ability more than other factors, so that they
will increase the computation complexity of both the train-
ing and testing procedure. Designing an effective frame-
work to solve this trade-off problem is necessary.

3. Co-occurrence features
3.1. Co-occurrence patterns

The co-occurrence features can be constructed based on the
statistics information of several pre-defined co-occurrence
patterns. Each co-occurrence pattern {U, V, F1, F2} is a
comparison between pixel pair a = {x1, y1, f1} and b =
{x2, y2, f2} satisfying the following constraint

|x1 − x2| = U, y1 − y2 = V, f1 = F1, f2 = F2. (1)

In (1), the (x1, y1), (x2, y2) are the coordinates of a and b.
The offset U, V ≥ 0 show the spatial distance of pixel a and
b. f1, f2 are scores of a and b generated by feature extrac-
tion algorithms. F1, F2 are constants in the score space F .
As shown in Fig. 1, each black pixel and the center pixel
correspond to the pixel pair of a co-occurrence pattern with
U ≤ 4, V ≤ 4.

To compute a stable distribution that is robust against
noise, we utilize the histogram based on the division of
score space F as the co-occurrence feature vector. Given an
input window R, the offset U, V , and an extraction method
to generate F , we divide F into n bins {F1, . . . , Fn}. The
co-occurrence feature C is a n2 dimension vector, where
each dimension ci,j is the number of the pixel pairs in R
satisfying the co-occurrence pattern (U, V, Fi, Fj)
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Figure 2. 8× 8 co-occurrence histograms.

Figure 3. Haar features. Black regions have -1 weight, and white
regions have +1 weight.

C(U, V ) = [c1,1, c1,2, . . . , c1,n, . . . , cn,n], (2)
ci,j = Count(U, V, Fi, Fj) in R, 1 ≤ i, j ≤ n.

As shown in Fig. 2, the two axes correspond to the di-
vided score space F , and the co-occurrence feature vector
has 8× 8 = 64 dimensions.

Compared to the covariance matrix, the co-occurrence
features utilize the co-occurrence histogram to describe the
distribution of object characteristics instead of the covari-
ance. Our co-occurrence features are based on single co-
occurrence pattern, so the extraction will be relatively fast
if we adopt efficient methods to generate F . In our case, we
utilize the methods inherited from Haar, LBP, and HOG to
construct the CoHaar, CoLBP, and CoHOG features respec-
tively.

3.2. CoHaar feature

Haar-like features [26], shown in Fig. 3, consist of two or
more rectangular regions enclosed in a template. Such fea-
tures produce a feature value as

F =

l∑
t=1

wtIt, (3)

where t iterates through all l rectangles, the It represents the
mean intensity of the pixels enclosed within the tth rectan-
gle. Every rectangle in the Haar feature is assigned a weight
that is represented by wt. The weights are set such that∑l
t=1 wt = 0 is satisfied. The computation of Haar feature

is quite efficient because the intensity sum in any rectangles
can be easily calculated by the integral image [26].

To construct the CoHaar feature, we extend the Haar fea-
ture extraction to the gradient domain. In consideration of

the efficiency, we utilize the x and y directional gradient im-
age respectively. The F of CoHaar feature in (2) is replaced
with the Haar feature extraction (3) on the intensity domain,
gradient-x domain or gradient-y domain. We quantize F to
n = 8 bins, so the CoHaar feature dimension is 8× 8 = 64.
Given an input window R and an indicator k, the CoHaar
feature is formulated as

CoHaar(U, V, k) = [c1,1, c1,2, . . . , c1,8, . . . , c8,8] (4)
ci,j = Count(U, V, Fi, Fj) in R

F =

l∑
t=1

wtIt(k), 1 ≤ i, j ≤ 8,

where Fi, Fj are the quantized Haar feature response, k
ranges from 0 to 2, I(k) is the intensity sum when k = 0,
the gradient sum on gradient-x image when k = 1, and on
gradient-y image when k = 2.

3.3. CoLBP feature

The traditional LBP is developed for texture classification
and the success is due to its robustness under illumina-
tion variations, computational simplicity and discriminative
power on specific patterns. Fig. 4 represents an example
of the traditional LBP and its extension. LBP is a binary
coding of the intensity contrast of the center pixel/region
and 8 neighbouring pixels/regions. If the intensity of the
neighbouring pixels/regions are higher than the center one,
the corresponding bit will be assigned 1, otherwise it will be
assigned 0. Given a center pixel e, the LBP feature response
is defined by

LBPd,r =

d∑
i=1

sign(Ii − Ie)× 2i−1, (5)

where d is the number of neighbouring pixels/regions, r is
the distance between the neighbouring pixels/regions and
the center one, I is the sum of intensity.

Uniform LBP is a subset of LBP, defined by ∆ in (6),
which shows the number of bitwise transitions from 0 to 1
or vice versa when the bit pattern is considered circular

∆(LBPd,r) = |sign(Id−1 − Ie)− sign(I0 − Ie)|

+

d−1∑
i=1

|sign(Ii − Ie|)− sign(Ii−1 − Ie). (6)

Fig. 5 shows all uniform patterns for LBP8,1. The bi-
nary patterns are reduced to 59, where all the non-uniform
patterns are merged into another pattern.

Ojala et al. [24] has shown that over 90% local struc-
tures belong to uniform patterns when using the parameter

3
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Figure 4. Traditional LBP8,1 feature and its variant.

Figure 5. 58 uniform patterns of LBP8,1 feature. Each row corre-
sponds to a cluster in the CoLBP extraction.

of d = 8, r = 1. Thus, the value calculated by uniform
LBP is more stable and less prone to noise. Then we pro-
pose the CoLBP based on these uniform patterns. Simi-
larly, the LBP extraction (5) is applied on both the intensity
and gradient domain. In consideration of the rotation in-
variance, we merge the 58 uniform LBP8,1 patterns to 8
clusters based on the number of ‘1’ values, shown as the
8 rows in Fig. 5. All the non-uniform patterns construct
another cluster. As a result, the LBP response space is di-
vided into n = 9 bins, so the CoLBP histogram consists of
9 × 9 = 81 dimensions. Given an input window R and an
indicator k, the CoLBP feature vector is generated by

CoLBP (U, V, k) = [c1,1, c1,2, . . . , c1,9, . . . , c9,9] (7)
ci,j = Count(U, V, Fi, Fj) in R

F = LBPd,r,k, 1 ≤ i, j ≤ 9,

where Fi, Fj are the cluster number of LBP response F ,
LBPd,r,k is the LBP response (5) on intensity image when

k = 0, on gradient-x image when k = 1, and on gradient-y
image when k = 2.

3.4. CoHOG feature

Histogram of Oriented Gradient (HOG) breaks the im-
age region into a cell-block structure and generates his-
togram based on the gradient orientation and spatial loca-
tion. Watanabe et al. [29] proposed a dense version ex-
tracting all possible co-occurrence patterns of the gradient
orientation in the whole image, which is rather time con-
suming. Instead, we build our CoHOG based on single co-
occurrence pattern. The gradient orientation on both the in-
tensity domain and the gradient domain are utilized as the F
in CoHOG feature and further quantized to 8 bins. There-
fore, there are 8 × 8 = 64 elements in the co-occurrence
histogram. Given an input window R and an indicator k,
the CoHOG histogram is formulated as

CoHOG(U, V, k) = [c1,1, c1,2, . . . , c1,8, . . . , c8,8] (8)
ci,j = Count(U, V, Fi, Fj) in R

F = GradientOrientationk, 1 ≤ i, j ≤ 8,

where Fi, Fj are the quantized gradient orientation, F is
the gradient orientation on original image when k = 0, the
gradient orientation on gradient-x image when k = 1, and
on gradient-y image when k = 2.

4. Generalization and Efficiency Balanced
Framework

In this section, we will introduce the proposed General-
ization and Efficiency Balanced (GEB) framework based
on RealAdaBoost algorithm [22]. For the binary ob-
ject/background classification problem, denote the input
data as (x1, y1), . . . , (xn, yn) where xi is the training sam-
ple and yi ∈ {−1, 1} is the class label. Each co-occurrence
feature can be seen as a function from the image space to
a real valued range f : x → [fmin, fmax]. We divide the
sample space into Nb equal sized sub-ranges Bj , the weak
classifier is defined as a piecewise function

h(x) =
1

2
ln(

W j
+ + ε

W j
− + ε

), (9)

where ε is the smoothing factor,W± is the probability distri-
bution of the feature response for positive/negative samples,
implemented as a histogram

W j
± = P (x ∈ Bj , y ∈ {−1, 1}), j = 1, . . . , Nb. (10)

The best feature is selected according to the classifica-
tion error Z of the piecewise function (11). Better features
lead to lower Z

4
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Z = 2
∑
j

√
W j

+W
j
−. (11)

If the discriminative ability is the only objective, using
the features minimizing (11) seems to be a good idea. In
our case, the generalization power and computation cost are
also considered. Firstly we discuss the influence of the gen-
eralization power. The classification margin of the weak
classifier h on x is y · h(x), where the h is normalized to
[−1, 1]. This margin represents the classification ability of
the classifier. Larger margins imply lower generalization
error [22]. In addition, using the co-occurrence features,
if the pixel pair in the co-occurrence patterns lay far away
from each other, the feature response will be influenced by
noises because these two pixels might have few contextual
relationship. So we define the term used to evaluate the in-
fluence of the generalization power as

S(h,x) =
y · h(x)

s
, (12)

where s is a parameter related with the offsets (U, V ) in
co-occurrence pattern, calculated as

s =


1 max(U, V ) ≤ δ

1.5− 1

1 + expδ−max(U,V )
max(U, V ) > δ

.

This equation means that we believe the co-occurrence pat-
terns within δ pixels offset are confident. We set δ = 4
because in our experiments, the accuracy of the detectors
trained on larger offset features are lower. (refer to Section
5.2 for details). Balancing the generalization power and the
discrimination ability requires us to evaluate both (12) and
(11). So we add a generalization penalty term into (11),
where α is the generalization-aware factor

Z = 2
∑
j

√
W j

+W
j
− −

α

n · s

n∑
i=1

y · h(xi). (13)

If the confidence of the selected feature is lower, which cor-
responds to a smaller margin and larger s. Then the second
term will be smaller, and Z will be larger. So this feature
will have less probability to be selected.

Then we discuss the influence of the computation cost.
In real object detection, an object detector will go around
the input image to check every candidate detection window.
The number of the false positive windows is far larger com-
pared to the true positive windows, especially at the begin-
ning stages. As a result, the execution time of the whole
detection procedure mainly depends on the number of false
positive windows

T ≈
l∑
i=1

Nneg,iti, (14)

where l is the stage number, Nneg is the number of false
positive windows, t is the computation cost of the weak
classifiers. Because Nneg depends on the current false pos-
itive rate, (14) is equal to (15), where N is the total window
number, fpi is the false positive rate of the ith stage

T ≈
l∑
i=1

Nfpiti = N

l∑
i=1

fpiti. (15)

Then we add another term into (13) as

Z = 2
∑
j

√
W j

+W
j
−−

α

n · s

n∑
i=1

y · h(xi)+β ·fp·t, (16)

where the β is the efficiency-aware factor. The trade-off
of discrimination ability and efficiency in (16) can be ex-
plained as follows: in the beginning stages of RealAd-
aBoost, because the false positive rate is larger, and the tar-
get object is still easy to be classified with the background,
so RealAdaBoost will refer to efficient features. In the fol-
lowing stages when the false positive rate is smaller and the
problem becomes more difficult, the features with higher
computation cost will be considered. This strategy makes
sense, because the overall efficiency of a cascade boosted
detector is mainly influenced by the beginning stages, which
filter most of the negative windows. Using efficiency fea-
tures in the beginning stages clearly contributes to the over-
all efficiency.

With the GEB framework, the training procedure is il-
lustrated in Fig. 6. To learn the best feature, the most intu-
itive way is to look through the whole feature pool, which
is rather time consuming. So we sample M = 60 windows
per iteration to speed up the feature selection process. The
offsets (U, V ) range from (1,1) to (15,30). O = 15 offsets
are sampled per window, while at least 5 of them are within
(4, 4). For CoHaar feature, the four patterns illustrated in
Fig. 3 are utilized, and the block size of single Haar feature
ranges from 4×4 to 20×20. For CoLBP feature, the block
size is set from 1× 1 (traditional LBP) to 8× 8 (LBP vari-
ant). After picking a window and an offset, a random co-
occurrence feature is generated and evaluated according to
(16). We set the computation cost of CoHaar to 2, CoLBP
to 4, and CoHOG to 10. The generalization-aware factor
α is set to 0.1, and the efficiency-aware factor β is set to
0.15, which is decided by the experimental results of sev-
eral detectors with different parameters trained on Caltech
database.

In the training process, the first bootstrap will be called
when 50% of the negative samples are filtered by current
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Parameters
N number of training samples
M number of evaluated windows each iteration
O number of evaluated offsets each iteration
L maximum number of weak classifiers

Input: Training set {(xi, yi)}, yi ∈ {−1, 1}
1. Initialize sample weight and classifier output
wi = 1/N,H(xi) = 0

2. Repeat for l = 1, 2, . . . , L

2.1 Update the sample weight wi using the lth weak
classifier output wi = wie

−yihl(xi)

2.2 For m = 1 to M
For o = 1 to O
For k = 0 to 2
2.2.1 Generate a random R and (U, V )

2.2.2 Calculate feature response C(U, V, k) on R
2.2.3 Build the W+ and W− (10)
2.2.4 Select the best feature minimizing Z (16)
2.2.5 If the fp is lower than 10−6, break

2.3 Update weak classifier hl(x) using (9)
2.4 Update strong classifier Hl+1(xi)

3. Output classifier H(xi) = sign[
∑l
j=1 hj(x)]

Figure 6. Selecting co-features using RealAdaBoost with GEB.

strong classifier. Then new samples are bootstrapped to re-
place the filtered negative samples, and the training is on-
going. Every time 50% of the negative samples are filtered,
the bootstrap will be called. This procedure is repeated un-
til the overall fp is lower than 10−6 or the number of weak
classifiers exceeds L.

5. Experimental Results
5.1. Datasets

We evaluate the proposed method on pedestrian detection
and general object detection tasks. For pedestrian detection,
the INRIA dataset and Caltech dataset are utilized. The IN-
RIA dataset [5] contains 1,774 human annotations (3,548
with reflections) and 1,671 person free images, while the
Caltech dataset [8] consists of about 250,000 frames with a
total of 350,000 bounding boxes and 2,300 unique pedestri-
ans are annotated. The individuals in these datasets appear
in many positions, orientations, and background variety. We
use 64× 128 pedestrians and co-occurrence windows from
6× 6 to 56× 112. The locations of the window centers are
sampled every 4 pixels. As a result, this will generate 7, 997
different windows. The evaluation is based on the detection
rate versus False Positive rate Per Image (FPPI) [27].

For general object detection, the standard benchmark
dataset PASCAL VOC 2007, is employed. This dataset con-
tains images from 20 different categories with about 5,000
images for training and validation, and a test set of size

about 5,000 images. For the aeroplane, bird, bottle, chair,
diningtable, person, pottedplant, sofa, and TV monitor cat-
egory, all samples are used together to train a single detec-
tor. For all other categories, the training samples are divided
into the front/rear view samples and side-view samples ac-
cording to the aspect ratio. Then two detectors are trained
respectively. The final detection result is based on merging
the outputs of these two detectors . The object size (w, h)
used to train these detectors are listed in the second column
of Table 2. The co-occurrence window size ranges from
4 × 4 to w′ × h′, where w′, h′ are the maximum multiple
of 4 smaller than w − 8 and h− 8. As a result, the number
of the co-occurrence windows ranges from 2,546 to 8,022.
The detection performance are measured using the average
precision (AP). A detection result is considered as correct if
it has an intersection-over-union ratio of at least 50% with
a ground-truth object instance.

5.2. Comparison with different co-occurrence fea-
tures and feature combinations

We first evaluate the performance of different co-occurrence
features with conventional RealAdaBoost on INRIA
dataset. Fig. 7(a) illustrates the performance of the boosted
detectors with different co-occurrence features and tradi-
tional features. It can be seen that all the detectors with co-
occurrence features clearly outperform the detectors with
corresponding traditional features. The CoHOG detector
performs better than CoLBP and CoHaar detector, which
shows that gradient orientation co-occurrence is more dis-
criminative compared to intensity and gradient magnitude
co-occurrence. In addition, we notice that the accuracy
of the detectors trained on larger offset (> 4) CoFeatures
are lower, which explains why we use δ = 4 in the gen-
eralization penalty term of GEB. In fact, 90% offsets of
the selected CoFeatures in ‘CoX (All offsets)’ curves are
within (4,4). Compared to the existing co-occurrence fea-
tures, our co-occurrence features are histograms of quan-
tized feature response on selected co-occurrence patterns,
which is more discriminative than the combination of Haar
responses (JointHaar [38]). In addition, using dense feature
vector (CMLBP [16], dense CoHOG [29]) might lead to the
dimension redundant. So the accuracy of our co-occurrence
features are better.

Next, we compare the combination of the proposed 3
co-occurrence features with other feature combinations.
From Fig. 7(b) we could find that the combination
of the co-occurrence features clearly shows better ac-
curacy compared to the combination of low-level fea-
tures ‘Haar+LBP+HOG’. The groups of ‘X+Co-X’ achieve
slightly better compared to using ‘Co-X’, which is still
lower than the combination of CoFeatures. The best one
among these groups, which combines all co-occurrence fea-
ture together, achieves 15% average miss rate. It is a signif-
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Figure 7. Comparison of different co-occurrence features and feature combinations on INRIA pedestrian dataset.

Figure 8. Experiments of GEB framework on Caltech dataset.

icant improvement compared to using single co-occurrence
feature. These results reflect the advantange of using multi-
ple co-occurrence features in pedestrian detection.

5.3. Experiments on the GEB framework

Then we conduct the experiments on Caltech dataset to
show the effectiveness of the GEB framework. Fig. 8
gives the results of the conventional detectors, the detectors
with the generalization penalty (gen.) and efficiency penalty
(eff.) respectively, and using the whole GEB. Firstly we
notice that the proposed co-occurrence features also work
better compared to traditional features and their combina-
tions on Caltech database. Using the generalization penalty,
the accuracy is improved at least 3% for both single co-
occurrence feature and its combinations. Using the effi-
ciency penalty term will not influence the accuracy very
much. We know that in image-based object detection, the
overall accuracy is decided not only by the discriminative
ability of the detector, but also by the generalization power.
So using the GEB framework to balance them could con-
tribute to the accuracy of the resulting classifier.

Moreover, We test the resulting classifiers on a desktop
dual core I7 PC with 8 GB memory. The average execution

Table 1. Execution speed of the detectors on Caltech database.
Approach Detection time(ms) per frame

CoHaar 27.5
CoLBP 36.5
CoHOG 89.4

All features 82.2
All features+GEB 50.8

speed for 640×480 images is shown in Table 1. It could be
seen that although CoHOG has better discrimination power
compared to CoHaar and CoLBP, but the computation is
relatively slow because there is no efficient implementation
on the algorithm level to get the gradient orientation co-
occurrence. If we combine these features together and use
the GEB framework, the execution time is significantly re-
duced from 82.2ms per frame to 50.8ms per frame. These
results show the effectiveness of the GEB framework on im-
proving the efficiency.

5.4. Comparison with the state-of-the-art

Furthermore, we compare our results with the state-of-the-
art on pedestrian detection in Fig. 9. We notice that us-
ing the combination of all 3 co-occurrence features, the
accuracy is much better than some boosting family meth-
ods (Multiftr, FPDW, pAUCBoost, FisherBoost, Crosstalk),
but the detectors with single co-occurrence feature achieve
lower accuracy compared to the state-of-the-art (SketchTo-
kens, Spatialpooling, LDCF, ACF-Caltech+). The reason
is that the proposed co-occurrence features are extracted
on single scale, so that the discriminative ability might be
lower compared to the evolution of channel features, such
as the dense sampled multi-scale feature in ACF-Caltech+
[15], or the decorrelated features in LDCF [15]. But this
gap can be compensated by the combination of multiple co-
occurrence features selected by GEB framework. As a re-
sult, the ‘All CoFeatures+GEB’ detector achieves competi-
tive accuracy with the state-of-the-art on both two datasets.
In addition, our detector is also better than the MOCO
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Figure 9. Comparison with the state-of-the-art algorithm. (a) INRIA. (b) Caltech.

[2] (46% on Caltech) , which is a combination of zero-
order, first-order, and second-order co-occurrence informa-
tion. The major advantage of our method is that we select
the meaningful co-occurrence patterns by RealAdaBoost,
while MOCO uses all possible patterns with Latent SVM.
There will be some redundant information in the dense fea-
ture vector.

In Table 2, we compare our method with the state-of-
the-art using local features [2][3][9][28] on PASCAL VOC
2007 dataset, in terms of detection AP on the test set.
Firstly, it could be seen that the mAP of using all CoFea-
tures is 0.408, which is better compared to using single co-
occurrence feature. So combining boosted co-occurrence
features are also effective for general object detection. In
addition, we notice that the co-occurrence features based
on binary information (CoHaar, CoLBP) work relatively
well on some object categories with specific structural in-
formation, such as the pottedplant with a consistent base,
or the chair which consists of several rigid parts. In this
case, such co-occurrence features are easier to capture the
binary information. In contrast, the gradient information
based CoHOG works better on the object categories with
complicate appearance such as sheep or sofa. Compared
to the state-of-the-art, the combination of the CoFeatures
are more effective than pyramid HOG [9], MOCO [2] and
SIFT fisher vectors [3]. Using the GEB process, the mAP
is further improved to 43.7%, which is better than heteroge-
neous features [28] including multi-scale HOG and covari-
ance matrix. It also implies that using the combination of
co-occurrence features is better compared to the combina-
tion of traditional features.

6. Conclusion
In this paper, we show that using the co-occurrence fea-
tures for object detection is effective. Three kinds of co-
occurrence features are proposed based on the traditional
Haar, LBP, and HOG, and further combined to train an ob-

ject detector. In addition, we design a GEB framework
which balances the discriminative ability, generalization
power, and computation cost for boosted detector. As a re-
sult, the boosted detector not only achieves high accuracy,
but also is computed efficiently. The experimental results
on INRIA, Caltech, and PASCAL VOC 2007 dataset show
the effectiveness of our method.
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