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ABSTRACT
In this paper, we address the object detection problem by a
proposed gradient feature, the Edge Histogram of Oriented
Gradient (Edge-HOG). Edge-HOG consists of several blocks
arranged along a line or an arc, which is designed to describe
the edge pattern. In addition, we propose a new feature extrac-
tion method, which extracts the structural information based
on the gravity centers as complementary to traditional gradi-
ent histograms. As a result, the proposed Edge-HOG not only
reflects the local shape information of objects, but also cap-
tures more significant appearance information. Experimen-
tal results show that the proposed approach significantly im-
proves both the detection accuracy and the convergence speed
compared to the traditional HOG feature. It also achieves per-
formance competitive with some commonly-used methods on
pedestrian detection and car detection tasks.

Index Terms— Object detection, HOG, Edge-HOG, lo-
cal feature, gradient histogram

1. INTRODUCTION

Object detection of a particular class is a fundamental prob-
lem of computer vision. One of the major challenges in this
field is that the object appearance may vary greatly due to
many factors, such as different illuminations, view points,
poses, etc. This has motivated inventions of various ap-
proaches. Among them, a widely used paradigm is to train a
classifier on local features using algorithms of the boosting
family [1][2][3][4]. For example, Viola et al. [1] built an
efficient face detector using AdaBoost algorithm to train a
cascade classifier based on the Haar-like feature. Tuzel et al.
[2] projected the covariance matrices to Riemannian Man-
ifolds and further utilized LogitBoost to train a pedestrian
detector.

Designing local features that can reflect the intrinsic char-
acteristics of the object appearance is an important way in
the boosting framework. In general, there are two kinds of
commonly-used local features; contour features and statistic
features. The contour features are usually constructed along

an edge to describe the local structural information. Wu et al.
proposed the edgelet feature [5], which is a short segment of
edge or curve with different weight on each pixel. Gao et al.
[6] proposed the adaptive contour feature based method. This
feature consists of a chain of a number of granules in oriented
granular space and has good discrimination power for human
detection and segmentation. Statistic features extract statis-
tic information (e.g., histograms, covariance matrix) from a
local region, which has strong discrimination ability on local
patterns. One of the most famous features is the Histogram
of Orientation Gradient (HOG) [7] proposed by Dalal and
Triggs. Inspired by this work, Shen et al. [8] proposed en-
hanced HOG feature that using one gradient orientation to
encode all pixels in a region. Su et al. [9] proposed Local-
Main-Gradient-Orientation HOG, which weighting every bin
of gradient orientation histogram according to their signifi-
cance within a predefined area, in order to emphasize the im-
portant gradient information.

The HOG feature ignores some important structural in-
formation in each cell. If two cells contain the same edge
but at different positions, the resulting feature vectors will be
the same. To solve this issue, we propose a enhanced version
of HOG feature named Edge-HOG. Edge-HOG arranges the
cells along an edge template to gain additional structure infor-
mation. In addition, we extract a complementary feature vec-
tor based on the gravity centers, so that it captures more dis-
criminative information than the traditional HOG does. Sev-
eral experiments on public datasets are used to evaluate our
method. The results show that the Edge-HOG improves both
the training efficiency and the performance compared to the
traditional HOG. It also achieves competitive performance
with the commonly-used approaches in both pedestrian and
car detection tasks.

2. EDGE-HOG FEATURE

2.1. Traditional HOG feature

The essential idea behind HOG features is that local object
appearance and shape within an image can be described by



Fig. 1. Traditional HOG feature

Fig. 2. Edge-HOG cell arrangement. The blue dots are the
cell centers. The dot-dashed lines show the edge template
concatenating these cells.

the distribution of intensity gradients or edge directions. HOG
divides the image into small connected regions, called cells,
and for each cell it compiles a histogram of gradient directions
for the pixels within the cell. Each pixel within the cell casts
a weighted vote for an orientation-based histogram channel
based on the values found in the gradient computation. The
histogram channels are evenly spread over 0 to 180 degrees.

The combination of these cell histograms then represents
the feature vector. It will be contrast-normalized by calcu-
lating a measure of the intensity across a larger region of the
image, called a block, and then using this value to normalize
all cells within the block. This normalization results in better
invariance to changes in illumination or shadowing. A figure
of the HOG extraction is shown in Fig. 1.

2.2. Edge-HOG feature

In this section, we introduce the proposed Edge-HOG fea-
ture. An Edge-HOG feature consists of a series of cells along
an edge template, as shown in Fig. 2. The edge template
(dot-dashed lines) can be lines and arcs in variable length,
positions and directions. 4 pixels (blue dots) are uniformly
sampled on these edges as the center pixels of Edge-HOG
cells. These cells could overlap or lay far away from each
other. To reduce the size of the feature pool, we add an con-
straint on the distance of the two neighboring center pixels d
and the cell size (w, h)

0.75max(w, h) < d < 2min(w, h).

Since the cells are arranged along an edge template, the Edge-

Fig. 3. Integral image

HOG not only extracts the statistical information of the local
region, but also reflects the edge position and direction.

In Edge-HOG, each bin of the gradient vector is the
weighted sum of all pixels with the same gradient orienta-
tion in a cell. It can be readily extracted using the integral
image algorithm in [1]. The integral image is an algorithm
for efficiently generating the sum of values in a rectangu-
lar subset. For an input image I, the value at point (x, y)
in the corresponding integral image I’ is the sum of all the
pixels above and to the left of (x, y) in I. Then we could use
I ′(A) + I ′(D) − I ′(B) − I ′(C) to get the sum of all pixels
in the rectangle (A, B, C, D) in I, as illustrated in Fig. 3. In
Edge-HOG extraction, we calculate several gradient images
of different gradient orientations and generate the integral im-
ages. Then we could go over all integral images to calculate
the sum of the Edge-HOG cells to get the gradient feature.

Besides the cell arrangement, we induce some structure
information into the feature extraction to further improve the
discrimination ability of Edge-HOG. A 8-bin structure vec-
tor for each cell in the Edge-HOG feature will be calculated
based on the geometric information. We first divide the cell
into 8 regions according to angle of each pixel and the cell
center. For each region, the gravity centers are calculated,
and the distance of the gravity center and the cell center is
used to generate the structure vector. As shown in Fig. 4, the
cell is divided into 8 regions numbered from 0 to 7. The r1 il-
lustrates the euclidean distance between the gravity center of
region 1 and the cell center, which will be used in the struc-
ture vector extraction. Denote the coordinate of cell center by
(xc, yc), the ith bin of the structure vector dgrav is calculated
as equation (1),

dgrav,i =

∑
(x,y)∈Ri

ri × gradx,y∑
(x,y)∈Ri

gradx,y
, . . . (1)

where the Ri is one of the 8 regions of each cell in Edge-
HOG, grad is the gradient magnitude. L1-normalization is
applied on all cells after the feature extraction.

3. REALADABOOST WITH EDGE-HOG FEATURE

In RealAdaBoost [10], an image feature can be seen as a func-
tion from the image space to a real valued range f : x →



Fig. 4. Feature extraction based on structural information

[fmin, fmax]. The weak classifier is a function from the fea-
ture vector x to a real valued classification confidence space.
For the binary classification problem, suppose the training
data as (x1, y1), . . . , (xn, yn) where xi is the training sample
and y ∈ {−1, 1} is the class label, we first divide the sample
space into Nb equal sized sub-ranges Bj , the weak classifier
is defined as a piecewise function

h(x) =
1

2
ln(

W j
+ + ε

W j
− + ε

), . . . (2)

where ε is the smoothing factor, W± is the probability dis-
tribution of the feature value for positive/negative samples,
implemented as a histogram

W j
± = P (x ∈ Xj , y ∈ {−1, 1}), j = 1, . . . , Nb. . . . (3)

The best weak classifier is selected according to the clas-
sification error Z of the piecewise function in equation (4)

Z = 2
∑
j

√
W j

+W
j
−, . . . (4)

In each iteration, the candidate Edge-HOG features are
evaluate on all positive and negative samples. To learn the
best weak classifiers, the most intuitive way is to look through
the whole feature pool, which is rather time consuming. So
we resort to a sampling method to speed up the feature selec-
tion process. More specifically, a random sub-sample of size
log0.05/log0.95 = 59 will guarantee that we can find the
best 5% features with a probability of 95%. For each candi-
date block, the feature vectors are extracted and further used
to train a linear classify plane w* using least square. Then the
final feature value used to build the probability distribution is
calculated by equation

f(x) = w∗ · x+ b, . . . (5)

where b is the bias. Fig. 5 illustrates more details.

4. EXPERIMENTS

4.1. Experiments on INRIA pedestrian dataset

We evaluate the proposed Edge-HOG feature using the IN-
RIA pedestrian dataset [7], which contains 1,774 human an-

Parameters
N number of training samples
M number of evaluated features each iteration
T maximum number of weak classifiers

Input: Training set {(xi, yi)},xi ∈ Rd, yi ∈ {−1, 1}
1. Initialize sample weight and classifier output
wi = 1/N, F (xi) = 0

2. Repeat for t = 1, 2, . . . , T

2.1 Update the sample weight wi using the hth weak
classifier output wi = wie

−yiht(xi)

2.2 For m = 1 to M
2.2.1 Extract Edge-HOG features vectors
2.2.2 Train a classify plane w∗ and calculate f(xi)
in equation (5)

2.2.3 Build the predict distribution function W+ and W−
2.2.4 Select the best feature which minimizes Z in
equation (4)

2.3 Update weak classifier ht(x) using equation (2)
2.4 Update strong classifier Ft+1(xi) = Ft(xi) + ht(xi)

3. Output classifier F (x) = sign[
∑T

j=1 hj(x)]

Fig. 5. Learning the Edge-HOG features using RealAdaBoost

notations and 1,671 person free images. In the experiments,
we first follow the training and testing protocols [7]. Multi-
scale Edge-HOG features from 8× 8 to 32× 32 cell sizes are
utilized to train a cascade classifier for the 64× 128 scanning
window. 6,738 Edge-HOG features are generated following
the method in section 2.2.

In Fig. 6(a), we plot the miss rate tradeoff False Posi-
tive rate Per Window (FPPW) curves. We first compare the
performances of the boosted classifiers with different cell ar-
rangements and feature vectors. It can be seen that the Edge-
HOG (green curve) shows better results compared to the tra-
ditional HOG [11] using the same gradient feature vector and
AdaBoost training algorithm (red curve). If we use the Edge-
HOG with the proposed structure vector, the accuracy (blue
curve) is further improved. We also compare our method with
three commonly-used methods, HOG with Linear SVM [7],
HOG with Kernel SVM [7], and the covariance matrix with
AdaBoost [2]. It can be seen that the proposed Edge-HOG
method achieves detection rate of 92.9% at FPPW=10e-4,
which is similar to the covariance matrix. But the compu-
tation cost is much lower.

Furthermore, we evaluate our method under the criteria of
the detection rate versus False Positive rate Per Image (FPPI)
[12]. Fig. 6(b) shows that our algorithm also achieves com-
petitive result with Haar [1] and HOG [7] [13]. The accuracy
is similar to the multi-feature combination [14].

Next, We compare the convergence speed of the train-
ing process in INRIA pedestrian dataset. Fig. 7 plots the
FPPW against the number of weak classifiers for different



Fig. 6. Accuracy evaluation on INRIA pedestrian dataset

Fig. 7. Convergence speed of INRIA pedestrian dataset

methods. This figure shows that the Edge-HOG converges
faster, at the rate of approximately two times faster than the
HOG. When we utilize the proposed structure vector, the con-
vergence speed is further improved. In addition, the perfor-
mance of boosted classifiers is shown to be positively propor-
tional to the convergence speed in training. This signifies that
the Edge-HOG performs better on the training accuracy and
speed of boosted classifiers compared to the traditional HOG.

Moreover, we investigate how the Edge-HOG captures the
structure information. We list the first 5 selected features in
the boosting training in Fig. 8. The series of the black rect-
angles in each picture represent the cells in one Edge-HOG
feature. The bright background reflects the average profile of
a pedestrian. From the figure, it can be seen that the first 5
selected features are basically along the profile of the pedes-

Fig. 8. The first 5 selected Edge-HOG features

Table 1. Experimental results on UIUC car dataset
Approach single scale multi-scale

Saberian et al. [15] 99.0% 92.1%
Xu et al. [16] 99.5% 98%
Wu et al. [5] 97.5% 93.5%

Lampert et al. [17] 98.5% 98.6%
Karlinsky et al. [18] 99.5% 98.0%

Edge-HOG 99.5% 98.6%

trian, which shows that the proposed Edge-HOG feature is
very efficient to describe the structure of the human body.

4.2. Experiments on UIUC car dataset

We also evaluate our algorithm on car detection task. The
UIUC side view car dataset [19] is used in the experiment.
This dataset contains a single scale test set (170 images with
200 cars), a multi-scale test set (108 images with 139 cars),
and a training set of 550 side view car images. The car patches
from the training images are resized to 64 × 32 pixels and
horizontally flipped. We also collect 10,000 images without
any cars from the internet as the negative training set. 1,764
Edge-HOG features are generated for 64× 32 window.

We compare our approach with previous approaches fol-
lowing the Equal Precision and Recall (EPR) rate method.
The results are listed in Table 1. It can be seen that our algo-
rithm achieves competitive performance to other state-of-the-
art methods on both single scale and multi-scale test sets.

5. CONCLUSION

In this paper, we proposed a novel Edge-HOG feature, which
arranges the blocks along an edge to reflect the shape infor-
mation. In addition, we proposed a new feature extraction
method based on the local structural information as comple-
mentary to the traditional gradient histogram. Experimen-
tal results show that the convergence speed of Edge-HOG
is 2 times accelerated compared to the traditional HOG. It
also achieves performance competitive with the state-of-the-
art methods in both pedestrian and car detections.
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