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ABSTRACT 
 
We propose a novel binary feature for object detection 
encoding local neighbor patterns of different sizes and 
locations. Each region pair of the proposed feature is 
selected by RealAdaBoost algorithm with a penalty term on 
the structure diversity. As a result, useful features that are 
good at describing specific objects will be chosen to build 
the classifier. Moreover, the encoding scheme is applied in 
both the gradient domain and the intensity domain, which is 
complementary to standard binary features (e.g. LBP and 
LAB).  

The proposed method was tested using the CMU-MIT 
frontal face dataset, INRIA pedestrian dataset, and UIUC 
car dataset respectively. Experimental results show that the 
proposed method outperforms traditional binary features 
LBP and LAB, which contributes to a significant 
improvement on detection accuracy and converges 2 times 
faster. It also achieves comparable performance with the 
state-of-the-art algorithms. 

Index Terms—Binary Feature, Object Detection, LBP, 
RealAdaBoost, Structure-Aware 
 

1. INTRODUCTION 
 
In object detection, the high accuracy and efficiency are 
general targets. On one hand, to achieve better accuracy, 
some researchers propose descriptors with strong 
discriminative ability, e.g., Histogram of Oriented Gradient 
(HOG) feature [1], covariance matrix [2] or their 
combinations, e.g., heterogeneous feature [3], HOG-LBP 
[4]. Others focus on designing more effective classifiers, 
e.g., vector boosted tree [5], multiple kernels SVM [6] and 
multiple instance learning [7], etc. On the other hand, the 
efficiency issue is an essential requirement for real-time 
applications. The cascade structure proposed by Viola and 
Jones [8] shows considerable result on face detection. 
Recent works have proved its efficiency and effectiveness 
on other object categories such as pedestrians [2][9] and 
cars [3]. In most of the cases, the performance of a boosted 
classifier mainly depends on the features. To address the 
accuracy and efficiency issue simultaneously, boosting with 
appropriate features to construct the cascade classifier is the 
key step. 

Due to the high efficiency, binary feature is one of the 
most common-used features. The Local Binary Pattern 

(LBP) [11] is a local descriptor based on binary coding of 
adjacent region pairs. It is proved to be effective on texture 
analysis [12], object detection [13], and face recognition 
[14]. Despite its simplicity, a number of LBP modifications 
and extensions have been proposed. Some of them focus on 
the post-processing steps which improve the discrimination 
ability of binary coding [15]. But the computation cost will 
also be greatly increased. Others focus on the definition of 
the location where gray value measurement are taken 
[13][16]. The improvement of the discrimination ability is 
relatively limited because the locations are artificially 
designed, and using intensity information might not be 
sufficient to solve some complex object detection problems. 

This paper presents a method with the following 
contributions. First, we introduce a Boosted Local Binary 
(BLB) feature, where the local region pairs are selected by 
RealAdaBoost algorithm considering both the 
discrimination ability and the feature structure diversity. In 
addition, we identify that using the gradient image and gray 
image together for binary coding is more effective than only 
using the gray image. As a result, the proposed BLB feature 
is more discriminative and robust compared to common-
used binary features, LBP and LAB [16]. We evaluate it by 
employing it to detect frontal faces, pedestrian, and side-
view cars in static images. Experimental results show that 
BLB has a superior performance in comparison with LBP 
and LAB. The accuracy is also comparable with some 
gradient features (e.g., HOG) and state-of-the-art methods.  

The rest of the paper is organized as follows: we first 
introduce the proposed BLB feature in Section 2. 
RealAdaBoost algorithm with BLB is described in Section 3. 
The next section presents the experimental results on frontal 
face detection, pedestrian detection, and side-view car 
detection. Conclusions are given in Section 5. 

 
2. BOOSTED LOCAL BINARYS 

 
2.1. Local Binary Feature and Local Assembly Binaries 
 
The traditional LBP is developed for texture classification 
[12] and the success is due to its robustness under 
illumination variations, computational simplicity and 
discriminative power on specific patterns. Fig. 1 represents 
an example of traditional LBP, which is a binary coding of 
the intensity contrast of the center pixel and 8 neighboring 
pixels. If the intensity of neighboring pixels are higher than 



the center pixel, the corresponding bit will be assigned 1, 
otherwise assigned 0. Given a center pixel, the LBP feature 
value is defined by equation (1) 
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where d is the number of neighboring pixels, r is the 
distance between the neighboring pixels and the center pixel, 
I is the intensities, and  
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    LBP reflects the intensity pattern of single pixels. LAB 
[16] utilizes rectangles instead of pixels, as shown in Fig. 2. 
It combines 8 locally adjacent 2-rectangle binary Haar 
features with the same size. These Haar features share a 
common center rectangle. The encoding scheme is similar to 
LBP: if the intensity sum of the adjacent rectangle is higher 
than the center rectangle, the corresponding bit will be 
assigned 1; otherwise it will be assigned 0. Given a center 
rectangle C0, the LAB feature value is defined by equation 
(2) 
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where Ci is the adjacent rectangle. The sign function is the 
same as the one in LBP. 
    The calculation of LBP is efficient because the feature 
value in equation (1) is based on binary comparisons and 
bit-shift operations. Although LAB extends pixels to 
regions, the computation cost will not increase much 
because the intensity sum of a rectangle in equation (2) 
could be efficiently calculated using the integral image [8]. 
 
2.2. Boosted Local Binaries 
 
Although the robustness of the LBP and LAB has been 
demonstrated in some applications, it has certain drawbacks 
when employed to encode general object’s appearance. A 
notable disadvantage is the insufficient discrimination 
ability. The feature value of LBP and LAB depend on the 
intensities of particular locations and thus varies by object’s 
appearance. It will be easily influenced by illumination, 
occlusion, and noises. In addition, although the size of the 
rectangles of LAB is flexible, the patterns of local pixel and 
adjacent rectangles are fixed. It might not have sufficient 

ability to describe the objects in some complicate detection 
tasks, e.g, pedestrian. 

Now we will introduce the proposed Boosted Local 
Binaries (BLB). First we define the local neighbor patterns, 
as shown in Fig. 3. BLB comprises of 8 surrounding 
rectangles C1, C2,…,C8 and the center rectangle C0 with the 
same size. As shown in equation (3), the (xi, yi) is the left-
top corner of the rectangle, and (wi, hi) is the width and 
height of the rectangles 
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In BLB, the centers of surrounding rectangles are 

arranged in a similar order to LBP and LAB, and none of 
them are overlapped. Fig. 3 shows the enter rectangle C0, 
left-top rectangle C1, top rectangle C2 and right-top 
rectangle C3. C2 is located at the left side of C3, and C1 is 
located at the left side of C2. All of these three rectangles 
lay at the top of C0. In addition, to keep the neighboring 
patterns, each neighboring pair (e.g., C1 and C2, C2 and C0, 
C2 and C3) should have at least 50% overlap on the range of 
either width or height. In Fig. 3, the possible region for C2 is 
the blue region because C2’s width overlaps higher than 
50% with C0’s width, and its height also overlaps with C1’s 
height and C3’s height.  

If the surrounding rectangles lay far away from the center 
rectangle, the feature value will be easily influenced by 
noises. It means that the classification confidence based on 
this feature might be lower. So we define the structure 
diversity of the BLB as  
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Fig. 3. Pattern of surrounding rectangles in BLB 

Fig.1. Traditional LBP feature Fig. 2. LAB feature 



 
This factor will be used in the penalty term of the 
RealAdaBoost procedure. 

Besides using these patterns on intensity image, we also 
apply them on gradient images. In consideration of the 
efficiency, we generate the x-direction gradient image and 
y-direction gradient image respectively. Given a BLB 
feature { { , , , }, 0,1,...,8}i i i i iF C x y w h i  , the feature 
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The computation cost of BLB is similar to LBP and LAB 
because the sum of a region in both intensity image and 
gradient image could be calculated by integral images. An 
example of the BLB in gradient image is illustrated in Fig. 4. 
 

3. REALADABOOST WITH BLB 
 
In this section, we will introduce how to select the effective 
BLB features using RealAdaBoost algorithm. In 
RealAdaBoost, the weak classifier is a function from the 
feature vector x to a real valued object/non-object 
classification confidence f(x). For the binary classification 
problem, suppose the training data as (x1, y1),…,(xN, yN), 
where xi is the training sample and yi∈{-1,1} is the class 
label, we first divide the sample space into Nb equal sized 
sub-ranges Rj 
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The weak classifier is defined as a piecewise function 

1
( ) ln( ), 1,..., ...(7)

2

j

bj

W
h j N

W









 


x , 

where   is the smoothing factor, and W  is the probability 

distribution of the feature value for positive/negative 
samples 
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Fig. 5. RealBoost training with BLB features 

 
The best weak classifier is selected according to the 

classification error Z of the piecewise function (7).  
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In consideration of the structure diversity, we add a 
structure-aware criterion into RealAdaBoost, which is 
similar to the complexity factor used in selecting the image 
strip features [17]. The discriminative criterion of 
RealAdaBoost is shown in equation (10) 
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where D is the structure diversity of the features in equation 
(4), a is the structure-aware factor to balance the 
discriminative capability and the feature diversity, fp is the 
false positive rate of current stage.  

The equation (10) could be explained as follows: in the 
beginning stages of RealAdaBoost, the samples are still 
easy to be classified, so RealAdaBoost will refer to the 
features with more confident patterns. In the following 
stages, the training samples are complicated, so features 
with diverse patterns might be utilized. The above strategy 
makes sense, because the overall performance and 
robustness of a cascade boosted classifier is strongly 
influenced by beginning stages which filter most of the 
candidate windows. In our experiment, we set the structure-
aware factor a to 0.15. 

Parameters: 
N number of training samples 
Nf number of randomly evaluated features in each 

iteration 
T 
a    

maximum number of weak classifiers 
penalty factor on the structure diversity 

Input: Training set    
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    For n = 0 to 2 
  2.2.1 Generate a random BLB feature F with 
structure diversity D 
  2.2.2 Calculate the feature value f(F, n) according to  
equation (5) 
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Fig. 4. BLB in gradient image 



4. EXPERIMENTS 
 
4.1. Frontal face detection 
 
We train a face detector utilizing the proposed BLB feature 
and evaluate its performance on CMU + MIT frontal face 
dataset [18]. This dataset consists of 130 images containing 
507 frontal faces with various conditions such as facial 
expression, occlusion, pose, and scale variations. Most 
images include more than one face on various backgrounds. 
Fig. 6 plots the Receiver Operating Characteristics (ROC) 
curves of our method as well as other popular binary 
features and the state-of-the-art face detection algorithms, 
including Haar [8], LBP [19], LAB [16], and heterogeneous 
features [20], in terms of the number of false positives with 
respect to the detection rate. As shown in Fig. 6, our 
detector achieves 96.0% detection rate at 0 false positive. 
To our knowledge, it is the best result for 0 false positive on 
the CMU + MIT frontal face dataset. Obviously, compared 
with other algorithms using single feature, the detection rate 
of our method is improved dramatically, especially for cases 

at low false alarms. The performance of our method is also 
similar to the classifier using heterogeneous features [20], 
which is trained by kernel SVM. In addition, we find that 
the boosted classifier with the penalty term (blue curve) on 
feature diversity achieves better accuracy than the one 
without penalty term (green curve), especially for lower 
false positive rate. The reason is that features with larger 
structure diversity might be easily influenced by the noise, 
so that the corresponding classifier performs poor on object 
detection in real images. Some examples of the detection 
results are shown in the first row of Fig. 11. 
 
4.2. Pedestrian detection 
 
We evaluate the proposed BLB feature using the INRIA 
pedestrian dataset [1]. The INRIA database contains 1,774 
human annotations (3,548 with reflections) and 1,671 
person free images. Detection on INRIA pedestrian dataset 
is challenging since it includes subjects with a wide range of 
variations in pose, clothing, illumination, background and 
partial occlusions. In the experiments, we firstly follow the 
training and testing protocols at patch level proposed by 
Dalal & Triggs [1]. In Fig. 7, we plot the miss rate tradeoff 
False Positive rate Per Window (FPPW) curves on a log-log 
scale by tuning the rejection threshold of the classifiers. We 
compare the BLB with common used features, HOG 
(Histogram of Oriented Gradient) [1], and the covariance 
matrices mapped to Riemann Manifold [2]. It can be seen 
that the BLB achieves ~2% less miss rates at 10e-4 FPPW 
comparing to HOG. The accuracy is also comparable with 
covariance matrix. But BLB’s computation cost is much less 
compared to HOG and covariance matrix. In addition, the 
performance of the classifiers with penalty term (blue curve) 
is similar to the one without penalty (green curve) at lower 
FP. The reason is that FPPW evaluation utilizes patch 
windows, which is quite different from real detection. 

Furthermore, we evaluate our method under the criteria of 
the detection rate versus False Positive rate Per Image 

Fig. 6. Experimental results on CMU-MIT frontal face dataset 

Fig. 7. FPPW evaluation on INRIA pedestrian dataset Fig. 8. FPPI evaluation on INRIA pedestrian dataset 



(FPPI) [4]. Fig. 8 gives the comparison with the algorithms 
based on single feature [1, 5, 21] on INRIA dataset. Our 
algorithm shows competitive result with Haar [5], LBP, and 
HOG [1][21] feature. Some examples of the detection 
results are shown in the second row of Fig. 11.  
 
4.3. Side-view car detection 
 
The side-view car detection performance is evaluated on the 
UIUC car dataset [10]. This dataset contains a single scale 
test set (170 images with 200 cars), a multi-scale test set 
(108 images with 139 cars), and a training set of 550 side-
view car images. The car patches from the training images 
are resized to 100×40 pixels and horizontally flipped, so 
that there are totally 1,100 car patches in the positive 
training set. We also collect 1,000 images without any cars 
on the internet as the negative training set.  

We compare our method with previous approaches 
following the Equal Precision and Recall rate (EPR) method. 
The results are listed in Table 1. It can be seen that the 
proposed method has high performance competitive to other 
state-of-the-art methods on both single scale and multi-scale 
testing sets. Some examples of the detection results are 
shown in the third row of Fig. 11. 

 
Table 1. Experimental results on UIUC car dataset 

Method Single Scale Multi Scale 
Leibe [22] 97.5% 95.0% 
Lowe [23] 99.9% 90.6% 
Wu [24] 97.5% 93.5% 
Zheng [17] 98.0% 96.0% 
Lampert [25] 98.5% 98.6% 
Ours no penalty 99.0% 98.6% 
Ours with penalty 99.3% 98.6% 

 
4.4. Feature analysis 
 
We compare the convergence speed of the training process 
in INRIA pedestrian dataset. Fig. 9 plots the FPPW against 
the number of weak classifiers for different methods. The 
RealAdaBoost with penalty term on the feature diversity is 
utilized. This figure shows that BLB converges faster, at the 
rate of approximately two times faster than LAB and LBP. 
In addition, the performance of boosted classifiers is shown 
to be positively proportional to the convergence speed in 
training. This signifies that the proposed BLB performs 
better on the training accuracy and the training speed of 
boosted classifiers. Moreover, we test the resulting face 
detector on a desktop PC with 2.5 GHz I3 CPU and 2 GB 
memory. It only takes 10ms to detect all faces in a 640×480 

input image if the minimum face size is 30×30. 
Fig. 10 shows the first selected two features of the faces, 

pedestrians and cars. These features could well capture the 

typical structures of the objects. Some of them could not be 
covered by traditional binary features. For example, the two 
features in Fig. 10(c) reflect the car wheel and body pattern. 
 

4. CONCLUSION 
 

In this paper, we proposed an object detector that achieves 
both high accuracy and fast speed. We built a large binary 
feature pool with variable-location and variable-size blocks 
for both the intensity domain and the gradient domain. We 
further utilized RealAdaBoost algorithm to select 
informative features by evaluating different blocks pairs 
while considering the structure diversities. Experimental 
results show that our approach achieves high accuracy on 
face, pedestrian and car detection tasks. It also speeds up the 
convergence compared to standard binary features. 
 

5. REFERENCES 
 

[1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for 
Human Detection. In CVPR, 2005.  

[2] O. Tuzel, F. Porikli, and P. Meer. Pedestrian Detection via 
Classification on Riemannian Manifolds. In PAMI, Vol. 30, 
Page(s):1713-1727, 2008. 

[3] B. Wu and R. Nevatia. Optimizing Discrimination-Efficiency 
Tradeoff in Integrating Heterogeneous Local Features for 
Object Detection. In CVPR, 2008. 

[4] X. Wang, T. Han, and S. Yan. An HOG-LBP Human 
Detector with Partial Occlusion Handling. In ICCV, 2009. 

[5] C. Huang, H. Ai, Y. Li, and S. Lao. Vector Boosting for 
Rotation Invariant Multi-View Face Detection. In ICCV, 2005. 

Fig. 9. Convergence speed of the trained classifiers in INRIA  

Fig. 10. Selected first two features of faces, pedestrians, and cars 



[6] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. 
Multiple Kernels for Object Detection. In ICCV, 2009. 

[7] P. Viola, J. Platt, and C. Zhang. Multiple Instance Boosting 
for Object Detection. In NIPS, 2005. 

[8] P. Viola and M. Jones. Rapid Object Detection Using a 
Boosted Cascade of Simple Features. In CVPR, 2001. 

[9] Q. Zhu, S. Avidan, M. Yeh, and K. Cheng. Fast Human 
Detection using a Cascade of Histograms of Oriented 
Gradients. In CVPR, 2006. 

[10] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects 
in images via a sparse, part-based representation. In PAMI, 
Vol. 26, Page(s) 1475-1490, 2004. 

[11] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multi-resolution 
Gray-scale and Rotation Invariant Texture Classification with 
Local Binary Patterns. In PAMI, Vol. 24, Page(s): 971–987, 
2002. 

[12] G. Zhao and M. Pietikäinen. Dynamic Texture Recognition 
using Local Binary Patterns with an Application to Facial 
Expressions. In PAMI, Vol. 29, Page(s): 915–928, 2007. 

[13] D. Nguyen, Z. Zong, P. Ogunbona, and W. Li. Object 
Detection Using Non-redundant Local Binary Patterns. In 
ICIP, 2010. 

[14] H. Tang, Y. Sun, B. Yin, and Y. Ge. Expression-robust 3D 
Face Recognition using LBP Representation. In ICME, 2010. 

[15] D. Kim, J. Kwak, B. Ko and J. Nam. Human Detection Using 
Wavelet-Based CS-LBP and a Cascade of Random Forest. In 
ICME, 2012. 

[16] S. Yan, S. Shan, X. Chen, and W. Gao. Locally Assembled 
Binary (LAB) Feature with Feature-centric Cascade for Fast 
and Accurate Face Detection. In CVPR, 2008. 

[17] W. Zheng and L. Liang. Fast Car Detection using Image Strip 
Features. In CVPR, 2009. 

[18] H.A. Rowley, S. Baluja, T. Kanade, Neural Network Based 
Face Detection. In PAMI, Vol. 20, Page(s) 23-38, 1998. 

[19] J. Trefny and J. Matas. Extended Set of Local Binary Patterns 
for Rapid Object Detection. In Computer Vision Winter 
Workshop, 2010. 

[20] H. Pan, Y. Zhu, and L. Xia. Efficient and Accurate Face 
Detection using Heterogeneous Feature Descriptors and 
Feature Selection. In CVIU, Vol. 117, Page(s) 12-28, 2013. 

[21] S. Maji, A. Berg, and J. Malik. Classification Using 
Intersection Kernel Support Vector Machines is Efficient. In 
CVPR, 2008. 

[22] B. Leibe, A. Leonardis and B. Schiele. Robust Object 
Detection with Interleaved Categorization and Segmentation. 
In IJCV, Vol. 77, Page(s): 259-289, 2008. 

[23] J. Mutch and D. G. Lowe. Multiclass Object Recognition with 
Sparse, Localized Features. In CVPR, 2006. 

[24] B. Wu and R. Nevatia. Cluster Boosted Tree Classifier for 
Multi-View, Multi-Pose Object Detection. In ICCV, 2007. 

[25] C. H. Lampert, M. B. Blaschko and T. Hofmann. Beyond 
Sliding Windows: Object Localization by Efficient 
Subwindow Search. In CVPR, 2008. 

Fig. 11. Detection results. First row – CMU face dataset. Second row – INRIA pedestrian dataset. Third row – UIUC car dataset 


