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Abstract—We propose a gender classifier using two types of
local features, the gradient features which have strong discrimi-
nation capability on local patterns, and the Gabor wavelets which
reflect the multi-scale directional information. The RealAdaBoost
algorithm with complexity penalty term is applied to choose
meaningful regions from human face for feature extraction, while
balancing the discriminative capability and the computation cost
at the same time. Linear SVM is further utilized to train a
gender classifier based on the selected features for accuracy
evaluation. Experimental results show that the proposed approach
outperforms the methods using single feature. It also achieves
comparable accuracy with the state-of-the-art algorithms on both
controlled datasets and real-world datasets.

I. INTRODUCTION

Gender recognition is a well-established issue for automatic
face recognition. Successful gender recognition can boost a
large number of advanced applications, such as customer
information measurement, surveillance systems and interfaces,
content-based indexing and searching, and demographic stud-
ies.

Gender recognition algorithms could be divided into two
categories, geometric-based methods and appearance-based
methods. The geometric-based methods consider using the
geometric relationship of the facial features. While the ge-
ometric relationships are maintained, other information may
be discarded [1]. The gender could be recognized by the
accurately extracted facial feature points [2]. Brunelli and
Poggio [30] trained a hyper basis function network classifier
based on 18 point-to-point distances. Fellous [31] used 22
normalized fiducial distances of 40 manually extracted points.

The appearance-based methods utilize a classifier trained
on the information extracted on the image pixels to get the
gender information. Some researchers use efficient features
such as the Local Binary Patterns (LBP) [5][6][9] and Weber
Local Descriptor (WLD) [7]. Others adopt more complicate
features including the gradient information or wavelet func-
tions. Among these features, the Scale Invariant Feature Trans-
form (SIFT) is one of the most commonly-used ones because
it is invariant to image scaling, translation and rotation [10].
Using SIFT descriptor, the objects can be reliably recognized
even from different views or under occlusion. Demirkus et
al. [21] utilized a Markovian model to classify face gender
from unconstrained video in natural scenes. Wang et al. [22]

extracted SIFT descriptors at regular image grid points and
combined it with global shape contexts of the face. Y. El-Din
[19] proposed a decision-level fusion framework combining
SIFT with LBP descriptor extracted from the whole face
image.

Another commonly-used gradient feature is the Histogram
of Oriented Gradient (HOG) features [8], which is able to
capture local shape information from the gradient structure
with easily controllable degree of invariance to translations
[11]. HOG is often used in gender recognition with body
information. Bourdev et al. [28] used a set of patches called
poselets, represented by HOG features, color histogram, and
skin features. The poselets were used to train attribute clas-
sifiers which were combined to infer gender using context
information. Collins et al. [29] proposed Pixel HOG (PiHOG)
descriptor computed from a custom edge map. In their method,
color information was captured using a histogram computed
based on the hue and saturation value of the pixels.

Gabor feature is another effective representation for face
image analysis. Research in neurophysiology has shown that
Gabor filters fit the spatial response profile of certain neurons
in the visual cortex of the mammalian brain. Lian et al. [23]
followed the method by Hosoi et al. [24], used Gabor wavelets
from different facial points located using retina sampling. Leng
and Wang [13] extracted Gabor wavelets of five different scales
and eight orientations from each pixel of the image, which
were then selected using AdaBoost. Scalzo et al. [26] extracted
a large set of features using Gabor and Laplace filters which
are used in a feature fusion framework of which the structure
was determined by genetic algorithm.

Although the above methods show promising results on
some datasets, the use of the local features for gender recog-
nition has not been well investigated. The algorithms extracting
a dense feature vector for each pixel in the aligned face might
lead to dimension redundant. In addition, using dense feature
is relatively slow. Some other algorithms use AdaBoost to
select key dimensions [6][13] from the dense features. In
general, it is difficult to describe specific patterns using single
dimensional feature, especially for some complicate object
detection tasks. It will also lead to potential risk of weakening
the discriminative power of the resulting classifier.

To solve this problem, we focus on selecting the mean-
ingful regions in human face for feature extraction, while



balance the efficiency and accuracy at the same time. The
SIFT, HOG, and Gabor features are considered as candidates in
feature selection. Different from simply mixing or concatenat-
ing these features, we use the complexity-aware RealAdaBoost
algorithm, which includes a complexity penalty term in the
procedure of feature selection. Both the discriminative power
and the computation cost of the features are evaluated in
the training procedure, and the features best balancing them
will be selected. Linear SVM is further utilized to generate
the final classifier using the selected features for accuracy
evaluation. Plenty of experiments on public datasets are used
to evaluate our method. The experimental results show that our
approach achieves significant improvement on the recognition
accuracy compared to using single features. The result is also
comparable with the state-of-the-arts approaches in FERET,
KinFace, and LFW datasets.

The rest of this paper is organized as follows. Section 2
presents the features used in this paper. Section 3 introduces
the RealAdaBoost algorithm with the complexity-aware crite-
rion. Section 4 shows our experimental results. Conclusion and
discussion are given in the last section.

II. FEATURES USED FOR FACE DESCRIPTION

A. Gradient features

Scale Invariant Feature Transform (SIFT) is invariant to image
scaling, translation and rotation, and partially invariant to illu-
mination changes and affine projection. Using SIFT descriptor,
objects can be reliably recognized even from different views,
low illumination or under occlusion. Another advantage is that
some preprocessing stages such as the accurate face alignment
are not required using invariant features [20]. In the SIFT
extraction, we first build a scale space of the input region
by convolving it with a variable-scale Gaussian kernel. Then
the Difference of Gaussian (DoG) between each two adjacent
layers in the scale space are calculated. The maximum and
minimum of the DoG are selected as candidate interest points,
from which elements with low contrast and edge responses are
excluded.

After keypoint detection, each keypoint is assigned a de-
scriptor that summarizes information on local image gradient
flows, as shown in Fig. 1(a). The final feature vector is
the histogram of gradient orientation computed in an interest
region around the keypoints. In our work, we extract 4 × 4
histograms with 8 orientation bins for each region. So the
dimension of SIFT is 4× 4× 8 = 128.

Histogram of Oriented Gradient (HOG) breaks the image
region into a cell-block structure and generates histogram
based on the gradient orientation and spatial location. The
input region (block) is first divided into small connected
regions, called cells, and for each cell a histogram of edge
orientation is computed. The histogram channels are evenly
spread from 0 to 180 degrees. Furthermore, the histogram
counts are normalized for illumination compensation. This can
be done by accumulating a measure of local histogram energy
over the somewhat larger connected regions and using the
results to normalize all cells in the block. The combination of
these histograms represents the final HOG descriptor. In our
implementation, we extract 4 cells and 8 gradient orientation

Fig. 1. Gradient feature extractions. (a) SIFT (b) HOG

bins for each block, as shown in Fig. 1(b). The dimension of
HOG is 4× 8 = 32.

HOG is not invariant to rotation, but the computation cost
is only 1/5 compared to SIFT. This issue will be considered in
the complexity-aware process of the RealAdaBoost procedure.

B. Gabor filters

The Gabor filters, which could effectively extract the image
local directional features at multiple scales, have been suc-
cessfully and prevalently used in face recognition. The Gabor
wavelets defined in equation (1), whose kernels are similar
to the 2D receptive field profiles of the mammalian cortical
simple cells, exhibit desirable characteristics of spatial locality
and orientation selectivity, and are optimally localized in the
space and frequency domains.

φ~k(~z) =
~k2

σ2
e
~k2~z2

2σ2 [ei
~k~z − e−σ2

2 ], . . . (1)

where σ decides the ratio of the window width and the wave
length, z is the normalization vector, k controls the width of
the Gaussian function, the wave length and direction of the
shocking part, defined as follows:

~k = kve
iφu ,



Fig. 2. Gabor filters using 3 scales and 6 orientations

where kv = kmax/fv and φu = πu/n. kmax is the maximum
frequency, f is the spacing factor between kernels in the
frequency domain, n is the maximum orientation number.

The Gabor kernels in (1) can be generated from the mother
wavelet, by scaling and rotation via the wave vector ~k. Each
kernel is a product of a Gaussian envelope and a complex
plane wave, while the first term in the square brackets in (1)
determines the oscillatory part of the kernel and the second
term compensates for the DC value. The effect of the DC term
becomes negligible when the parameter σ, which determines
the ratio of the Gaussian window width to wavelength, has
sufficiently large values. In our case, we utilize three scales
and six orientations to represent the components. And we set

σ = 2π kmax =
π

2
f =
√
2.

An example of the extracted Gabor features of an input face
are illustrated in Fig. 2.

The dimension of dense Gabor feature depends on the size
of the block, so it will be quite high if we want to extract
features in a large region. We utilize a sub-sampling strategy,
which applies a 2×2 to 6×6 sub-sampling based on the block
size. Using this strategy, the Gabor features will be extracted
only on the sub-sampled pixels. As a result, the minimum
dimension of Gabor is 3×6×9 = 162 (6×6 block with 2×2
sampling), and the maximum is 3 × 6 × 30 = 540 (32 × 40
block with 6× 6 sampling).

III. LEARNING THE FEATURES USING
REALADABOOST WITH COMPLEXITY PENALTY

TERMS

In RealAdaBoost [26], an image feature can be seen as
a function from the image space to a real valued range

f : x → [fmin, fmax]. The weak classifier based on f
is a function from the feature vector x to a real valued
classification confidence space. For the binary classification
problem, suppose the training data as (x1, y1), . . . , (xn, yn)
where xi is the training sample and y ∈ {−1, 1} is the class
label, we first divide the sample space into Nb several equal
sized sub-ranges Bj

Xj = {x|f(x) ∈ Bj}, j = 1, . . . , Nb. . . . (2)

The weak classifier is defined as a piecewise function

h(x) =
1

2
ln(

W j
+ + ε

W j
− + ε

), . . . (3)

where ε is the smoothing factor, W± is the probability dis-
tribution of the feature value for positive/negative samples,
implemented as a histogram

W j
± = P (x ∈ Xj , y ∈ {−1, 1}), j = 1, . . . , Nb. . . . (4)

The best weak classifier is selected according to the classifi-
cation error Z of the piecewise function (5).

Z = 2
∑
j

√
W j

+W
j
−. . . . (5)

Features with smaller Z will be selected, which leads to better
classification of positive samples and negative samples.

We adopt RealAdaBoost to learn the key regions and the
type of feature extraction methods. In consideration of the
efficiency, we add a complexity-aware criterion into RealAd-
aBoost, which is similar to selecting the image strip features
[16]. The discriminative criterion of RealAdaBoost is shown
in equation (6)

Z = 2
∑
j

√
W j

+W
j
− + a · fp · C, . . . (6)

where C is the computation cost of the features, a is the
complexity-aware factor to balance the discriminative capa-
bility and the computation complexity, fp is the false positive
rate of current stage.

The equation (6) could be explained as follows, in the first
stages of RealAdaBoost, the false positive rate is relatively
high, and the gender of faces are still easy to be classified,
so that efficient features are preferred. In the following stages,
because of the lower false positive rate, the patterns of the
training samples will be more complicated. Then the features
with high computation cost are considered.

To decide the computation cost C, we test the execution
time of different feature extraction methods. We set the C
of SIFT to 10, HOG to 2, and Gabor to 2-5 according to
its dimension. The complexity-aware factor a is set to 0.25.
The diagram of the whole complexity-aware RealAdaBoost is
illustrated in Fig. 3.



Parameters
N number of training samples
M number of evaluated features each iteration
T maximum number of weak classifiers

Input: Training set
{(xi, yi)}, i = 1, . . . , N,xi ∈ Rd, yi ∈ {−1, 1}

1. Initialize sample weight, classifier output, and false
positive rate
wi =

1
N , F (xi) = 0, i = 1, . . . , N , fp0 = 1

2. Repeat for t = 1, 2, . . . , T

2.1 Update the sample weight wi using the hth weak
classifier output
wi = wie

−yihi(xi)

2.2 For m = 1 to M
2.2.1 Generate a random region with a specific
feature extraction method (SIFT, HOG, or
Gabor)

2.2.2 Extract features and do least square to
yi ∈ {−1, 1}
2.2.3 Build the predict distribution function W+ and
W−

2.2.4 Select the best feature based on minimizing Z
in equation (6)

2.3 Update weak classifier using (3)
2.4 Update strong classifier
Ft+1(xi) = Ft(xi) + ht(xi)

2.5 Calculate current false positive rate fpt
3. Output classifier
F (x) = sign[

∑T
j=1 hj(x)]

Fig. 3. Learning the features using RealAdaBoost with complexity penalty
term

IV. EXPERIMENTS

A. Experiemtn on FERET dataset

The FERET database [4] contains gray scale images of 1,199
individuals with uniform illumination but different poses. Ex-
amples are shown in the first row of Fig. 4. Similar to Makinen
and Raisamo’s work [3], faces of one image per person the Fa
subset were used and duplications were eliminated. Therefore,
199 female and 212 male images were used from the FERET
database.

In our experiments, we adopted a 5-fold cross validation
testing scheme, where the images are divided into five folds,
keeping the same ratio between male and female faces. In the
training procedure, all the faces are resized to 64 × 80 and
aligned based on eye position.

We train 7 classifiers using RealAdaBoost, which includes
the classifiers utilizing single feature (SIFT, HOG, and Gabor),
the classifiers using the combination of two features, and the
method proposed in this paper. After feature selection, linear
SVM is utilized to train a classifier for accuracy evaluation.
The items with (*) denotes that the complexity-aware Real-
AdaBoost is adopted. There is no complexity penalty term
if single feature is used. Experimental results are shown in
Table. 1. It can be seen that using the complexity-aware

Fig. 4. Examples of databases used in our experiments. The first row- FERET.
The second row-KinFace. The third row-LFW.

TABLE I. GENDER RECOGNITION ON FERET DATABASE

Approach Recognition rate
SIFT 94.89%
HOG 94.64%
Gabor 94.89%

SIFT + HOG (*) 95.86%
SIFT + Gabor (*) 96.35%
HOG + Gabor (*) 95.62%

Y. El-Din [19] 97.11%
Tapia [18] 99.13%

L. Alexandre [27] 99.07%
All three features (*) 98.78%

strategy, the average recognition rate is improved compared
to using SIFT, HOG, or Gabor independently. Using all three
features, the accuracy is also comparable with the state-of-the-
art algorithms [18][19][27].

B. Experiments on KinFace dataset

The UB KinFace dataset [14] offers a collection of faces
captured from the web, representing a variation of expressions
and lighting conditions. It contains 600 images of 3 groups.
Each group is composed of child, adult, and senior images.
Examples are shown in the second row of Fig. 4.

Similar to the experiments in FERET database, a 5-fold
validation is applied on each group. Duplicate images of the



TABLE II. GENDER RECOGNITION ON KINFACE DATABASE

Approach Recognition rate
SIFT 92.50%
HOG 91.83%
Gabor 91.67%

SIFT + HOG (*) 95.17%
SIFT + Gabor (*) 95.50%
HOG + Gabor (*) 94.67%

Y. El-Din [19] 94.45%
All three features (*) 96.50%

TABLE III. GENDER RECOGNITION ON LFW DATABASE

Approach Recognition rate
SIFT 94.62%
HOG 93.23%
Gabor 94.94%

SIFT + HOG (*) 96.10%
SIFT + Gabor (*) 96.97%
HOG + Gabor (*) 95.69%

Shan [6] 94.81%
Tapia [18] 98.01%

All three features (*) 98.01%

same person are placed in the same fold. The experimental
results of the average accuracy are listed in Table. 2. Using all
features, the accuracy is 4% better compared to the methods
using single feature. It also outperforms the state-of-the-art
algorithm [19] in this database.

C. Experiments on LFW

We conduct experiments on the LFW database [17]. LFW
is a database for studying the problem of unconstrained face
recognition, which contains 13,233 color face photographs of
5,749 subjects collected from the web. Some examples are
shown in the third row of Fig. 4. We manually labeled the
groundtruth regarding gender for each face. The faces that
are not (near) frontal, with rotation larger than 45 degree,
small scale, and strong occlusion were not considered. In
our experiments, we chose 4,500 males and 2,340 females,
which is similar to [6]. All experimental results were obtained
using 5-fold cross-validation. Similar to KinFace evaluation,
duplicate images of the same person are placed in the same
fold.

In Table 3, we compare our method with the methods
using single feature, the combination of two features, and
the state-of-the-art algorithms. It is observed that our method
achieves comparable accuracy with the state-of-the-art algo-
rithms [6][18]. The overall feature dimension of our classifier
is around 5,000, which is much smaller than [6][18].

D. Analysis

We draw the first 8 features selected by the RealAdaBoost
algorithm in LFW database, as shown in Fig. 5. There are one

Fig. 5. The first 8 features selected by RealAdaBoost in human face

TABLE IV. EXECUTION SPEED OF THE GENDER
CLASSIFIERS

Approach Recognition time(ms)
SIFT 30.54
HOG 11.22
Gabor 18.83

SIFT + HOG (*) 19.77
SIFT + Gabor (*) 17.90
HOG + Gabor (*) 15.19
All three features 24.45

All three features (*) 11.89

SIFT feature, 4 HOG features, and 3 Gabor features. Only one
SIFT feature is selected because of its heavy computation cost.
In addition, it could be seen that most of the features lays on
the upper part of the face. This circumstance is reasonable,
because it is much easier to recognize the gender by eye,
eyebrow and nose rather than using mouth, which is easily
influenced by expression variation.

We test the resulting classifiers on a desktop PC with
a 2.5 GHz I3 PC and 2 GB memory. The execution speed
is shown in Table 4. We find that SIFT is relatively slow
compared to HOG and Gabor feature. If we combine these
features together and use the complexity-aware strategy, the
execution time will be reduced, shown as the rows with
asterisks. Furthermore, if all three features are used, the speed
is significantly improved from 24.45ms per face to 11.89ms per
face using the complexity-aware RealAdaBoost. So we can get
the conclusion that the proposed method contributes to both
the accuracy and the efficiency of gender recognition.

V. CONCLUSION

In this paper, we proposed a local feature-based representa-
tion for face gender recognition. We used a RealAdaBoost
algorithm with the complexity penalty term to select the
meaningful features, which successfully balances the accuracy
and efficiency. High gender recognition rates were reported
in comparison to previously published results on three fa-
mous datasets, where 98.8% was achieved for FERET, 96.5%
achieved for KinFace, and 98.0% achieved for LFW.

The approach proposed in this paper is promising to be
further studied. We have already found that the proposed
framework is also effective on other recognition tasks, such
as age estimation and emotion recognition.
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