
GENERATIVE MUSIC, COGNITIVE MODELLING,

AND COMPUTER-ASSISTED COMPOSITION

IN MUSICOG AND MANUSCORE

by

James B. Maxwell

M.F.A., Simon Fraser University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

under Special Arrangements with

Dean of Graduate Studies

School for the Contemporary Arts and the

School of Interactive Art + Technology

Faculty of Communications, Art, and Technology

c© James B. Maxwell 2014

SIMON FRASER UNIVERSITY

Summer 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

ii

Partial Copyright Licence

iii

Abstract

Music composition is a complex, multi-modal human activity, engaging faculties of percep-

tion, memory, motor control, and cognition, and drawing on skills in abstract reasoning,

problem solving, creativity, and aesthetic evaluation. For centuries musicians, theorists,

mathematicians—and more recently computer scientists—have attempted to systematize

composition, proposing various formal methods for combining sounds (or symbols repre-

senting sounds) into structures that might be considered musical. Many of these systems

are grounded in the statistical modelling of existing music, or in the mathematical formal-

ization of the underlying rules of music theory. This thesis presents a different approach,

looking at music as a holistic phenomenon, arising from the integration of perceptual and

cognitive capacities. The central contribution of this research is an integrated cognitive

architecture (ICA) for symbolic music learning and generation called MusiCog. Inspired by

previous ICAs, MusiCog features a modular design, implementing functions for perception,

working memory, long-term memory, and production/composition. MusiCog’s perception

and memory modules draw on established experimental research in the field of music

psychology, integrating both existing and novel approaches to modelling perceptual phe-

nomena like auditory stream segregation (polyphonic voice-separation) and melodic seg-

mentation, as well as higher-level cognitive phenomena like “chunking” and hierarchical

sequence learning. Through the integrated approach, MusiCog constructs a representa-

tion of music informed specifically by its perceptual and cognitive limitations. Thus, in a

manner similar to human listeners, its knowledge of different musical works or styles is

not equal or uniform, but is rather informed by the specific musical structure of the works

themselves.

MusiCog’s production/composition module does not attempt to model explicit knowl-

edge of music theory or composition. Rather, it proposes a “musically naïve” approach to

composition, bound by the perceptual phenomena that inform its representation of musical

iv

structure, and the cognitive constraints that inform its capacity to articulate its knowledge

through novel compositional output.

This dissertation outlines the background research and ideas that inform MusiCog’s

design, presents the model in technical detail, and demonstrates through quantitative

testing and practical music theoretical analysis the model’s capacity for melodic style

imitation when trained on musical corpora in a range of musical styles from the West-

ern tradition. Strengths and limitations—both of the conceptual approach and the spe-

cific implementation—are discussed in the context of autonomous melodic generation and

computer-assisted composition (CAC), and avenues for future research are presented. The

integrated approach is shown to offer a viable path forward for the design and implementa-

tion of intelligent musical agents and interactive CAC systems.

v

To Martha Rose Grymaloski

vi

“Music is the best means we have of digesting time.”

— W. H. Auden

vii

Acknowledgments

I’d like to start by thanking my supervisor, Dr. Arne Eigenfeldt, for initially presenting the

possibility that my interest in generative music and Computer-Assisted Composition might

provide the foundation for a doctoral thesis. This work would not likely have taken the

course it did without his encouragement. I’d also like to thank my senior supervisor, Dr.

Philippe Pasquier, for his expert guidance and unrelenting attention to detail throughout this

investigation. It has been an extremely challenging process for me to acquire the skills and

knowledge necessary—in a field quite removed from my original area of expertise—to bring

my research to this stage, and it would not likely have been possible without Philippe’s ex-

acting standards and demand for intellectual and academic rigour. Beyond their academic

assistance, I’d also like to thank Arne and Philippe for providing me with invaluable opportu-

nities to present my work both at home and abroad. Travelling to beautiful and fascinating

places like Kobe, Padova, Copenhagen, and Ljubljana has been a “perk” of my doctoral

studies that I will never forget. On that note, I should also thank SIAT’s Desiré Nazareth

for her admirable patience in handling my somewhat “creative” accounting practices, and

for enabling me to placate the Gods of Credit in a timely manner on my return home. I

also owe a debt of gratitude to the Social Sciences and Humanities Research Council of

Canada (SSHRC), and the Dean of Graduate Studies office (through the Special Arrange-

ments program) for their financial support. Credit for making the daily, weekly, and monthly

hoop-jumping of the doctoral path manageable and eminently tolerable goes to the timely

and well-tempered persistence of Sheilagh MacDonald. I’d also like to thank Prof. Owen

Underhill for his quiet confidence in my progress throughout.

Doctoral research is more process than product, and processes are complex, multi-

faceted things. As such, I would like to acknowledge the intellectual enthusiasm and gen-

erosity of my fellow researchers from the MAMAS Lab, who no doubt influenced my thinking

in numerous and subtle ways. I hold a particular appreciation for the level-headed recal-

ibration of perspective provided by my conversations with Graeme McCaig and Nicolas

viii

Gonzalez Thomas. Also helpful were Nicolas’ comments regarding my written description

of the quantitative methods used in evaluating this work, for which an indirect thanks goes

to Thomas M. Loughin from SFU’s Department of Statistics and Actuarial Science. For

proofreading assistance I owe congratulatory bottles of VisineTM to Teresa Connors, Claire

French, and Charles Maxwell.

Of course, my biggest and warmest thanks goes to my friends and family for their pa-

tience and support throughout this process. In particular, to my better-than-better-half,

Claire, who endured countless hours of fantastically incomprehensible speech and reck-

less flights of wild, intellectual abandon, punctuated by occasional swan-dives into mental

turmoil and insomniac despair. I don’t imagine she really slept through the routine peri-

ods of 5 a.m. coffee grinding, but she certainly never made it a point of contention. Her

unwavering support, and absolute, unshakeable confidence in my abilities are a constant

reminder of how incredibly fortunate I am. For inspiration, my brother Max and his partner-

in-art-crime Hadley have always stood as towering figures in my mind, for the intellectual

and conceptual rigour of their work, but also for their insistence that playfulness is more

fundamental to art making than solemnity. The long nights wrapped in conversation, pop-

music-historical taunting, and “Scopa!” (and warmed by more than a drop of Russian

Standard) in Kreuzberg and Kreuzkölln, are some of the fondest memories of my doctoral

years. Of course, I also have to thank my longest-standing editor, Chuck (a.k.a., “Pops”),

who instilled in me a healthy disdain for the word “very,” and an appreciation of the inherent

value of a poetic turn of phrase, whatever the context. Finally, I owe my deepest and most

heartfelt thanks to Dr. Martha Rose Grymaloski (a.k.a, “Ma”), who gave me the intellectual

curiosity, mental tenacity, purposefulness, and self-discipline required to meet each new

challenge with a taste for its achievement. Her spirit of inquisitiveness and her uncondi-

tional moral, artistic, and intellectual support sustain me in all my endeavours. Looking

back, it’s difficult to understand how I arrived at this point, with her taken away before I

could reach the end, but I know she would have been immeasurably proud to have another

doctor in the family. She is at once my deepest sorrow and my greatest inspiration.

ix

Contents

Partial Copyright License iii

Abstract iv

Dedication vi

Quotation vii

Acknowledgments viii

Contents x

List of Tables xiv

List of Figures xv

List of Algorithms xx

Preface xxi

1 Introduction 1

1.1 Reformulating the Problem: A Holistic Approach 3

2 Composers and Authors Compose Compositions 6

2.1 Laske’s Composition Theory . 10

2.2 Composition Theory in Literature . 13

2.3 Collins’ Synthesis Process Model . 18

2.4 Composition Theory and Generative Models 22

2.4.1 Composition by Prediction: The Markov Property 22

2.4.2 An Innate Faculty for Music: Generative Grammars 29

x

2.4.3 Iteration Toward Musical “Fitness:” Evolutionary Models 36

2.4.4 David Cope’s “Music Recombinance” 40

2.5 If Composers are Creative, What Does That Mean? 47

2.5.1 Boden’s Creative Magnitudes and Types 48

2.5.2 Schmidhuber’s Theory of “Compressor Improvement” 51

2.5.3 Graeme Ritchie: Quantifying Computational Creativity 52

3 Music Perception and Cognition 55

3.1 Echoic Memory . 55

3.2 Auditory Stream Segregation . 57

3.3 Short-Term Memory or “Working Memory” 59

3.4 Memory Optimization and “Chunking” . 61

3.5 Cognitive Modelling . 64

3.6 Cognitively-Grounded Music Generation Systems 64

3.6.1 The IDyOM Model . 64

3.6.2 The Anticipatory Model of Cont et al. 66

3.6.3 A Deep Learning Approach . 68

3.7 Integrated Cognitive Architectures . 69

4 MusiCog: An Integrated Architecture 72

4.1 Music Descriptors . 74

4.2 Processing Modules . 79

4.2.1 Perception Module (PE) . 79

4.2.2 Working Memory (WM) . 90

4.2.3 Long-Term Memory (LTM) . 98

4.2.4 The Production Module (PM) . 110

4.2.5 Handling Rhythmic Information . 122

4.3 Implementation Details . 123

5 MusiCog in Practice 124

5.1 The Perception Module . 124

5.1.1 PE Stream/Voice-Separation . 124

5.1.2 PE Low-level Boundary Detection 127

5.1.3 PE Induction of Mode and Tonal Centre 129

5.2 The Working Memory Module . 131

xi

5.2.1 WM Cognitive Salience and WM Retention 131

5.2.2 WM Chunking and Higher-level Segmentation 133

5.3 Long-Term Memory: Learning in the CM 137

5.4 Generation in the PM . 142

5.4.1 Testing on the Folk Corpus . 146

5.4.2 Imitation of more developed styles 156

6 Discussion: Autonomous Composition in MusiCog 165

6.1 Discussion of Test Results . 165

6.2 Strengths of an Integrated Approach . 170

6.3 Questions and Challenges . 172

6.3.1 Stylistically inconsistent rhythmic complexity and syncopation. 172

6.3.2 Inability to reliably produce tonal melodies, when trained on tonal ma-

terials. 177

6.3.3 Lack of formal repetition structure and symmetry. 178

6.4 Creativity in MusiCog . 181

7 ManuScore: Cognitively-Grounded Computer-Assisted Composition 183

7.1 Design Motivations Behind ManuScore . 185

7.2 ManuScore Design & Features . 186

7.2.1 An Open Musical Space . 186

7.2.2 Note Entry in ManuScore. 189

7.2.3 Orchestration in ManuScore. 190

7.2.4 Sharing Staff Data with “Links” . 193

7.3 A Composition Study Using ManuScore . 195

7.4 A Listener Study . 196

7.5 Study Results . 197

7.6 ManuScore as a CAC Tool . 199

7.7 Composition in ManuScore with MusiCog 202

8 Conclusion 204

8.1 Future Work . 204

8.1.1 Improvements and Extensions to the PE 204

8.1.2 Improvements and Extensions to the PM 205

8.1.3 Modelling Attention . 210

xii

8.2 Final Statements . 210

Bibliography 214

Appendix A Score Example 1: experiri 231

Appendix B Score Example 2: factura 242

xiii

List of Tables

2.1 A text with topics and nested subtopics produced by Hayes’ “topic-

elaboration” model. 16

2.2 A set of rewriting rules describing the “non-terminal” symbols in a generative

grammar (from Nierhaus [177]). 30

2.3 A set of “terminal” symbols to be used with the generative grammar in Table

2.2 (from Nierhaus [177]). 30

2.4 A set of rewriting rules for Cope’s SPEAC system (reproduced from Cope

[52]). 44

4.1 Synthesized spectral weights used for calculating the harmonic support of

adjacent and/or simultaneous MIDI pitches. 88

4.2 Estimating the mode using the chroma vector and a modal “masking” vector. 89

5.1 Learning at L1, L2, and L3 for four different values of ϕ when trained on a

corpus of jazz songs (top), and on the Bach BWV 1013 partita (bottom). . . 142

7.1 Audience evaluation of “engagement.” . 198

7.2 Audience evaluation of “directly human-composed.” 199

xiv

List of Figures

2.1 Hayes’ “topic-elaboration” model of literary composition (reproduced from

Hayes [99]). 15

2.2 Motive-level “topic-elaboration” analysis of Mozart melody. 17

2.3 Phrase-level “topic-elaboration” analysis of Mozart melody. 18

2.4 A first-order Markov model of the opening phrase from Mozart’s 40th sym-

phony. 26

2.5 An n-gram model capable of reproducing the Mozart phrase with higher

probability (i.e., than a 1st-order model). 27

2.6 Tree diagram of a sentence produced by the generative grammar given in

Tables 2.2 and 2.3 (reproduced from Nierhaus [177]). 31

2.7 Output from EMI demonstrating various techniques, including “unifications,”

“earmarks,” and “signatures” (reprinted from Cope [51]). 42

3.1 An example of “virtual polyphony” in the Preludio from Bach’s E Major Partita

for violin, BWV 1006. 59

3.2 Phrase structure in Bach and IDyOM. 66

4.1 An overview of the MusiCog architecture. 73

4.2 An example of the Beat Entry-Delay music descriptor. 76

4.3 The Beat ED retains the relationship between rhythm and beat, whereas the

IOI does not. 77

4.4 The bED also retains correct beat relationships in syncopated contexts. . . . 78

4.5 The rhythmic expectancy function, based on Desain’s “basic expectancy”

from his “(De)composable Theory of Rhythm.” 83

4.6 The decay of an element’s cognitive salience in WM as a function of its

initial salience εsal, the duration for which it has been retained in WM τ , and

habituation. 92

xv

4.7 Chunking in the WM is based on the recognition of segments in the LTM. . . 95

4.8 Higher-level chunks are formed by non-contiguous repetitions. 96

4.9 Parallelism in Mozart’s 40th Symphony. The asterisk indicates the point at

which the musical parallelism will indicate a phrase boundary. 97

4.10 Encoding phrases as a combination of Motifs (L1) and Boundaries (L2). . . . 100

4.11 L1 of a CM trained on the opening of Mozart’s 40th Symphony, showing all

three tiers. 101

4.12 Automatic classification of segments at tier 1. Nodes η1
3 (8) and η1

3 (0) act

as terminals for pairs of closely related segments. 102

4.13 Different approaches to encoding form in the CbCM and the CM. 103

4.14 The second, novel melody can be inferred by the same L2 schema structure

as the Mozart melody. 103

4.15 Schema view of a trained CM showing transitions (grey arrows), terminal

links (dotted) and cueing links (black arrows). 104

4.16 Detail view showing the cueing of sequence ((0 - 0 +) (+ - -)). 105

4.17 A hypothetical CM graph in which the out-edge weights indicate a high-

probability transition to an L2 boundary node, thus terminating the L1 segment.113

4.18 Selection of an Ln−1 segment from Ln boundary C. The algorithm must ac-

count for Ln−1 segment probabilities, terminal probabilities, and connectivity

to H via cueing links. 115

4.19 Choosing CM transitions with support from edges, terminal links, and cueing

links. 117

4.20 The melodic fragment represented in CM graph a expresses a clear par-

allelism via the sharing of terminal X with boundaries T and U. However,

the probability of generating of this parallelism is jeopardized by subsequent

learning of melody b. 118

4.21 Adapting to unexpected PE segmentation of feedback from the PM. 121

5.1 PE voice-separation of Bach’s BWV 70 chorale. 125

5.2 PE voice-separation of complex polyphonic material from Bach’s BWV 846

Fugue. 126

5.3 Low-level boundary detection for Bach’s BWV 846 Fugue (monophonic ar-

rangement). 128

5.4 Low-level boundary detection for the main theme from Mozart’s 40th Sym-

phony. 128

xvi

5.5 Low-level boundary detection of Maxwell’s Invidere, for flute solo. 129

5.6 A test of the PE’s mode and tonal centre induction function. 130

5.7 Mode and tonal centre induction of the opening melody from Mozart’s 40th

Symphony. 131

5.8 Evolution of the cognitive salience over time for the opening segment (“Seg

1”) in Mozart’s 40th Symphony. The rate of decay is slowed in m. 7 by the

imitative restatement of segment 1, transposed down one scale-step. 132

5.9 Evolution of WM capacity during training. 133

5.10 Formation of chunk structure in WM after the first training iteration on the

melody from Mozart’s 40th Symphony. 134

5.11 Formation of chunk structure in WM after training on Mozart’s 40th symphony

is complete. 135

5.12 Low-level segmentation of the theme from Bach’s BWV 846 Fugue showing

the state of hierarchical learning after the first training pass. 136

5.13 Low-level segmentation of the Bach theme after training is completed. 136

5.14 Development of the pitch and rhythm models when trained consecutively on

the four movements of Bach’s A Minor Partita, BWV 1013. 137

5.15 Nodes added at the Schema, Invariance, and Identity tiers (pitch model)

when trained on Bach’s A Minor Sonatas and Partita, BWV 1013. 138

5.16 Learning in the pitch and rhythm models when trained on the Finnish folk

song corpus (ϕ = 0). 140

5.17 The distribution of nodes learned at levels 1, 2, and 3 of both the pitch and

rhythm models, when trained on a corpus of jazz songs. 141

5.18 By altering low-level segment structure, higher ϕ values can negatively im-

pact the detection of higher-level parallelisms. 141

5.19 Excerpt of a “random” generated melody. 144

5.20 Matrix of similarity ratings by Gonzalez Thomas et al. 145

5.21 Comparison of entropy and expectancy-based complexity ratings for Musi-

Cog’s generated folk melodies, a folk melody training corpus, and a set of

“random” melodies. 146

5.22 Multi-dimension scaling plot of the Folk corpus, the MusiCog generations,

and the set of random melodies. 148

xvii

5.23 Repeated generation (1000 melodies) with feedback learning enabled pro-

duces a clear and significant increase in the complexity and entropy ratings

of the generated melodies. 149

5.24 Folk song at median complexity from training corpus. 150

5.25 MusiCog folk generation number 43. 150

5.26 The manual inclusion of a harmonic outline highlights the implied tonal struc-

ture of the MusiCog melody. 151

5.27 The Krumhansl-Kessler key profile for C major. 152

5.28 Histograms of the strength of implied tonality (using the maxkkcc function) of

the Folk corpus, the MusiCog generations, and a set of random melodies in

C major. 153

5.29 Analysis of the segment structure of MusiCog generation number 43. 155

5.30 Plot of complexity and entropy for a corpus of 22 jazz songs and 22 32-

measure ‘songs’ generated by MusiCog. 158

5.31 MusiCog’s 18th generation when trained on the Jazz corpus. 159

5.32 Multi-dimensional scaling plot of the 4 movements from Bach’s BWV 1013

flute partita, MusiCog’s generations, and 4 random melodies. 160

5.33 An excerpt of MusiCog’s 3rd generation when trained on Bach’s BWV 1013. . 161

5.34 Plot of the complexity and entropy ratings for Maxwell’s Invidere, MusiCog’s

generations, and 10 random melodies. 163

5.35 Score excerpt from MusiCog’s 10th generation when trained on Maxwell’s

Invidere, for flute solo. 164

5.36 Score excerpt from Maxwell’s Invidere, for flute solo. 164

6.1 Complexity and entropy for all corpora and all MusiCog generations. 166

6.2 Arbitrary rhythmic recombination of isochronous rhythmic segments pro-

duces a syncopated overall phrase structure. 168

6.3 Result of segment recombination from an isochronous musical source. . . . 169

6.4 “Virtual syncopation” in the Allemande from Bach’s A Minor Partita. 170

6.5 An example of MusiCog generating novel intervals through recombination. . 173

6.6 Generation of novel IOIs in MusiCog. 174

7.1 Metric Markers in ManuScore. 187

7.2 The “cut-away” score style supports the notion of musical objects. 188

7.3 MusiCog’s interpretation of a Gesture Line. 189

xviii

7.4 MusiCog’s presentation of a set of possible continuations from a given mu-

sical context. 191

7.5 MusiCog’s representation of a real time continuation in ManuScore. 191

7.6 Assigning Instruments in ManuScore. 192

7.7 Note-attached staccato, accent, down-bow, and tremolo articulations. 192

7.8 Using a Link to apply the pitch contour from one staff to another. 194

7.9 The opening phrase in ManuScore (bottom) and its transcription into stan-

dard music notation. 200

7.10 The music at measure 12 in ManuScore (bottom), transcribed as a metric

modulation in standard music notation. 202

7.11 Basic motives exploited by MusiCog’s autonomous generation process for

factura iii. 203

xix

List of Algorithms

4.1 Rhythmic quantization . 79

4.2 Calculate melodic voice-leading cost and cohesion 82

4.3 Update cognitive salience of elements in WM 91

4.4 Update contents of stream . 94

4.5 Parallelism-based chunking of elements in a stream 98

4.6 The main WM update function . 106

4.7 Learning and inference of L1 segments . 107

4.8 Learning and inference of higher-level segments 109

4.9 Predictive generation from a given state . 112

4.10 Selection of Ln−1 path given Ln boundary 114

4.11 Generate path to a given terminal . 115

xx

Preface

I am a composer by training and practice and, like many composers of my generation,

I owe a great deal of my early compositional development to two very simple technolo-

gies: pencil and paper. As a teenager, spurred by an obsessive love for Mozart’s 40th

symphony, I carried with me for several months a deteriorating, spiral-bound Passantino

manuscript notebook, naïvely scribbling down my own G Minor symphony, in stern defiance

of my tenuous-at-best understanding of what “composing,” “G Minor,” and “symphony” re-

ally meant. Countless trips to the public library and a growing collection of music on vinyl,

several more Passantino notebooks, pencils, and an untold number of erasers (Stravinsky

is reported to have said that music is composed “avec la gomme”) were all witness to this

early exploration. But another presence loomed on the cultural horizon. Like all “Gen X-

ers,” I had the curious pleasure of living at the dawn of the so-called “Information Age”:

an era of rapid technological and cultural change, spawned by the birth of the personal

computer. For me, the technologization of music had a humble beginning. A Yamaha QX-1

MIDI sequencer and a Roland JV-1080 sound module became my personal orchestra, as

I transcribed music from my Passantino books into the two-line LED display of the QX-1,

eager to glean some sense of how these works sounded. From that moment I was trapped.

Twenty years later, the computer had become deeply entwined with my compositional

thinking. Though my process was far simpler and more conventional than those you might

call “algorithmic” composers, certain aspects of my musical language were now so intri-

cately bound to the computer and its software, that extricating myself from the relationship

seemed impossible. It was at this point—in this state of capture—that my current investiga-

tion began. What I envisioned when I set out on this journey was a software program that

could serve as a kind of compositional “collaborator”; a system capable of contributing in a

meaningful way to my creative process. Viewed from the outside, it seemed that generative

music had come far enough that a viable method for creating such an “agent” must surely

exist. But as my search deepened, it became clear that this was not necessarily the case.

xxi

After all, when choosing a collaborator—a human collaborator, that is—it seems natural

to demand a degree of competence as a prerequisite. But, if competence for a composer

is the ability to compose, then existing generative music approaches clearly lacked musi-

cal competence. It was at this point that I stumbled across a book by David Cope called

“Computer Models of Musical Creativity” in a London bookshop. Here was a description of

musical thinking that was so clear to me, so transparently aligned with my own experience

of the compositional process, that a solution seemed imminent.

However, I soon realized that Cope’s approach raised more questions than it could

answer. The underlying intuition seemed sound, but the methods employed concealed

such a vast wealth of Cope’s personal musical knowledge that their application seemed

intractable. And so my research shifted from a focus on how intelligent software tools might

function as compositional collaborators, to a much deeper investigation of how musical

competence might be implemented in a computer system. This new path of research

began with a focus on musical hierarchy and the representation of high-level musical form,

but over time a much larger field of exploration was exposed. This dissertation tracks the

development of my thinking through a number of important stages in this exploration, which

brought me into contact with music psychology, theories of the creative process in music

and literature, machine learning, cognitive modelling, and algorithmic composition. The

result is a significant first step toward a better understanding of how music perception and

cognition might provide a path toward machine creativity in music, opening up the potential

for more meaningful human-machine collaboration.

xxii

Chapter 1

Introduction

In 1805 Celmenti and Co. and T. Lindsay of London published a volume with the unlikely

and impossibly verbose title:

The Melographicon: A new musical work, by which an interminable number

of melodies may be produced, and young people who have a taste for poetry

enabled to set their verses to music for the voice and piano-forte, without the

necessity of a scientific knowledge of the art. [40]

While the notion may seem preposterous to some, the fascination with creating formal

systems for music composition is by no means new. Not long before the Melographicon,

“Musical Dice Games”—music composition systems moderated by chance, first attributed

to Johann Philipp Kirnberger [177]—became popular pastimes at bourgeois parties. A sim-

ilar impulse some 200 years earlier led Athanasius Kircher to design his “Arca Musarith-

mica”; a system of wooden sticks (syntagmas) with various markings, which could be used

to combine pitch and rhythm patterns with liturgical text for the creation of counterpoint

in the styles of the contrapunctus simplex and floridus [177]. Likewise, around 650 years

before Kircher, Guido d’Arrezo developed a system for deriving melodies given the syl-

labic content of religious texts using look-up tables and a precompiled set of pitches and

melodic phrases [177]. Leaping forward approximately 1000 years, composer, theorist, and

programmer David Cope unveiled his “Experiments in Musical Intelligence” (EMI) [48]; a

computer program capable of generating complete works in the style of famous composers

from the Western classical tradition. Cope was also the first to put a name to the underlying

1000-year-old technique, aptly coining the term “music recombinance” [48]. The composi-

tional power of EMI was a breakthrough in its time, and remains essentially unchallenged in

1

the quality of its musical imitations to this day. However, the basic technique, which involves

the fragmentation and recombination of existing music, is fundamentally the same as that

employed by the anonymously authored Melographicon, the various dice games, Kircher’s

Arca Musarithmica, and d’Arezzo’s look-up tables. The common underlying intuition that

unites all of these systems is their unanimous recognition of the combinatorial nature of

music. Though it may be empirically comprised of individual sounds organized in time, the

vast majority of music we hear and appreciate as listeners is fundamentally composed of

musical concepts; mental objects, or “gestalts,” with specific attributes and identities that

can be apprehended, categorized, and recognized by the human mind. Further, all of the

generative systems mentioned above, from the tables of d’Arezzo to the source code of

EMI, also have one significant attribute in common; their reliance on the expert knowledge

of their authors. As such, there is an ontological gap in their derivation, which cannot

be bridged by analysis of their formalisms alone. Even EMI, implemented in a medium as

concrete and logical as computer code, cannot be completely understood through objective

analysis, since the organization of its algorithms and the selection of musical materials for

its underlying database depend entirely on Cope’s expert musical knowledge and intuitions

as a practicing composer.

In the mid-1800s, at the dawn of the age of mechanical computation signalled by Sir

Charles Babbage’s “Analytical Engine” (and quite possibly inspired by the potential of the

Melographicon), Ada Augusta, mistress of Babbage and the first programmer of the engine,

expressed her musical aspirations for the machine as follows:

The operating mechanism [of the analytical engine] [...] might act upon things

besides number, were objects found whose mutual fundamental relations could

be expressed by those of the abstract science of operations and which should

also be susceptible to the action of the operation notation and mechanisms of

the engine. Supposing, for instance, that the fundamental relations of pitched

sounds in the science of harmony and of musical composition were susceptible

of such expression and adaptations, the engine might compose elaborate and

scientific pieces of music of any degree of complexity or extent. [86]

Although Augusta never realized her vision of machine composition, an important dis-

tinction can be made between this approach and the compositional systems that preceded

it. Augusta’s notion relies not on the recombination of human-composed musical frag-

ments, but rather on an abstraction of the “fundamental relations of pitched sounds” such

2

that they may be made “susceptible to the action of the operation notation and mecha-

nisms” of the analytical engine. Though a functioning system was never produced, it is

nevertheless informative to consider Augusta’s conceptualization of the problem. First,

implicit to her formulation is the question of the music representation; i.e., how musical

information must be encoded in order to be computable by (or “made susceptible to”) the

engine. This aspect of formalization is only indirectly addressed by the earlier systems,

which utilize music notation1—to be interpreted by a human user—as the representational

format. Complementing the music representation side of Augusta’s conception is the prob-

lem of determining the “action of [...] mechanisms” required for composition; i.e., how

formal processes might operate on the music representation in order to produce new mu-

sic. In this way, Augusta’s conception captures the more general idea of what we now refer

to as algorithmic music—of music as a “science of operations”—which was to become the

mainstay of musical formalization some 200 years later, with the advent of the digital com-

puter. Of course, we cannot know what role expert knowledge might have played in such a

system, but it is clear that the level of abstraction proposed exceeds previous approaches.

As a curious end note, Augusta’s use of the phrase “scientific pieces of music” is also in-

triguing, as it suggests a role for computation in the composition of new forms of music,

unrestrained by previous notions of musicality, and accountable only to the “fundamental

relations of pitched sounds in the science of harmony.” This notion of using computation for

the invention of entirely novel musical forms was to enter musical discourse only some 100

years later, through the work of composers like Iannis Xenakis and theorists like Otto Laske,

who sought to use numeric formalization as an aide for exploring new musical territory.

1.1 Reformulating the Problem: A Holistic Approach

Acknowledging that modelling music composition in a formal system is a long-standing

challenge, the following dissertation takes a step back to look at the problem from a holistic

perspective. Specifically, we take an integrated cognitive modelling approach (see Section

3.7), grounded in experimental evidence from the music perception and cognition literature,

as a strategy for building a formal system that acknowledges the psychological underpin-

nings of human listening. The central contribution of this work is an integrated cognitive

architecture for music called “MusiCog” which, to the best of our knowledge, is the first

1Kircher’s system does contain a degree of numeric abstraction, in that it uses scale-steps to represent
pitches and symbolic music notation values to represent rhythmic quantities.

3

of its kind. The rationale for this approach derives, in part, from an understanding of the

active role—attested to in the field of music psychology—that listening plays in the com-

prehension of music. The complexity of the listening process requires a form of cognitive

organization which, we suggest, makes the fundamental knowledge required for compo-

sitional thinking accessible even to untrained listeners. This is not to deny the high level

of skill, knowledge, and training required of expert composers, but simply to highlight the

degree to which such specialized knowledge draws on the fundamental perceptual and

cognitive capabilities demonstrated in music listening. Through the integrated approach

we are able to examine the way in which largely innate perceptual and cognitive processes

inform the structure of musical knowledge and in turn support basic forms of composi-

tional thinking. Thus, composition in MusiCog does not claim to model the thinking of an

educated composer, versed in music theory and composition, but rather models the think-

ing of a “musically naïve” composer, informed purely by listening, and the implicit musical

knowledge that can be gained therefrom.

Chapter 1 begins our investigation by considering the idea of composition in its broadest

sense, with a focus on common conceptions from the fields of music and literature. We

look at several approaches to music generation, and consider them from the perspective of

their composition theoretical underpinnings. While we acknowledge that such approaches

do not necessarily propose to model composition directly, we suggest that the composition

theoretical perspective provides a useful analytical tool for examining the role reserved

for compositional thinking in system design. To conclude this chapter, we give a brief

overview of three established theories of creativity, providing a context for understanding

the affordances given by a formal system for producing creative compositional behaviour.

In Chapter 2 we outline several key ideas from the field of music psychology that

have directly informed our work on MusiCog. This section provides a brief introduction

to relevant research in music perception and cognition while also providing essential

background information for understanding MusiCog’s design. We discuss three existing,

cognitively-grounded systems for music generation, and give a brief introduction to the

field of Integrated Cognitive Architectures (ICA), which directly influenced the design of

MusiCog. Chapter 3 provides a detailed technical description of MusiCog, beginning with

the music descriptors used to represent input. We then provide descriptions of each of the

main processing modules, and conclude with a brief discussion of relevant implementation

details. In Chapter 4 we offer a number of test cases examining the perceptual and

cognitive processing of musical input provided by each of MusiCog’s modules, including

4

the learning of hierarchical musical structure, and the generation of melodic output.

These early compositional efforts of MusiCog are reviewed in the context of musical style

imitation; that is, we evaluate MusiCog’s ability to compose novel melodies in the style

of melodies that it has “heard” previously. In Chapter 5 we discuss the strengths of the

integrated approach, and provide an overview of questions and challenges raised by

this work. The chapter closes with a brief discussion of MusiCog’s capacity for creative

behaviour. The training files, generated output examples, score excerpts, and software

downloads referenced in this dissertation can be found at the following link:

http://www.sfu.ca/~jbmaxwel/MusiCog/index.html

In Chapter 6 we introduce a Computer-Assisted Composition (CAC) system called

ManuScore, which utilizes MusiCog as a generative “agent.” ManuScore’s main features

are outlined and two musical works composed in ManuScore are discussed. We also pro-

vide results from a listener study conducted in a live concert setting, in which music com-

posed using ManuScore was presented in public performance. Our discussion of Manu-

Score concludes with a few observations regarding the score representation used, and

how this appeared to promote a compositional practice focused on music perception rather

than on the theoretical structures implicit in common music notation. Chapter 7 concludes

the dissertation with a discussion of future work and a few closing remarks on the current

state of MusiCog’s development.

5

http://www.sfu.ca/~jbmaxwel/MusiCog/index.html

Chapter 2

Composers and Authors Compose
Compositions

The verb “compose,” with its c.1400 roots in the Old French “composer,” means to “put

together, arrange, write” [1]. The word combines the Latin com- “with” and +ponere “to

put, place” (as in “position”), and is commonly associated with the term “composite,” mean-

ing “to put together, to collect a whole from several parts” [1]. The musical sense of the

term, with its (English) agent noun form “composer,” dates back to 1590, and from 1640

on it saw more general application as “one who combines into a whole.” The noun form,

“composition,” dating from the late 14th century, carries the rather reflexive definition of “a

thing composed of various elements,” but also inherits earlier 13th century associations

with “agreement” and “settlement.” The still older Latin root compositio incorporates the

notion of “connecting.” Usage from the 1550s suggests an expressly literary meaning, des-

ignating composition as the “art of constructing sentences,” and around 1600 the notion of

“literary production”—in some cases specified as “a school exercise in the form of a brief

essay” [240]—was used. The usage associated with the visual arts, “arrangement of parts

in a picture” [1], appeared later, in 1706. Composing can thus be broadly defined as the

act of collecting, connecting, placing, constructing, combining, and putting together several

parts, through agreement or settlement, into a whole. It may be noted, however, that al-

though contemporary definitions of composition clearly acknowledge the notion of creation,

this idea is conspicuously absent from the term’s etymological roots. The suggestion is that

compositions are not strictly “brought into being,” as created things must by definition be,

but are instead comprised of existing parts or elements, which in some sense precede the

compositions themselves. Although composition is certainly understood to be a creative

6

act, and the composer must ideally bring together elements in some artful way, the defini-

tion implies that the elements themselves enjoy a somewhat independent existence; they

are singular mental concepts, and composition is fundamentally recombinant.

Although common usage of the term “composer” refers predominantly to musical prac-

tice, reference to both literary and musical products is made with the term “composition.”

The same is true of the verb form “compose”—one composes a song, letter, symphony, or

poem. Of course, it is also common to speak of “writing” music. But “to write” is by defi-

nition associated not so much with literary composition, per se, but with the physical need

to “carve, scratch, or cut” [1] symbolic characters into some fixed medium when recording

ideas or recounting events for posterity. When referring to strictly literary composition, a

somewhat more grandiose designation is made, by use of the term “author.” Considered

from its etymological roots, an author is literally the “founder, enlarger, master, leader,” and

the “one who causes to grow” [1]. The Old French “autor” carries a slightly different con-

notation, referring to the “originator, creator, instigator” [1]. It was only later, in the 14th

century, that a specifically literary usage appeared as “one who sets forth written state-

ments” [1]. Just as the term “composer” became associated with musical composition, it

is clear that the term “author” has become commonplace when referring to literary compo-

sition. Yet few would argue that composers are commonly authors of musical works, and

authors composers of language. So what sort of tacit understanding led to the rather con-

spicuous delineation of these two terms, composer and author, along musical and literary

lines, in spite of the fact that both disciplines are understood to produce “compositions?”

In making his case for a genuinely compositional perspective on music theory, com-

poser and theorist Otto Laske noted that:

Strangely enough, composers usually accept the notion that listening, not com-

position, is the paradigmatic musical activity on which a theory of music is to be

based. [135]

However unpalatable assertions like “composers usually accept” may be, Laske nev-

ertheless makes an interesting point about the apparent indivisibility of composition and

listening in music theoretical discourse of the late twentieth century [135]. Indeed, contem-

porary definitions of music, like Edgar Varese’s famous notion of “organized sound,” gener-

ally accord a central role to audition in characterizing music. More recently, neural imaging

studies [103] have revealed that imagined music also relies heavily on regions of auditory

cortex, suggesting that even in the absence of sound music remains inherently concerned

7

with audition. This shouldn’t be particularly surprising since it’s difficult to imagine how

a mental representation of music might come into being, let alone be communicated to

another, without some encounter with auditory perception. Yet, it certainly hasn’t always

been the case that music and audition were so inextricably linked. Indeed, the Pythagorean

definition of music suggests a much grander notion of universal order, quite removed from

contemporary notions of music as “organized sound.” The Pythagorean philosopher and

early music theorist Boethius conceived of three types of music: musica mundana, mu-

sica humana, and musica instrumentalis. Musica mundana, the so-called “music of the

spheres,” described the harmony of the celestial order, while musica humana concerned

the harmony of the human body and the relationship between body and soul. Only musica

instrumentalis corresponded to what we define as music today; it was the only “musica”

that one could hear. However, this should not suggest that audibility was of marginal im-

portance to Boethius and the Pythagoreans. On the contrary, it was the role of musica

instrumentalis to make the true mathematical order of the universe (musica mundana) ac-

cessible to the senses [101]. Thus for Boethius and the Pythagoreans, music was primarily

a field of mathematics investigating the laws of harmony, which, though made observable

through sounding bodies, was not fundamentally restricted to the domain of sound.

Music psychologist Diana Deutsch notes that this Pythagorean notion of music as math-

ematics has never ceased to guide the practice of music theory:

The view that music ought to be investigated solely by contemplation of nu-

merical relationships has characterized most music theory since Pythagorean

times. [...] Also stemming from the mathematical approach of the Pythagoreans

have been the various attempts to build entire musical systems by mathematical

deduction from a minimum number of established musical facts. [63]

As a scientist, Deutsch expresses a certain discomfort with this state of affairs, suggest-

ing that such theories should be treated as hypotheses, subject to verification through

scientific experimentation [63]. Indeed, such an approach might have led to a very differ-

ent development of musical language from that witnessed during the 20th century, with

its progressivist focus on mathematical formalization and systematization. Reflecting this

mathematical inclination of music theory, there is clearly an extra-auditory focus to systems

like serialism, or the Schillinger system [207], which provide compositional and organiza-

tional constraints that operate quite independently of audition. These Pythagorean aspects

of music theory would thus seem to contradict Laske’s complaints about a disproportionate

8

emphasis on listening in theoretical discourse. Indeed, much recent work in generative

music is likewise focused on developing parsimonious, mathematical formalisms, which

avoid heuristics based on musical or compositional knowledge. While this tendency can be

attributed, in part, to a general widening of the research field, drawing in greater numbers

of non-musicians—computer scientists, neuroscientists, engineers, etc.—it also reflects

an underlying cultural fascination with the Pythagorean notion of music. Echoing back to

Boethius, such purely mathematical models relegate listening to a passive, receptive role,

in which the listener bears witness to the higher mathematical order of the universe, as

evidenced through musical sound.

But it is important to recognize that listening is not, from a psychological perspective,

a purely passive experience. Peterson presents a compelling theory of the inherent cre-

ativity of music listening, based on the notion that listeners actively create mental models

of music as it unfolds [188]. During this process, listeners select salient “musical objects”

(i.e., via attention), relate them to one another, categorize them, and transform them in

various ways, according to their individual musical knowledge and experiences. Peter-

son suggests that the process of developing a mental model of a given musical work is

inherently creative, and follows a pattern similar to the compositional process of many

composers, starting with a general, schematic overview of the work, and proceeding to

unfold the moment-to-moment details through repeated exposure. Further, it has been

shown that even passive listening activates premotor areas of the brain [17], particularly

in cases where somewhat predictable rhythmic patterns are involved, further suggesting

a latent form of “action” inherent in music perception. Of course, such knowledge of the

neurophysiology of auditory imagery, or the presence of premotor activity during listening

is relatively recent, and was not available to Laske when he first expressed his opinion that

composition should be placed on a equal footing to listening in music theory. And it would

be easy to overemphasize Laske’s complaint about the theoretical assertion of listening as

the “paradigmatic musical activity.” If his position seems reactionary from a contemporary

perspective, it nevertheless represents an understandable response to the dominant view

of his time, given the limited body of research on listening processes available to him (and

to music theory in general). In fact, as his thoughts about “composition theory” matured, it

became clear that Laske saw any either/or theoretical bias toward listening/composition as

arbitrarily limiting: “neither the paradigm of Composition nor Listening provides insight into

the whole of music; each yields a pair of glasses of limited vision” [137].

9

2.1 Laske’s Composition Theory

Laske saw composers as experts in “virtual” or “possible” music, which he felt required an

alternative approach to a tradition based on the exploration of existing music—a practice

he felt could only serve to limit musical creativity [135]. Laske associated “virtual music”

with the idea of “inner hearing,” which included, but was not limited to, imagining1. Though,

as Zatorre and others have shown [103, 251], imagining music has much in common with

hearing music, from a neural perspective, so that the two ought not to be placed in mu-

tually exclusive categories. Another important component of Laske’s definition of virtual

music, as it relates to composition theory, arose through the integration of the computer as

a compositional tool. Following Chomsky, Laske characterized the cognitive demands of

composing in terms of three primary factors: competence, performance, and the task envi-

ronment. Competence was defined by the relevant knowledge and skills of the composer,

performance by the application of such knowledge and skills during composition, and the

task environment by the set of tools and materials used for composition. Laske felt that the

type of abstract thinking required for the specification of musical knowledge in algorithmic

processes—and composition software in particular—was a defining characteristic of con-

temporary practice. Such thinking focused on reasoning about the task environment and

the selection of materials and procedures best suited to realizing a particular musical goal.

Whether used in sound or score synthesis, and in whatever mode of interaction,

programs have [...] forced musicians to focus on the pro-active, rather than the

re-active, aspect of their activity, and have given them a chance to choose,

rather than suffer, their processes. [137]

Laske proposed two fundamental modes of compositional thought: “example-based”

and “rule-based.” Example-based composition is grounded in knowledge of previous mu-

sic, which is conceptualized in terms of “sound objects.” Since these objects are recalled

without access to the knowledge structures that brought them into being, Laske classifies

example-based models as “data models.” Rule-based models of composition, on the other

hand, are considered “process models,” because they characterize music according to the

sequence of operations, or “decision rules” that inform its development. In this sense, rule-

based models represent music using “procedural objects” [137]. Laske does not, however,

1Laske initially treated these terms synonymously, but gradually came to differentiate them, so that the
computational representation of music was considered “virtual music,” and imagined music was considered
“possible music.”

10

assume that procedural models alone embody a complete knowledge of music, but rather

that they presuppose data models, since the procedures involved always have music as

their object. Thus the important difference between the data model and the procedural

model, with regard to example-based and rule-based composition respectively, lay in the

fact that the “steps or rules of the procedural model emphasize, not the structure of the

data model, but its use in (real) time” [137].

In formulating a practice of rule-based composition, Laske places a strong emphasis on

the notion of design. According to its dictionary definition, to design is to “decide upon the

look and functioning of [an object], typically by making a detailed drawing of it” [65], and

has its root in the Latin designare, meaning “to mark out.” The term thus carries a strong

visual connotation, paired with an implicit strategy of abstraction, facilitating the evaluation

of products before they are committed to their final material form. However, the colloquial

understanding of design has broadened considerably over time, moving well beyond its

diagrammatic roots. Ralph [195] offers a more explicit, contemporary definition: “a specifi-

cation of an object, manifested by an agent, intended to accomplish goals, in a particular

environment, using a set of primitive components, satisfying a set of requirements, subject

to constraints.” Though Laske clearly subscribes to this more inclusive definition, he also

partitions his conception of design into two categories: a dualistic conception, and a holistic

one. The dualistic conception places a human designer in opposition to an external task

environment. The holistic conception, on the other hand, proposes a dialogical relation-

ship between designer and design; a process Laske formalizes through his notion of the

compositional life cycle: “the design creates the designer as much as the designer creates

the design.” In order to understand Laske’s notion of the compositional life cycle, it is im-

portant to realize that Laske is speaking with reference to composer/designers, who create

their own systems, based on their own set of specifications and requirements. Composers

like Hiller, Xenakis, and Cage, through to Ames, Koenig, and Truax all fit in this general

category, whether or not their systems were implemented as computer programs. In prin-

ciple, all such approaches are algorithmic, and embody a similar type of design-based

musical thinking. Such composers realized their compositional strategies through abstract

modelling of their musical goals, and the resulting designs in turn influenced the trajectory

of their compositional development. The dialogical aspect of this process is what Laske

termed the compositional life cycle: “This metaphor emphasizes the shifting perspective of

a designer who finds his competence and innervations reflected in his task environment—

such as a program for computer-assisted composition—rather than in examples of existing

11

music” [137]. Of course, it is worth remembering that a piano, pencil, and manuscript are as

much a “task environment” as a computer and its software. But it is generally difficult, if not

impossible, for composers using such tools to directly influence their design and structure,

or to extend their functionality beyond the intended purpose2.

Of particular relevance to Laske was a compositional process in which a software sys-

tem translated a musical design goal into an abstract, numeric representation. This rep-

resentation was then translated by the composer, through a process of interpretation, into

the musical specifics of pitch, rhythm, dynamics, and so on. It is this notion of interpretation

that Laske held in the highest regard, suggesting that “expert designers” excelled in their

capacity to synthesize complex, and often multidimensional design data, into coherent mu-

sical interpretations. This is precisely the kind of process used by composers like Hiller

and Xenakis in their earliest experiments with statistical models, and later extended into

the domain of CAC software with the work of Truax, Koenig, and many others since. It is

worth noting that Laske’s commitment to representing musical ideas through mathematical

abstractions reveals, once again, the Pythagorean roots of his musical (and music theo-

retical) thinking. In a sense, his conception of holistic design can be said to advocate a

balance between musica mundana and musica instrumentalis. It is his particular notion of

the compositional life cycle that actualizes this balance, by cycling between abstract specifi-

cation and design (musica mundana), and the verification of the interpreted musical design

data through listening (musica instrumentalis). In this light, it could be said to fall to music

psychology, and cognitive modelling in particular, to close this Pythagorean musical circle

with a model of musica humana, bringing the mathematical and the phenomenological—

structure and process—together through perception and cognition.

But perhaps the most important aspect of Laske’s proposal was the emphasis it placed

on extending the reach of music theory by accommodating the composer’s unique experi-

ence of music “as it is being composed” [135]. Laske’s conception of composition theory

sought an engagement with the thought processes that inform compositional development;

broadly speaking, he promoted a theory of how composers think music. In this sense,

Laske was advocating a genuinely “authorial” function for music, and promoting an un-

derstanding of how the composer is an originator, creator, and instigator of music, rather

than one who simply puts together sounds—whether remembered or perceived—to make

a whole. His conception doesn’t eliminate listening entirely, but it does propose to supplant

2Composers like Harry Partch, who invented instruments to his musical specifications, which in turn influ-
enced the development of his compositional language, are notable exceptions.

12

the structural understanding of music that arises through perception (and cognition), via lis-

tening, with the highly deliberative notion of composition as design. This is the Pythagorean

root of Laske’s conception of music. Listening is chronologically secondary, representing

the process by which music’s higher mathematical order is made available to perception.

Composition and listening, for Laske, are thus fundamentally divided.

2.2 Composition Theory in Literature

Contemporary literary composition theory predates Laske’s formulation for music by ap-

proximately 10 years, having its inception in Flower and Hayes’ seminal 1981 work on cog-

nitive process theory [85]. This work sought to interrogate the dominant model of creative

thinking of the time, broadly referred to as “stage theory” [236]. Stage theories suggest that

creative thinking proceeds through a series of behaviours, each of which corresponds to a

stage of completion in the growth of a creative product. The series of stages can be recur-

sive, potentially returning back to earlier phases of behaviour during the completion of the

creative task, but it is nevertheless implicitly linear. Flower and Hayes’ model, on the other

hand, proposes that “writing is best understood as a set of distinctive thinking processes

which writers orchestrate or organize during the act of composing” [85]. These thinking

processes are embedded hierarchically within one another so that, for example, generat-

ing ideas may be embedded in a planning process, or grammatical construction embedded

in a “translating” process. Such hierarchies, however, are not assigned an a priori order of

precedence, and a given process may be embedded within any other process. The main

high-level processes identified by Flower and Hayes are planning, translating (i.e., of ideas

to text), and reviewing, all of which are supervised by a separate process referred to as “the

Monitor.” Such processes have natural subprocesses (though the hierarchies can change),

so that planning often involves generating, organizing, and goal setting, while reviewing

involves evaluating and revising. The Monitor, as the name suggests, monitors the current

process as well as the overall progress of the composition, in order to strategically deter-

mine when to change processes. The translating process involves the conversion of ideas

into a readable form; a complex task, drawing on knowledge of grammar, semantics, and

syntax, and also on motor skills like handwriting or typing.

The task environment in Flower and Hayes’ model is represented by the written (or in-

progress) text and the “rhetorical problem.” The rhetorical problem includes the topic of the

writing, the intended audience, and an exigency, expressed in terms of the role of the writer

13

and the demands of the written work; e.g., the requirements placed on both writer and text

are markedly different for a biology student and a journalist. Competence is represented by

the long-term memory of the writer and includes both topical knowledge and writing skill,

and performance is represented by the processes outlined above. This kind of formal mod-

elling has allowed theorists to from hypotheses and to evaluate differences between expert

and novice writers. A common research strategy involves monitoring writers of different skill

levels during writing tasks using a “speak aloud” protocol, in which participants are asked

to describe their thought process as they write. Using this methodology, McCutchen [168]

observed that advanced writers tended to produce larger ratios of spoken text to written

text, suggesting greater conceptual complexity in formulating the rhetorical problem, and a

more highly optimized realization of that complexity in the written text. Flower and Hayes

noted that poor writers tended to rely on abstract high-level goals, like “appeal to a broad

range of intellect,” in spite of the fact that such goals did not provide sufficient structure to

guide the writing process. Experienced writers, on the other hand, tended to create more

constrained, operational goals, like “give a brief history of my job.”

Research has also investigated so-called “capacity theories” of writing, which propose

that short-term and working memory capacity directly influence writing quality [223, 26].

Such studies have shown that competing tasks that constrain cognitive resources—written

transcription, for example—have a negative impact on quality. This is particularly notable

in a developmental context, where it has been observed that as children acquire greater

fluency in transcription (i.e., physical writing) the complexity and quality of their writing im-

proves. Swanson and Berninger’s work [223] suggested that this effect was the result of an

acquired fluency in transcription freeing up cognitive resources for composition. Similarly,

Bourdin and Fayol [26] conducted a serial recall memory task in which children and adult

subjects were asked to recall word sequences, both orally and in writing. Though adults

performed similarly in the memory task, in both the written and oral conditions, children

performed significantly worse in the written condition, suggesting that lack of fluency in

transcription was directing cognitive resources away from the memory task. Furthermore,

in a second test, which required the adult subjects to write their responses only in upper-

case cursive letters—a generally unfamiliar manner of transcription—adults performed at a

level similar to children.

In later revisions of Flower and Hayes’ original theory, Hayes [99] restructured the model

to operate on three different “levels”; a control level, involving motivation, goal-setting, plan-

ning, and revision; a process level, comprising the original model’s writing processes and

14

task environment; and a resource level, incorporating working memory, long-term memory,

and other aspects of competence. At the process level, in addition to the original notion

of “translating,” Hayes included a category for transcription, which emphasized the me-

chanical processes of text generation (including spelling and orthography, but also writing

technologies) and the cognitive resources such skills require (as illuminated by the experi-

mental work outlined above). Of particular relevance to our discussion of algorithmic music,

Hayes also developed a basic computational model of child-level literary composition. His

goal was to investigate aspects of Bereiter and Scardamalia’s “knowledge-telling” model;

a text generation process in which “spreading activation” in long-term memory causes a

chain of associations that help keep the written text on topic without prior specification of a

high-level plan (i.e., as required by Flower and Hayes’ model). Hayes, however, recognized

that a common pattern in children’s writing was unaccounted for by knowledge-telling. In

this pattern, first identified by Fuller [88], the main topic is elaborated through a knowledge-

telling process, which in turn introduces and elaborates a series of additional subtopics,

after which the writer returns to the main topic. Hayes defined this type of text as a “topic-

elaboration text,” which he implemented in a computational model, along with two simpler

models capable of producing two additional types of texts; “flexible-focus” texts and “fixed-

topic” texts.

Topic
Stack

Stack
Empty?

Quit

Elaborate?

Yes

No Topic
Done?

No
Make
comment
on
current
topic

On Topic?
Form OK?

Add
to
Text

Writing
Task

No

No

Add Subtopic to Stack
Return to Previous Topic

Yes

Figure 2.1: Hayes’ “topic-elaboration” model of literary composition (reproduced from
Hayes [99]).

The flexible-focus model replicates the development of an initial topic through chains of

association, as in the knowledge-telling model. The model begins by making a statement

about an initial topic that is used to recall associated information from long-term memory.

15

It then produces a statement about the retrieved information, creating a new “focus” for the

text, and continues in this manner until the text is deemed complete. The fixed-topic model,

on the other hand, only generates statements about the initial topic. Although this process

may seem more simplistic, in fact it is more complex, since it introduces an evaluation pro-

cess, used to determine whether recalled information is relevant to the original topic. The

topic-elaboration model, shown in Figure 2.1 (reproduced from [99]), is the most complex,

introducing an additional “topic stack,” representing a form of working memory and serving

as a planning structure. Topics can be added to the topic stack through “elaboration,” and

can be removed from the stack when knowledge of the topic is exhausted (i.e., using the

“topic done” function). This model is capable of producing nested structures of topics and

subtopics, the complexity of which is a direct function of working memory capacity and

the amount of topical knowledge stored in long-term memory. Hayes notes that modelling

younger writers requires a smaller capacity for the topic stack, while older writers can be

modelled using a larger stack [99]. The topic-elaboration model was used to generate the

text in Table 2.1, using a simple long-term memory comprised of a predefined set of top-

ical statements. In this text, the sequence of topics—Frank (1), computer (2), Christmas

(3), computer (2), Frank (1), dog (4), Frank (1)—reveals a nesting process requiring the

functioning of working memory in both the writer and the reader for comprehension. To-

gether, the three models implemented by Hayes produced text structures consistent with

the analysis of 96% of Fuller’s corpus of children’s texts [99].

I like Frank because 1
Frank got a new computer. 2
It was a Christmas gift. 3
Christmas is my favourite holiday. 3
I hope we will have a white Christmas. 3
His computer is a laptop. 2
Frank has a dog. 1
The dog has four puppies. 4
Frank is my best friend. 1

Table 2.1: A text with topics and nested subtopics produced by Hayes’ “topic-elaboration”
model. The column on the right indicates the index of each topic in the set of topics used.

Hayes’ topic-elaboration model is of particular relevance to music composition, which

often exhibits a similar formal development, both at the phrase level, and at hierarchically

16

higher levels of structure. For example, if we substitute the notion of “topic” for that of the

musical “motive,” we can observe topic-elaboration processes at work in the opening theme

from Mozart’s 40th symphony, as shown in Figure 2.23. Here we see a simple melodic

motive introduced, elaborated, and then restated a few measures later. A similar pattern

can also be seen at a higher formal level, if we enlarge the structure of the “topic” to include

the entire opening phrase, as shown in Figure 2.3. It is important to note that such a formal

correspondence does not assume a semantic (or even syntactic) correspondence between

language and music. It simply suggests that both mediums share similar conceptions of

form, and that this similarity can likely be attributed to the resource dependent cognitive

constraints at work in both composer/author and listener/reader.

"topic" A
A A' B B' B'' return to topic A

"elaboration"

A

Figure 2.2: Motive-level “topic-elaboration” analysis of Mozart melody.

Somewhat curiously, Laske never mentions literary composition theory, though the em-

phasis on mental processes in this field clearly has much in common with Laske’s thoughts

about rule-based composition and procedural models. Similar to Laske, such models focus

less on the structure of the data model and more on the rules and procedures used to or-

ganize that data when generating texts. Literary composition theory also acknowledges the

constraints placed on the writing process by working memory capacity, particularly with re-

gard to the cognitive resources required for translating and transcribing. This is a category

of “competence” that Laske does not directly address. On the other hand, because Laske

makes a special affordance for the role of the computer in musical composition theory,

at least some of these constraints can presumably be addressed computationally, shifting

their influence from the domain of competence to that of the task environment.

Perhaps the most compelling aspect of literary composition theory—and Flower and

Hayes’ cognitive process model in particular—is the way in which it connects the mental

processes of reader and writer through a shared reliance on basic cognitive resources.

3It is worth noting that music is capable of quite subtle formal elaborations, since pitch and rhythm patterns
need not be varied simultaneously. For example, in the Mozart melody, the phrase labelled “B” utilizes the
same rhythm as phrase “A,” simultaneously suggesting both repetition and change.

17

"topic" A

A'

B

C

return to topic A

"elaboration"

Figure 2.3: Phrase-level “topic-elaboration” analysis of Mozart melody.

Composition arises from the world model stored in long-term memory, but is dependent

upon working memory for its expression in the form of the written text. Comprehension

for the reader is likewise dependent upon cognitive resources, and in a manner that di-

rectly reflects the dependencies of the writer, as encoded in the semantic and syntactic

structure of the text. The relationship between writer and reader thus forms a symbiosis,

grounded in architectural aspects of cognition; that is, on the interdependence of long-term

memory (topical knowledge), perception (seeing/hearing the written text), working memory

(retaining and relating salient information), and action (writing and/or reading).

2.3 Collins’ Synthesis Process Model

In his work on musical creativity, David Collins [41] proposes a model of the creative pro-

cess in music composition drawing on elements of four prominent theories: Wallas’ Stage

18

Theory [236] (mentioned above), Wertheimer’s conception of Gestalt Theory [75, 241],

Gruber’s Emerging Systems Theory [96], and Newell and Simon’s notion of Information

Processing Theory [176, 213]. An important aspect of the gestalt theory is its conceptual-

ization of creativity as a process of gathering individual elements together into an integrated

whole, or gestalt. At a certain point in this gathering process a so-called “flash of illumi-

nation” often occurs (also a feature of Wallas’ theory), leading to a restructuring of the pa-

rameters of the problem, and in some cases a complete reconceptualization of the gestalt

itself. It is this restructuring of understanding in support of the gestalt that drives creativity,

and guides the search for novel solutions to familiar problems. Emerging Systems Theory

takes a somewhat different approach, suggesting that creativity is a slow, developmental

process, in which many solutions are tried, a select few of which will actually succeed. This

trial-and-error process leads to a form of optimization, reminiscent of Darwinian notions

of evolutionary development through natural selection and competition. In contrast to the

above models, Newell and Simon consider the problem from the perspective of computer

simulation, and suggest that creativity can be approached as a special form of problem

solving. The information processing approach conceptualizes creativity as a trial-and-error

search of a given “problem space,” through which the system seeks to arrive at a prede-

termined “goal state.” The search is formalized as a set of serial operations, following a

particular rule system, which Collins suggests (following Baroni [14]), in the case of music

composition, implies the presence of an underlying generative grammar (i.e., in order to

define the legality of movements in the problem space). The ill-defined nature of the goal

state in many creative tasks—particularly those involving artistic creation—is addressed

primarily through the notion of novelty or newness; i.e., a novel solution is a valuable solu-

tion. Collins suggests that it is only through a synthesis of the above theories that we can

adequately explain the kinds of processes observed during human music composition.

Collins also draws attention to the methodological difficulties involved in data collection

from human compositional processes, and emphasizes his motivation to extend previous

approaches, both in terms of the detail of the data collected, and the naturalness of the

compositional task performed. Through an intensive, three-year study with a professional

composer, he tracked the composition of complete musical works, collecting data through

three techniques: 1) The use of MIDI “Save As” files, 2) verbal protocols, and 3) interviews

and verification sessions. The MIDI data files were used to capture the state of the devel-

oping composition incrementally throughout the compositional process, allowing Collins to

analyze the chronological development of the musical work, and to observe any significant

19

changes of structure that might occur. Verbal protocols are a common data collection tech-

nique in the social sciences, often involving self-reports of the subjects engaged in carrying

out assigned tasks (as in Flower and Hayes’ work in literary composition [85]). In this case,

Collins used “immediate retrospective reporting,” in which the subject gives a report on the

work done immediately following the work session (i.e., not during the working process, as

in the “speak-aloud” protocol used by Flower and Hayes). The interviews and verification

sessions were primarily directed toward verifying the verbal reports, and also to verifying

the results of a “structural mapping” process that Collins carried out, using both the MIDI

data files and the verbal protocols. The mapping process focused on three types of cor-

relation: 1) “Real-Time Mapping,” which mapped verbal reports to the content of the MIDI

data files; 2) “Thematic Mapping,” which mapped frequently-occurring keywords in the ver-

bal reports (e.g., “evolve,” “add,” “mood,” etc.) to comments of the composer regarding his

compositional processes and strategies—i.e., in terms of the arrangement of materials, se-

lection of dynamics, instrumentation, pitch content, and so on; and 3) “Structural Mapping,”

which concerned the overall structural development of the work, in terms of the relationship

between low-level changes to musical details and high-level restructuring. The composer

was allowed to compose freely, with no limitations on his working hours, or on the instru-

mentation or duration of the work, which was to be used as a “showreel” for a computer

game soundtrack.

An interesting finding of Collins’ analysis was his observation of the considerable cre-

ative effort and activity that arose as a direct result of the composer’s reluctance to alter

or abandon two main themes that had been composed early in the process, on the first

day of work. This hesitation led to considerable thematic restructuring and alteration of

the composer’s process, suggesting that these two “seemingly incompatible” themes were

somehow essential to the composer’s overall conception of the piece. Reorganization of

the themes A and B—specifically, by reversing their order of appearance in the work (B,

A)—also led to a subsequent “problem proliferation,” in which low-level details of each

theme’s setting had to be altered in order for the two themes to function in the restructured

high-level form. This restructuring also led to the “inspired” decision to introduce an altered

version of theme A at the beginning of the work—resulting in an (A’, B, A) form—providing

a smoother introduction, while also musically “hinting” at what was to come. Collins refers

to this as a process of “reformulating the givens,” in which prior assumptions about the na-

ture of the materials, or the overall form, are altered or abandoned, in order to promote the

20

generation of novel and/or better formed solutions. Several such stages of problem pro-

liferation and reformulation are outlined in Collins’ analysis, revealing a complex, cyclical

process in which novel solutions lead to new problems, which in turn demand the formula-

tion of further novel solutions.

Thus, although Collins’ study echoes the work of Flower and Hayes in its characteriza-

tion of the creative process as a set of hierarchically related processes and subprocesses,

the complexity and detail of Collins’ observations suggests a more fluid, adaptable pro-

cess. In Collins’ model, the creative process follows a cyclical, iterative pattern involving

four main component processes:

1. Determination of a set of “germinal” themes, ideas, and/or motifs

2. Determination of a set of goals and/or sub-goals (e.g., “extend section,” “improve

closure of theme,” “adjust harmony”)

3. “Problem proliferation,” caused by the need to reconcile different technical require-

ments intrinsic to the ideas and goals emerging from stages 1) and 2)

4. Definition of a “solution space” in which problems introduced in 3) are addressed,

generally leading to a re-structuring of the goals and sub-goals of the composition

As can be imagined, the result of stage 4) has the potential to lead back into stage 2),

which in can turn lead to a dramatic expansion in the complexity of the compositional

task in stage 3). Thus, the compositional process generally cycles through successive

phases of reformulation, often (but not always) involving moments of gestalt understand-

ing or “illumination.” Such moments may alter the composer’s overall conception of how

the various themes of the work function, and how they contribute to the whole, and can

therefore lead to dramatic restructuring of previously composed materials. Another impor-

tant aspect of Collins’ model is the implicit emphasis it places on recording elements of

the work in progress (i.e., of “transcription” in Hayes’ model). Capturing the raw materials

of the work during its development allows the composer to evaluate decisions in a more

objective manner—i.e., from a listener’s perspective—without needing to retain the details

in memory, thus freeing cognitive resources for problem reformulation and the search for

novel solutions. Finally, there is also a strong acknowledgement of the iterative nature of

the compositional process, and the non-linearity of musical decision making.

21

2.4 Composition Theory and Generative Models

Whether a system is explicitly designed to model compositional thinking or not, it is never-

theless the case that any system for the automatic generation of music is implicitly a theory

of musical composition4. In positing an organizational structure for music, and formalizing

a process for algorithmic generation from that structure, systems designers must neces-

sarily make decisions, and with each decision they reveal the fundamental philosophy of

musical creativity that lies beneath. To decide—from the Latin decidere, literally “to cut

off”—is to wield Occam’s famous “razor,” and to accept that a multitude of alternative the-

ories, explanations, or models must thereby be ignored. Thus, whether the proponents of

predictive statistical models of generative music, for example, genuinely advocate the no-

tion that prediction is a fundamental compositional strategy, they do support the principle

of parsimony that underlies the statistical approach [217, 237]. Since statistical analyses of

musical works provide compelling descriptive models of the structure of music (see Tem-

perley [226] and Huron [108] for a full discussion), it seems natural to suggest that they

might also offer productive prescriptive models; i.e., plausible accounts of how music might

be composed. If we are to explore the notion that generative models embody theories of

composition, it will be useful to examine a few popular approaches to music generation,

and to consider how those approaches conceptualize the process of composing music.

2.4.1 Composition by Prediction: The Markov Property

By far the most thoroughly explored models for music generation are those classified as

Markov models. Named after Andrey Markov, who famously created a statistical model of

the letters in Alexander Pushkin’s Eugene Onegin, Markov models came into prominence

with the publication of Claude Shannon’s seminal work on “information theory” [212]. A

Markov model is any system in which the probability of the future state of some random

variable X can be predicted by the variable’s current state; i.e., P(Xt+1 = S j|Xt = Si,t).

Accordingly, the “Markov property” is attributed to any example of X for which its future

state depends only on its current state. Markov models are implemented using a finite

set of symbols called an “alphabet” Σ, representing the possible states of random variable

X , and a transition table Si j for recording the frequencies of state transitions. In a typical

implementation, X is a single symbol from Σ, representing the most recent state. Such

4This is the case even when a system is devised for generating a single composition since the formalism
used expresses the design considerations implicit in the compositional idea.

22

a model is referred to as a “1st-order” Markov model, since it uses only one state for the

prediction of the future state (a “zeroth-order” model, on the other hand, is equivalent to the

histogram of X ; i.e., the time-independent frequency of occurrence of all states of X). In an

nth-order Markov model, rather than considering only the state at time t, a “memory” of n
previous states (Xt−n, . . . ,Xt) is created. By representing a larger history of X , and thereby

creating a more discriminating context for Xt+1, higher-order Markov models gain predictive

power. Because such models use a finite history of the music being modelled to predict

the future state, Conklin refers to them all under a general class of “context models” [44].

Another approach to building higher-order models is through the use of “n-grams.” In

n-gram models, X is a string, representing a concatenation of symbols of length 0≤ n≤N,

where n is the “order” of the model and N is a maximum size parameter (usually only 3 or

4 symbols in musical models). N-gram models are common in natural language process-

ing, where the lexicon of the language being modelled provides an a priori set of viable

n-grams. For example, in English, the transition (w,h) represents a unique phoneme, and

is thus guaranteed to occur with sufficient regularity to justify the definition of “wh” as an

n-gram; e.g., (wh,o), (wh,y), etc. The n-gram is defined as a state of variable X , and the

resulting probability distribution treated as 1st-order Markov model; i.e., Si j will record tran-

sitions from the given n-gram to a subsequent symbol. The order of a model can also be

adapted dynamically, in order to maintain predictive power without arbitrarily increasing the

size of Σ. In so-called “variable-order Markov models” (VOMM), the order is increased only

in cases where predictive power will be gained. For example, a 2nd-order model, which

can reasonably differentiate between “who” and “why,” loses predictive power for words like

“when” and “wheel.” In such cases, the probability of “when,” for example, must be calcu-

lated as the joint probability P(e|wh)×P(n|e). The loss of predictive power (specifically, an

increase in entropy, or uncertainty) arises from the fact that, in standard English, P(X |wh)
is part of a distribution represented by words like “when,” “which,” “who,” “what,” and so

on, and the same is true for P(X |e). By increasing the order of the model, and creating

the n-gram “whe,” the entropy associated with P(X |wh) and P(X |e) is removed, leaving

the much lower entropy space represented by P(X |whe). In the English lexicon, this rep-

resents a considerable improvement in predictive power over the 2nd-order version, while

increasing the size of Σ by only one n-gram.

In generative music algorithms, the Markov model has been a standard tool since the

early experiments of Hiller and Baker. For their 1963 Computer Cantata, for example, they

used a statistical analysis of Ives’ Three Places in New England to build zeroth-, 1st-, and

23

2nd-order Markov models. Using these models, they extracted selection probabilities to be

imposed over pitch, rhythm, duration, note versus rest, and playing style [6]. Markov mod-

els have also been incorporated into commercially available generative music systems,

like Zicarelli’s M and Jam Factory [253]. Typically, such applications use the predictive

capacity of the Markov model to stochastically generate a musical continuation (e.g., a

new MIDI note) given the current musical context. This approach can be related to the

notion of “melodic expectancy” in the music psychology literature, commonly associated

with Narmour’s Implication-Realization model. Early experimental work, most notably by

Krumhansl [124], provided compelling evidence in support of Narmour’s principles, using

“probe tones” to evaluate listener preferences for different continuations of a given musical

context. In such experiments, listeners were played a short musical fragment followed by

a single probe tone, and were asked to evaluate the fitness of the tone given the musical

fragment. It was found that listeners tended to favour those tones that followed Narmour’s

principles of melodic expectancy. However, later work investigating the statistical proper-

ties underlying such judgements showed that a statistical learning mechanism could often

provide a better explanation of this behaviour than Narmour’s principles [186, 202]. If we

assume that musical well-formedness is a correlate of listener expectancy, then such find-

ings appear to support the idea that statistical prediction could provide an appropriate strat-

egy for musical composition. That is, if listeners evaluate the well-formedness of musical

passages by statistical inference, then stochastic selection of continuations from a statisti-

cal model ought to generate expected musical results. Indeed, it was this kind of intuition

that led to the strong interest in Markov models in the years following the publication of

Shannon’s theory [6].

However, it is important to clarify the distinctions between the compositional applica-

tion of Markov processes and the ideas underlying Shannon’s original theory. Shannon’s

theory was not focused on prediction, per se, but rather on data compression and/or the

successful transmission of information over noisy channels. For compression, the theory

sought to quantify the limits within which a data compression algorithm could accurately

(in the case of “lossless” compression), or with an acceptable degree of error (in the case

of “lossy” compression), represent a message using the minimum number of bits. In the

case of data transmission, the objective was to enable the extraction of an original mes-

sage (or some intelligible approximation thereof) in the presence of noise. Thus, from a

psychological/cognitive perspective, Shannon’s objective is perhaps better understood as

recognition or interpretation than prediction. That is, given a noisy representation of the

24

symbol at time t, we must be able to make a reasonable guess as to its identity (i.e., using

available information at time t−1). Or, in the case of compression, an algorithm must not

compress beyond the point where the original message can still be retrieved from its com-

pressed representation (again, often allowing for some acceptable degree of error). The

important point is that, in both compression and transmission, some form of the original

message is used as a control (i.e., to assist with error correction). This general application

is also echoed in the experimental use of probe tone judgements mentioned above, where

the tone is offered as a continuation of a given musical context; by analogy, it is a more or

less “noisy” transmission of a musical “message.” In such a situation the listener evaluates

the well-formedness of continuations in a manner not unlike Shannon’s statistical receiver.

However, is it necessarily the case that, given the option to select a continuation indepen-

dently, listeners would express the same underlying statistical regularities?5 And further, if

they did, would this be equivalent to composition?

Of course, the reconstruction of a musical message is explicitly not the objective in

Markov-based music generation, where it is assumed that there is no “original” message;

i.e., the generated message must itself be original. In this context, it is generally felt that the

guide for successful “retrieval” is simply a notion of acceptable aesthetic quality (which is

poorly understood), and that this should be used as a criterion for determining the order of

the model (which has a strong influence on the model’s compression rate6). For example,

it is generally accepted that 1st-order models compress too aggressively, and generate

arbitrary or chaotic musical patterns, while higher-ordered models generally reproduce the

original message too faithfully, leading to frequent musical “quotations,” and consequently

a loss of musical originality.

As an example of the difference between these notions of message interpretation and

prediction, consider a model trained on the prior example of the opening theme from

Mozart’s 40th symphony. The 1st-order model can be represented as in Figure 2.4. If we

consider a situation in which some form of distortion is imposed on the musical signal—for

example, performance by a student violinist, prone to fingering and intonation errors—we

5It is worth noting that this kind of “compositional” approach to measuring expectancy has been conducted
[33, 210], involving musical continuations either sung or performed on the piano. Although similar results have
been obtained, however, this approach poses methodological problems due to its dependence on performance
expertise, altered attention (i.e., switching from listening to composing), and physiological constraints (e.g.,
individual vocal range).

6For example, a 1st-order model can encode the pitch information of all known equal-tempered musical
compositions using only 88 symbols—i.e., the notes on a conventional piano. However, such aggressive
compression would introduce a high degree of entropy, resulting in a model of limited usefulness for musical
generation.

25

can demonstrate the use of the Markov model to correctly interpret the musical message.

Say, for example, that the first note is played correctly, but the second note is slightly sharp,

producing a pitch lying between E[and D. Applying the Markov model, we see that the

probability of transitioning from E[to E[is zero, whereas the probability of transitioning

from E[to D is 100%. Thus the model can be used to verify the intended pitch, effec-

tively “correcting” the error, and restoring the integrity of the original musical message. If,

on the other hand, we use the model to generate a 10-note melody and apply the prod-

uct rule to calculate the probability of generating the original, we find there is only a 0.2%

chance7 that we will correctly reproduce it. Of course, as mentioned earlier, the goal of

Markov composition is not to reproduce an original melody. But such an example never-

theless demonstrates an underlying problem with prediction as a compositional strategy;

the statistical analysis offers a quantifiably valid descriptive model, but does not provide a

sufficient prescriptive model. That is, the model can explain what happened in the melody,

but it does not provide sufficient information to reproduce it with acceptable probability.

Considering this problem from the perspective of Hayes’ topic-elaboration model for liter-

ary composition, it could be said that the difficulty lies in the fact that a simple Markov model

offers no conceptual category analogous to a musical “topic,” and no decision process for

connecting topics, if a topic were to be found. It can be argued that a higher-order model,

like the one in Figure 2.5, would improve the chances of reproducing the original. However,

since the fundamental problem of the predictive approach remains unaddressed (i.e., de-

scriptive adequacy and prescriptive inadequacy), the same problem will surface again, at

higher levels of melodic form.

Eb D Bb
0.161.0

0.34

0.5

Input: Eb, D, D, Eb, D, D, Eb, D, D, Bb

1.0

Figure 2.4: A first-order Markov model of the opening phrase from Mozart’s 40th symphony.

71×0.5×0.34×1×0.5×0.34×1×0.5×0.16×1 = 0.0023

26

Eb,D,D

0.67

Bb

1.0

0.33

Figure 2.5: An n-gram model capable of reproducing the Mozart phrase with higher proba-
bility (i.e., than a 1st-order model).

More complex Markov models, like Hidden Markov Models (HMM), or Conklin and Wit-

ten’s “Multiple-Viewpoint” context models [45], can improve the situation somewhat by ac-

counting for factors that, while not represented directly by random variable X , nevertheless

have an influence on the state of the variable. In the case of the HMM, a series of ob-

servations is paired with an underlying, but not directly observable, Markov model that is

hypothesized to have a direct influence on the sequence of observations. It is then possible

to use the joint probability of the observed and hidden states to infer a specific hidden state

as the cause of an observation. Allan [3] used an HMM to harmonize chorale melodies in

the style of J.S. Bach by treating the notes in the melody as the observed states, and a 1st-

order Markov model induced from the analysis of Bach chorales to represent the sequence

of hidden states. This is an appropriate use of an HMM since one of the model’s primary

functions is to calculate the most probable sequence of hidden states, given a sequence of

observations [194]. Of course, such a process is not essentially predictive since the final

state of the inferred sequence is the state at time t (i.e., not time t+1). However, prediction

is possible, since the hidden states are generally represented using a 1st-order Markov

model, and can therefore be used to calculate the probability of state X at time t +1 (i.e.,

given the inferred state at time t), from which a probable observation can be predicted.

Somewhat like the HMM, Conklin and Witten’s multiple-viewpoint approach also ex-

ploits a joint probability, except that in this case the probability is calculated across a set of

“viewpoints,” each representing a different musical attribute or “type”—pitch, rhythm, har-

mony, etc.—of a given event. A viewpoint is a combination of a type, and the context model

for that type, induced from analysis of a given corpus. Some types represent the transition

probabilities of individual attributes (pitch, for example), while others model interactions be-

tween attributes (e.g., pitch and duration) by calculating joint probabilities for two or more

27

types. These compound types are referred to as “product types,” and are treated as in-

dividual viewpoints in the model. During prediction, a weighted linear combination of all

viewpoints is used to determine the probability of a given event. There are many ways to

determine the weightings used when combining viewpoints. In one approach, the relative

entropy for each viewpoint, given a particular context-event pair (c,e), is used to weight the

linear combination of viewpoints, such that higher-entropy viewpoints are assigned a lower

weighting. The multiple-viewpoint approach is one of the few techniques that can account

for the dynamic interaction between various musical attributes of pitch, interval, rhythm,

duration, and so on, in musical structure.

Turning now to the larger subject of composition theory, it is worth noting that predictive

methods of generation from statistical models have little to say about compositional pro-

cess, as it is conceptualized by Laske and Hayes (see Section 2.2). To highlight prediction

as a fundamental strategy is to suggest that compositional thinking is primarily automatic

and reactive. Considered from the perspective of Hayes’ models of literary composition,

the predictive approach suggests that music composition follows a “flexible-topic” model;

a musical idea is introduced, stimulating associations in memory, from which a highly-

activated association is selected and appended to the composition, and so on. Though

there is perhaps a degree of truth in this, particularly during divergent, exploratory work in-

volving improvisation (i.e., where learned skills of instrumental performance have a strong

influence on output), it provides little support for the deliberative problem solving aspects of

composition highlighted by cognitive process theories. From a psychological point of view,

the predictive approach suggests that musical knowledge is largely implicit and procedural,

with little recourse to conscious musical decision making. The popularity of this approach

is likely due to the drive for parsimoniousness that motivates much of the computational

modelling of music, along with the relative ease of implementing fast and efficient stochas-

tic learning and generation methods using Markov models (facilitating their use in “online,”

interactive systems). Statistical approaches are also seen as plausible descriptive mod-

els of cognition, owing to support from a large body of experimental evidence highlighting

the psychological capacity of human listeners to infer statistical regularities over a broad

range of musical attributes—melodic, harmonic, and rhythmic—and across a wide range

of musical cultures (for an overview, see [219]).

It is important to note, however, that the evidence pointing toward a statistical mecha-

nism underlying human musical expectations does not in itself justify the singular applica-

tion of prediction as a compositional strategy. Conklin notes that the common technique

28

of random-walk generation, which epitomizes the predictive approach, generally fails to

produce “high-probability music,” in large part because it relies upon a greedy algorithm

[43]—i.e., choices are made based on local probabilities only, without heuristics for op-

timizing the probability of the complete generated sequence. It could be argued that a

similar shortcoming explains the insufficiency of prediction as a theory of human compo-

sition. Alternative stochastic techniques can avoid the problems associated with random-

walk methods, but these are not fundamentally predictive. In time, it may be revealed that

music, rather than representing the high-probability “emissions” of some beautiful and ele-

gant predictive system, may instead exist as an elegant representation of a fundamentally

chaotic, fickle, messy, and frequently inelegant human process.

2.4.2 An Innate Faculty for Music: Generative Grammars

A class of generative models for music that is formally related to, but philosophically dis-

tinct from, the various Markov models are those systems known as generative grammars.

The formal specification of grammars is usually attributed to linguist and philosopher Noam

Chomsky, who proposed the model as a way of explaining the human capacity to gener-

ate novel syntactical structures, given only limited examples of syntactically correct natu-

ral language statements [38]. This capacity was attributed to an innate language faculty,

“hard-wired” into the human brain, representing a set of basic rules for manipulating sym-

bols. This idea stands in opposition to purely statistical accounts of the brain’s language

capacity, under the argument that children, for example, can create novel natural language

statements using structures that they could not have learned through statistical inference

alone, having not been exposed to a sufficient set of example statements.

Formally, grammars are expressed through a set of “rewriting rules,” which allow sym-

bols in the given language to be rewritten with new symbols or groups of symbols. Chom-

sky identified four types of grammars, based on the structure of the rewriting rules: Type 0

“unrestricted” grammars, Type 1 “context-sensitive” grammars, Type 2 “context-free” gram-

mars, and Type 3 “regular” grammars. The current discussion will look only at Type 1 and 2

grammars, as these have been applied directly to musical problems. The formatting of the

rewriting rules define the syntax of the language. This formalism allows for the implemen-

tation of two primary functions: 1) the generation of novel statements in the given language

and 2) the verification of arbitrary symbol sequences as syntactically valid (or invalid) state-

ments in the given language. The rewriting rules follow the general pattern that symbols on

29

the left-hand side of the rule expression can be rewritten using symbols on the right-hand

side. As an example (from Nierhaus [177]), take the rule-set in Table 2.2.

S → NP VP
VP → V (NP) (PP)
AP → (Adv) A (PP)
PP → P NP
NP → (DET) (AP) N (PP)

Table 2.2: A set of rewriting rules describing the “non-terminal” symbols in a generative
grammar (from Nierhaus [177]).

where S = sentence, NP = noun phrase, VP = verb phrase, V = verb, PP = prepositional

phrase, Adv = adverb, A = adjective, P = preposition, AP = adjectival phrase, DET = article

(“determiner”), and N = noun (bracketed symbols are optional). The items in this rule-set

(specifically, parts of speech) are referred to as “non-terminal” symbols, since they will not

appear in any final production of the grammar. The various parts of speech can be rewritten

according to the rule-set in Table 2.3, which defines the set of “terminal” symbols for the

grammar. Given a set of terminal and non-terminal symbols, and their associated rewriting

rules, syntactically valid statements can be generated, following a process similar to the

one illustrated in Figure 2.6.

N → man girl John
DET → a the

V → met saw
A → nice good quick

Adv → very extremely
P → in for to

Table 2.3: A set of “terminal” symbols to be used with the generative grammar in Table 2.2
(from Nierhaus [177]).

In this type of grammar, construction of syntactically valid statements proceeds in a

top-down fashion, starting with the definition of a structure to be generated (sentence “S”),

and progressing through a series of substitutions that gradually fill in the specifics (i.e.,

terminals) of the generated statement. Grammars of this type, where the rules are pre-

defined, are referred to as knowledge-based [177]. It is also possible to derive rules from a

30

S

NP VP

N V NP

DET A N

John met a nice girl

Figure 2.6: Tree diagram of a sentence produced by the generative grammar given in
Tables 2.2 and 2.3 (reproduced from Nierhaus [177]).

corpus of examples through grammatical inference. Kohonen proposed a context-sensitive

musical grammar, the rules of which could be learned from a given corpus [119] using a

technique referred to as the “dynamically expanding context” method. This method maps

the shortest unique context to an immediately subsequent production. This approach is, of

course, fundamentally the same as the method used when building Variable-Order Markov

models, as outlined in Section 2.4.1; i.e., varying the order of the n-gram at time t in order

to reduce (or remove) the entropy of the distribution at time t + 1. There is an important

difference, however, between Kohonen’s grammar and the one demonstrated in Figure 2.6;

whereas Kohonen’s grammar is “context-sensitive” (Type 1), the grammar from Nierhaus’

example is context-free (Type 2). This is to say that productions from Kohonen’s grammar

are, strictly speaking, continuations of a given musical context and, as such, depend upon

the context for their syntactic validity. Further, the context in Kohonen’s grammar is always

retained in the final musical statement; i.e., both the context and the production are terminal

symbols. This absence of non-terminal symbols and strong context-sensitivity again reveal

a close connection between Kohonen’s model and the class of Markov models. In Nierhaus’

context-free grammar, on the other hand, the productions are instantiations of grammatical

functions—e.g., “verb phrase”—represented by non-terminal symbols, which may be given

31

a broad range of realizations without sacrificing syntactic validity. The non-terminal symbols

thus represent a level of abstraction not demonstrated by Kohonen’s model.

Kippen and Bel’s “Bol Processor” [15] is also a context-sensitive grammar, but unlike

Kohonen’s grammar, which operates only on terminal symbols, the Bol Processor utilizes

a combination of expert knowledge and grammatical inference to define its terminal and

non-terminal symbols. The system was designed to model the complex compositional and

improvisational practices of North Indian tabla drumming. Because this tradition defines

certain classes of patterns and certain methods for transformation, variation, and recombi-

nation of those patterns, it lends itself to grammatical approaches, where the relationships

between patterns (and their variations) can be represented using non-terminals, and their

contents represented using terminals. Due to the high complexity of the patterns used in

this music, Kippen and Bel found it untenable to discover and represent a comprehensive

rule set via expert knowledge alone. For this reason, they used an interactive, human-

moderated machine-learning process, in which experts were asked to evaluate both valid

and invalid patterns discovered by the system, which in turn used the resulting expert

knowledge for the inductive inference of an underlying formal grammar. Processes for in-

ferring the grammatical structure of music, in consideration of certain aspects of expert

knowledge, can also be applied to the practice of Western tonal (or “functional”) harmony.

In music of this tradition, harmonic structures have specific functions based on their posi-

tions in the diatonic scale. Harmonic theory, which developed in dialogue with the com-

positional practice of composers over a period of several centuries, gradually formalized

a set of basic relationships between the chords of different scale steps (or “roots”), such

that viable sequences of chords could be derived from abstract formal plans based on

root movements alone. Recognizing that such an explicit formalism could be expressed

grammatically, Rohrmeier developed a generative grammar for Western harmonic practice

[199]. Having its foundations in harmonic theory, this grammar is also knowledge-based,

but Rohrmeier’s approach is broad enough to be applied to the analysis of a wide range

of tonal genres. An important aspect of Rohrmeier’s grammar, which differentiates it sig-

nificantly from Kohonen’s, is that it acknowledges the non-sequential, hierarchical aspects

of harmonic relationships. As an example, Rohrmeier notes that in the common harmonic

sequence (I, II, V), the harmonic function of the II chord may be better understood as a

precursor of V than a “production” of I; that is, II is often used to “prepare” V, in spite of

having a somewhat ambiguous relationship to I. Indeed, recognizing the potential of the II

chord’s syntactic double-role, in which it was re-conceptualized as the “V of V” (i.e., since

32

the II chord lies five scale-steps above the V chord)—composers of the romantic era car-

ried this notion of preparatory functions to its logical limit, allowing them to produce long

passages of continuous harmonic development. Given only the sequential dependencies

acknowledged by the Markov property this kind of formal extension would have been quite

impossible, as such a representation does not offer an equally informative conceptualiza-

tion of the sequence as that offered by the grammatical model.

It is worth pointing out that Rohrmeier’s grammar has similarities to Lerdhal and Jack-

endoff’s well known and highly influential Generative Theory of Tonal Music (GTTM) [146].

Somewhat like Rohrmeier’s grammar, the GTTM takes an analytical approach to building

hierarchical descriptions of musical form, grounded in principles of music perception and

cognition. The model considers four main types of formal structure: “grouping structure,”

which parses the music into fragments like motives, phrases, and sections; “metrical struc-

ture,” which highlights the interplay of stressed and unstressed musical events at different

hierarchical levels; “time-span reductions,” which assign structural importance to pitches

according to the grouping structure and metrical structure; and finally “prolongational struc-

ture,” which orders pitches hierarchically according to notions of “tension,” “relaxation,” and

“duration.” In order to account for the strong context-sensitivity of musical form, the GTTM

also employs a set of “preference rules,” which represent the selection criteria of the lis-

tener, used when organizing the above structural influences according to their impact on

the perceptual coherence of the music. While the GTTM provides a strong descriptive the-

ory, it lacks the prescriptive power of Rohrmeier’s model, since it is not explicitly defined

through a set of rewriting rules (as required by a formal grammar).

More recently, Rohrmeier has extended his investigation of musical grammars into the

field of music psychology. In a 2011 study [200] Rohrmeier, Rebuschat, and Cross exposed

musician and non-musician listeners to a corpus of melodies generated from a synthetic

finite-state grammar. The grammar was designed to avoid patterns typical of Western

music, with the intention of isolating the influence of learning (rather than prior musical

knowledge and experience) on listener evaluations. Both “grammatical” and “ungrammati-

cal” melodies were included in the training set, where grammatical melodies employed the

finite-state grammar, and ungrammatical melodies varied from close approximations of the

grammar to randomly selected terminals. Participants were divided into experimental and

control groups, and the experimental group was given preliminary training via the presen-

tation of 17 grammatical melodies. During training, participants were also assigned a con-

current tone-counting task as a distractor, in order to promote an incidental learning context

33

(i.e., they could not concentrate exclusively on the content of the melodies). The results

showed that listeners were able to differentiate grammatical from ungrammatical melodies,

and that this effect was not dependent upon prior musical training. Thus, in cases where

the underlying musical system is unfamiliar, musical expertise appears to have little effect

on performance. An unexpected but significant effect of online learning was also observed,

in which participants in the control group (i.e., untrained) showed a significant improvement

in performance over the course of the testing phase, indicating that listeners were able to

induce this novel grammar in a relatively rapid manner.

A related study by Loui et al. found similar evidence for the induction of musical gram-

mars in human listeners [152]. In this study, the researchers used a synthetic scale based

on a 13-note subdivision of a “tritave” (i.e., a 3:1 ratio version of the Western 2:1 “oc-

tave”), upon which they built a harmonic framework of three-pitch structures arranged

in low-integer ratio relationships. In this way, the new system could represent harmonic

structures analogous to “triads” in Western diatonic music. Two closely-related finite-state

grammars were created, based on the assertion that melodic structures in tonal music are

monophonic articulations of an underlying harmonic progression. The two grammars were

thus differentiated only by the harmonic progressions that each class of example melodies

articulated. As in the study by Rohrmeier et al., participants demonstrated the ability to

learn the underlying structure of each grammar by successfully differentiating between ex-

ample melodies from each system. Because the tuning system was foreign to all subjects,

effects of long-term enculturation to particular pitch patterns and relationships could be ef-

fectively ruled out. Both studies show that higher-level organizational systems for music

can be quickly inferred by listeners, and that such systems provide perceptual and cogni-

tive cues for the evaluation of syntactical structure. The study by Loui et al. is particularly

compelling, as it suggests that formal systems operating at higher levels of abstraction, like

that of Rohrmeier’s context-free grammar of functional harmony [199], are supported by a

robust cognitive learning mechanism operating in both trained and untrained listeners.

From a composition theoretical perspective, grammars are interesting because of their

capacity to address the non-linear, iterative aspects of compositional thinking observed by

Collins (see Section 2.3), while still acknowledging the linear/sequential nature of music.

It could thus be argued that grammars model both the abstract, conceptual aspects of

compositional thinking, and—particularly in the case of context-sensitive grammars—the

sensitivity to local temporal dependencies that constitute the experience of the listener.

Thus, the grammar’s rewrite rules can be used to propose an abstract formal solution to

34

a given musical problem, while the concrete solution can take into account local factors.

Whether to accept or reject a musical solution, of course, remains an aesthetic matter, but

the grammar provides a degree of confidence in the viability of a given choice. Proposed

solutions need not rely exclusively on local sequential dependencies, as in random-walk

predictive methods, but can rather be reviewed in full consideration of the outcome of a

particular musical decision. Such is the case with Rohrmeier’s example of the (I, II, V)

progression, where the II provides a “solution” to the “problem” of transitioning from I to

V. Since the arrival at V is already known, proposing the II as a solution suggests a hi-

erarchical decision process. It should be noted that, due to its frequency of use in tonal

music, the harmonic sequence (I, II, (V)) would also likely be a high-probability choice for a

Markov model. Thus, it is the conceptual difference that is of interest here; the grammatical

representation implies a hierarchical knowledge of harmonic relations (i.e., the role of the II

chord as the “V of V”), which the Markov model cannot capture. It is possible, in principle,

for a grammar like Rohrmeier’s to produce a secondary dominant of this kind in contexts

not represented by a given corpus, and thus inaccessible to a statistically-induced Markov

model using random-walk generation.

The non-linear, iterative, and atemporal8 aspects of formal grammars also align with

aspects of Laske’s notion of “rule-based” composition, where the rule set has the poten-

tial to represent a space of possibilities not previously conditioned by the constraints of

existing music9. In Laske’s practice, the numeric representations generated by the rules

(as embodied by a computer system; see [137]) are analogous to the “non-terminals” of

the grammar, and it falls to the human composer to “interpret” these into the sequences

of terminals representing concrete musical statements. Through the iterative refinement of

the compositional life-cycle, composers gradually define patterns of interpretation, thus ac-

tualizing a complete—if intuitive and unstated—grammar, existing somewhere between the

composer’s competence and the task environment represented by the computer system.

The central role of iteration is also acknowledged in process-based models of creativity,

like Flower and Hayes’ model for literature, or Collins’ for music, which invariably highlight

8Xenakis referred to these kinds of abstract formal entities—the kind that are representable as non-
terminals—as “outside time,” a category to which he assigned scales, modes, hierarchical forms, fugal ar-
chitectures, and so on [249].

9It is worth noting that the grammars implied by Laske’s conception are actually knowledge-based, but
with the rather unusual caveat that the “knowledge” applied is not directly derived from the language being
modelled (i.e., traditional conceptions of music), but is rather imported from some other conceptual domain. In
this sense, the grammatical aspects of Laske’s conception are somewhat metaphorical.

35

the role of iterative development in the refinement of rhetorical/formal functions and the

resolution of syntactic/semantic problems.

2.4.3 Iteration Toward Musical “Fitness:” Evolutionary Models

Inspired by Darwin’s history-changing book, “The Origin of the Species,” the field of Evo-

lutionary Computing (EC) draws on methods analogous to processes of natural selection.

There are two primary streams of work in this area: Genetic Algorithms (GA) and Genetic

Programming (GP). We’ll look at GA first. The basic GA routine proceeds as follows:

1. Generate an arbitrary population of individuals

2. Using a fitness function, select individuals for mating

3. Generate a new population through sexual reproduction and mutation

4. Repeat from step 2 until some termination condition is reached

This deceptively simple algorithm can provide an extremely powerful and effective

heuristic search function10. Which is to say that, if the evolution of an “individual” capa-

ble of representing a particular solution is possible, then a well designed GA will eventually

find that individual. In order to better understand why this is so, it’s worth looking more

closely at what happens at each step in the basic algorithm given above (for a detailed

introduction see Mitchell [170]).

• Step 1) Produces a random population of individuals; in computer implementations,

these individuals (more specifically, their “chromosomes”) are often specified as bi-

nary character strings—e.g., [0 0 0 1 1 0 0 1]. It is important to note that these are

not purely “random” strings, in that their length and type (e.g., binary, real-numbered,

ASCII character, etc.) are essential factors in their utility as potential solutions11.

• Step 2) Uses a “fitness function” to determine which individuals will be paired to-

gether for reproduction. Defining the fitness function can pose particular challenges

when designing evolutionary models, and often represents the point at which some

form of expert knowledge is encoded into the system. In most implementations, the

10Heuristics are essentially rules of thumb that can be used to reduce the number of dead-ends (i.e., local
minima/maxima) reached when looking for a solution in a large search space. They are particularly useful,
even essential, for spaces large enough to lead to intractable “brute-force” searches.

11However, a fitness function that checks for basic representational validity would quickly weed-out individu-
als that violated such basic structural imperatives.

36

selection step will not choose only the fittest individuals, but will also probabilistically

select a certain percentage of less fit individuals for reproduction. In the context of

heuristic search, this step helps prevent the system from falling into local minima by

occasionally forcing the search into less-than-optimal locations in the search space.

Individuals that are not selected for reproduction are culled from the population.

• Step 3) The genetic operators of “cross-over” and “mutation,” are used to generate

new individuals for the population, given the two selected “parents.” Cross-over is

directly analogous to the combination of genes from both parents seen in sexual

reproduction, whereas mutation models the random alterations in genetic material

that arise through physical processes.

• Step 4) Checks whether some termination condition has been reached. In the ideal

case, this is a matter of determining whether any individual in the population offers

a solution to the proposed problem. However, in cases where an ideal solution is

not possible (music composition is a good example, since an optimal “solution” does

not, strictly speaking, exist), the termination condition could simply be a predefined

maximum number of iterations, or generations. If the termination condition is reached,

the algorithm terminates, and if not, it returns to step 2) and continues until a solution

is found (or the termination condition reached).

A closely related EC technique, known as Genetic Programming (GP), seeks to evolve

optimal programs using a similar algorithm to that given above; that is, rather than directly

evolving a solution, GP evolves a program capable of calculating a solution. Thus, in GP

the chromosome encodes a set of simple programs, or operations, rather than a set of

attributes. For example, a GP system might work with a set of simple programming oper-

ations like “Add,” “Subtract,” “Multiply,” “Divide,” or any arbitrary predefined function “ f (x).”
The chromosome would encode combinations of these operations by assigning each oper-

ation an integer label—e.g., Add = 1, Subtract = 2, Multiply = 3, and so on—thus replacing

the binary string representation outlined above with a string of integers representing the

various “programs” to be run. When modelling more complex operations, GP systems will

often specify a “Function Set” defining the set of simple mathematical operations, and a

“Terminal Set,” consisting of the discrete values used as arguments for the functions (i.e.,

the constants and variables of the generated program). In this way, chromosomes can

represent sets of programs along with their associated constants and variables, allowing

for the evolution of highly complex, algorithmic operations. As can be imagined, one of the

37

great challenges of GP is to ensure that the evolutionary process always generates syntac-

tically valid, compilable programs. As long as this basic requirement is satisfied, however,

the evolutionary process itself operates in fundamentally the same manner as in GA.

A relatively early application of EC in music was Horner and Goldberg’s system for

computer-assisted composition [104]. In this system, EC is used for “thematic bridging”—

i.e., the gradual transformation of thematic material over time. Since thematic bridging

itself could be seen as a form of “mutation,” this is a straightforward and appropriate test

bed for EC techniques. Although Horner and Goldberg discuss the use of GA specifically,

their approach in many ways resembles GP, with the definition of a set of “operators” rep-

resenting basic formal transformations of thematic material—e.g., “Add,” “Delete,” “Mutate,”

“Exchange,” etc. The chromosome encodes a sequence of operators, to be applied in

left-to-right order, thus indicating the order in which the set of operations will be applied

during transformation of a given theme. As a result, the chromosome itself provides a set

of simple instructions for thematic bridging; a technique more similar to GP than standard

GA. Since the goal state of thematic bridging is to achieve the desired thematic transforma-

tion, the fitness function used in this case simply measures how close a given generation

comes to producing the desired transformation. Of course, this implies that the goal state

is known beforehand, and that a reasonable measurement of fitness can be derived from

comparing the system’s output to the target input. Such well defined notions of fitness are

not, however, always possible in EC systems for music composition.

Thus it is clear that one of the most difficult tasks in the application of EC to creative

tasks is the definition of an appropriate fitness function; i.e., to pinpoint how to differen-

tiate a “fit” solution from an “unfit” one. A common approach to this problem is to use

interactive methods, in which the system passes the role of assigning fitness over to the

user, avoiding the need to define a concrete, computable notion of fitness. Such systems

generally evolve one or more generations, then present the user with an interface for au-

ditioning the results and selecting individuals for reproduction. This is the approach taken

in Johanson and Poli’s “GP-Music” system [110]. As the name suggests, GP-Music uses

GP techniques for the transformation of melodic sequences, with the subjective evaluation

of musical fitness provided by the user of the system. One of the difficulties in this type

of interactive approach, however, is that it tends to slow down the evolutionary process

considerably, as the system must pause for evaluation by the user before evolving new

generations. In Waschka’s “GenDash” system [239], on the other hand, the fitness function

38

is random, and user control is afforded12 only through the selection of the initial popula-

tion. Similarly, Eigenfeldt’s “Kinetic Engine 3” [79] also lacks an explicit fitness function,

instead using a social notion of fitness, implemented in a multi-agent system. In Kinetic

Engine 3, individuals are selected for performance based on the appropriateness of the

musical material they present in the given musical environment. If that material is deemed

musically appropriate and useful to other agents, it survives, whereas if it is not, it fails to

contribute to the musical development, effectively deeming it “unfit.” This approach models

human music improvisation, where material introduced by a given musician may fail to be

developed during the course of the performance if it fails to capture the imaginations of

the other musicians involved. Manaris and Roos present another interesting approach to

the problem of assigning fitness [157]. In their system, a set of Artificial Art Critics (AACs)

are used to model a social/critical notion of fitness. The AACs are implemented as neural

networks that learn to evaluate a set of examples, based on a feature extraction process

derived from power laws. In the course of their research the authors found that music esti-

mated as “good” generally approximates a distribution close to that of so-called “pink,” 1/f

noise, when analyzed according to the metrics used. The AACs in their system are trained

on a corpus of “socially sanctioned” music, downloaded as MIDI files from an online mu-

sic archive, where quality is considered proportional to the frequency of downloads. Such

an application of AACs as a fitness function for a genetic composition system provides an

interesting and valid approach, even if the metric used for discriminating “good” and “bad”

music is questionable.

From a composition theoretical perspective, perhaps the most compelling feature of EC

is the emphasis it places on iteration as a fundamental creative strategy. The process of

variation through reproduction and mutation can be considered analogous to the process of

iterative refinement that characterizes human compositional practices [41]. Consequently,

the incremental movement toward artistically satisfying solutions, through an accumulation

of local, and often somewhat small-scale improvements, also provides a useful model of the

relationship between musical materials generated a priori, and the continuous development

of goals during compositional processes, as highlighted in Collins’ theory (Section 2.3).

This characteristic is somewhat unique to the EC approach, since the particular type of

parallel and iterative search proposed has the potential to arrive at solutions immediately

in some cases, while slowly refining solutions in others. This is particularly the case in

12The definition of the fitness function generally offers an opportunity for the designer/user to state explicit
goals for the system’s output. This is most clearly the case in interactive EC, where fitness is based entirely on
the aesthetic evaluation of the user.

39

interactive EC, where well-formed solutions may not be apparent to the user until they are

auditioned.

2.4.4 David Cope’s “Music Recombinance”

David Cope’s Experiments in Musical Intelligence (EMI) caused a sensation when it first

came into prominence in the early 1990s, and has been viewed with a somewhat sus-

picious eye by the research community ever since [51]. The primary insight underlying

Cope’s success with EMI was his notion of “music recombinance” (see Chapter 1), which

asserts that new music is essentially a recombination and recontextualization of existing

music, or more specifically, of the component structures of existing music. Early versions

of the system [47] described the underlying formalism as an Augmented Transition Net-

work (ATN) [246]. The ATN is an extension of Woods’ Basic Transition Network (BTN),

which can be seen as a graphical model of a formal grammar, with an added recursive

function, allowing it to produce nested substructures within the larger generated sentence.

The substructure produces a new graph, with its own root node, or “start point,” and its own

internal structure. During recursive generation, the BTN pushes the larger sentence struc-

ture onto a stack while the substructure (e.g., a prepositional phrase) is being generated.

When the substructure is complete, the larger sentence structure is popped from the stack

and generation continues. The ATN extends the BTN, by the addition of a test function and

an action function. The test function determines whether a recursive construction may take

place in the current context, and the action function provides a set of structure building

rules if the recursive construction is permitted. Together, these functions allow the ATN

to build complex sentences, potentially moving fragments of a sentence around, without

sacrificing its deep structure (i.e., its fundamental semantic intent). According to Woods, a

significant problem of context-free grammars that the ATN solves is the ability to generate

structures in which sequential dependencies between non-adjacent parts of the sentence

are retained.

Cope began his “experiments” with ATNs by writing simple programs to create haiku,

following an intuition that producing reasonably intelligible and well-formed haiku was a

task in some ways comparable to music composition. Subsequently, the principles of the

ATN were applied to his notion of “non-linear composition” [47], in which quasi-linguistic

function labels were assigned to phrases in a music database, which the ATN then used to

build “parse trees” of new, syntactically and semantically valid works. For a given non-linear

40

composition process, a “source phrase” was provided by the user, and the ATN would pro-

ceed to expand this source phrase into a larger musical structure. In later versions of the

system, the ATN approach was replaced with a more general pattern matching and search

algorithm, based on the notion of music recombinance. The exact process by which EMI

composes new works appears to vary considerably, based on the formal tendencies of the

style to be modelled, and the specific contents of the work being composed. However,

the process could generally be described as a mapping of high-level statistical regularities

from source works in the target style (the style to be modelled) onto the new work be-

ing composed. There are a number of attributes of the target style that EMI attempts to

emulate:

1. Phrase length

2. Position of cadences (and distance between cadences)

3. Position and application of signatures, earmarks, and/or unifications

4. SPEAC structure

The first two attributes are self-explanatory; a style imitation B should generally match

the phrase lengths and cadence positions of a target style A. But “signatures,” “earmarks,”

“unifications,” and “SPEAC structure” need to be defined. Cope defines signatures as

follows:

Signatures are contiguous note patterns which recur in two or more works of

a single composer and therefore indicate aspects of that composer’s musical

style. Signatures are typically two to five beats (four to ten melodic notes) in

length, and usually consist of a composite of melody, harmony, and rhythm.

[51]

In EMI, signatures are identified through pattern matching and, contrary to the general

process of fragmentation that characterizes recombinance, signatures are stored and ap-

plied intact. Of course, this is consistent with their definition, which specifies characteristic

relationships between pitches and rhythms in a given harmonic setting, so that breaking

them up would likely destroy the function of the signature. Earmarks are patterns which

tend to precede, or “signal,” significant musical changes [51]. They generally appear near

cadences, and at the end of sections, thus serving to “foreshadow important structural

41

events” [51]. Unifications represent the general strategy through which a musical pattern is

applied in order to give continuity to a work.

While signatures contribute to the recognition of the style of the composer [...]

unifications have greater local importance and relate to harmonic, thematic, and

rhythmic elements only in a single work. [51]

unifications

recombination transformation

earmark signature

Figure 2.7: Output from EMI demonstrating various techniques, including “unifications,”
“earmarks,” and “signatures” (reprinted from Cope [51]).

Unifications help provide continuity, through the local repetition or imitation of simple

musical patterns; i.e., they serve to “unify” the local context. Figure 2.7 gives an example

of how EMI exploits unifications, earmarks, and signatures in a compositional context.

Before discussing SPEAC analysis, we should introduce one of the primary objects in

EMI’s music database: groupings. Groupings are vertical “slices” of music, containing the

active notes across all voices of the musical texture at a given time, or over a given temporal

window [51]. Groupings can range in length from a single onset to several beats in duration.

In later versions of EMI, grouping length could be adjusted dynamically, as a result of the

analysis process. Groupings represent the most basic units for recombination; simply put,

an EMI composition can be viewed as a series of groupings from different source works,

strung together in a novel order. When groupings are extracted from a source work, they

are added to the database with references to the grouping which immediately follows them

in the original setting. They are given generic names in the database, so that all groupings

with similar attributes—for example, the pitch label {C-E-G}—will be stored at a common

location. Part of the process of recombinance involves chaining together lexically related

groupings in a novel way. Of course, groupings are not always recombined exactly as they

appear in the database. Transformational recombinance [51] involves the alteration of a

42

grouping’s attributes in order to provide a better “fit” in the novel context, or to allow for a

greater variety of choices when the database provides too few options. Also, recombina-

tion does not always involve complete groupings, but may involve the selection of several

melodic fragments from different groupings, which may require transpositional transforma-

tions in order to conform to the new harmonic setting. The details of such operations are

beyond the scope of this introduction.

Cope’s SPEAC system is a method of formal analysis, grounded in the idea that musi-

cal structure is communicated through changes in “tension” [51]. SPEAC is the technique

that most closely connects later versions of EMI with the original ATN function implemented

in the earliest versions. Using SPEAC analysis, a musical surface can be labelled accord-

ing to the general formal functions of its constituent events (or groupings). The SPEAC

labels—“Statement, Preparation, Extension, Antecedent, Consequent”—indicate the for-

mal functions of the stored groupings. In SPEAC analysis, groupings are assigned SPEAC

labels according to an analyzed degree of “tension.” The attributes used for measuring

tension are not prescribed, and could be any analysis properties associated with changes

in musical tension: harmonic dissonance, “approach” tension (or voice-leading tension)

[52], beat position, metrical position, and so on. All groupings in a given source work are

assigned tension scores, after which they are sorted into five ranges, corresponding to the

five SPEAC functions. SPEAC labels are assigned as follows [52]:

1. C→ lowest tension groupings

2. A→ highest tension groupings

3. P→ groupings with tension closest to A

4. S→ groupings with tension closest to C

5. E→ remaining groupings

The main function of SPEAC analysis is to provide a strategy for resolving multiple,

potentially conflicting choices among database items during recombination. For example,

since many database items may exist with the identifying label {C-E-G} (i.e., a major triad),

each with a unique contextual meaning in its original setting, SPEAC can help decide which

{C-E-G} grouping might be most appropriate in the current context. Thus, if the context is

a V chord in C Major, with an “Antecedent” SPEAC function, then a “Consequent” {C-E-

G} triad might be most appropriate, whereas if the context is a tonic chord in G Major,

43

a “Statement” {C-E-G} triad may be better. Both are C Major triads, but in each case

the structural implications, and subsequent database associations, will be quite different.

Cope also regularly applied rewriting rules to SPEAC structures, treating the system as a

context-free grammar in which deep SPEAC structures could be expressed through various

alterations of surface structures. He never prescribed a set of specific rewriting rules,

but rather gave the general guideline that SPEAC functions at higher levels should be

expanded with lower-level sequences of functions that approximated their overall tension.

An example set of rewriting rules is given in Table 2.4:

S → (P S) (A C) (S E)
P → (P E) (E E) (A C)
E → (S E) (E E)
A → (A E) (P A) (P A E) (S E A)
C → (C E) (P C)

Table 2.4: A set of rewriting rules for Cope’s SPEAC system (reproduced from Cope [52]).

Unlike the earliest versions of EMI, later versions composed in a somewhat more lin-

ear manner. The process began by selecting an introductory grouping from the database.

Since the ending of this grouping would reference one or more other entities in the database

as continuations, these continuations could be tested for compositional appropriateness.

The choice of continuations was made with recourse to pattern matching procedures,

SPEAC functions, target style phrase length, cadence positions, and so on, giving rise

to an extremely complex decision process. In fact, Cope’s own analysis of a “Mozart”

sonata composed by EMI [51] reveals the difficulty of easily quantifying EMI’s composi-

tional process. Reading through this description, it is clear that Cope could only possess a

general understanding of how EMI made the choices that resulted in the final composition,

leading to an analysis reminiscent of conventional music theoretical analyses of the works

of the Western canon. This is not an ideal state of affairs, and has likely led to serious

misgivings on the part of the larger research community regarding the scientific validity of

Cope’s work. Perhaps it was this general rejection by the research community that led to

Cope’s highly controversial decision in 2003 to destroy the meticulously compiled music

databases from which the thousands of EMI compositions were created [52]. Although the

set of programs that make up EMI remain intact, Cope openly admits that the creation of

databases for EMI compositions is a complex and highly selective process, without which

44

successful recombinant composition would be impossible. For this reason, it is a great

misfortunate that we can no longer refer to the databases, along with the software and

musical output, without which we will likely never gain a more objective understanding of

how EMI, with Cope as its database curator, achieved the remarkable success that it did.

It is clear that the system is not embodied by the software alone, but rather exists between

the software and the database(s) from which it draws its recombinant source material. Had

these databases remained intact, it is at least conceivable that further research might have

revealed the connection between EMI, its databases, the original source works, and the

generated output, and perhaps even developed a way to reverse engineer the database

creation process. As it stands, the details of EMI’s success will likely remain a mystery.

From a composition theoretical perspective, Cope’s work is of great interest, for the

simple reason that it is a direct implementation of a composer’s compositional instincts.

Perhaps more than any other generative approach, Cope’s notion of music recombinance

realizes the broad definition of composing as “collecting, connecting, placing, construct-

ing, combining, and putting together several parts, through agreement or settlement, into a

whole” (Section 2). Though it is clear that Cope’s approach with EMI was rooted in linguistic

processes, with the ATN serving a central role, knowledge of the ATN alone provides only

limited insight into EMI’s success. Although there is much discussion of statistical analy-

sis [49], it is clear that conventional probabilistic Markov processes are also not central to

EMI’s design. Rather, statistical modelling is used primarily during evaluative procedures,

in which the statistical regularities of productions (pitch occurrences, repetitions, phrase

lengths, etc.) are compared to those of example works in the target style. In a similar

manner, concrete predictions are not central to EMI’s design, which is rather focused on

modelling general patterns of expectation, as represented by the syntactic functions of the

SPEAC identifiers. As a further contrast to contemporaneous systems, and again reflecting

Cope’s focus on modelling human compositional strategies, EMI’s compositional process

is highly iterative. Though not directly modelled on such systems, EMI’s design is analo-

gous to cognitive process theories of literary composition, utilizing a modular organization

of several sub-programs, each handling a different aspect of the compositional process;

analysis, pattern-matching, recombination, transformation, and so on [52]. EMI’s compo-

sitional process proceeds via a complex negotiation of different (sub)programs, each of

which fulfills a specific role in a generally non-linear series of compositional subprocesses.

However, Cope’s modelling of these processes does not follow the same organizational

structure seen in models like that of Flower and Hayes. This is likely due to the fact that

45

EMI does not directly model human perception or cognition, but rather takes a music the-

oretical approach (i.e., to analysis, feature extraction, and so on). In this sense, it is very

much an “expert system,” drawing on Cope’s compositional expertise, and his domain-

specific knowledge of music theory, both of which are explicitly and implicitly coded into

the system. Finally, although general hints and suggestions regarding database construc-

tion have been provided in Cope’s books, and several of his music analysis programs have

been discussed in relation to database construction, the complete process has not been

explicitly formalized or implemented in an algorithmic system.

Inspired by Cope’s Approach: The MusicDB

Cope’s approach to music recombinance provided the basis for our “MusicDB” system, for

MaxMSP [159]. The MusicDB is designed to facilitate recombinant composition, providing

a method for analyzing MIDI files, and navigating the resulting data structure via a sim-

ple but powerful query syntax. The system employs Cope’s notion of Groupings and uses

SPEAC analysis when analyzing MIDI files, building a hierarchical representation from one

or more source works. Unlike Cope’s databases, which organize materials into “lexicons”

based on the contents of Groupings, the MusicDB’s data structure is centred on SPEAC

analysis, so that all of its musical content is accessed first and foremost by SPEAC function.

Queries can search the entire SPEAC hierarchy, or can be isolated to specific branches of

the hierarchy, localized by the results of previous searches. The analysis process breaks

the input music into five primary descriptors: Events, Chords, Groups, Voice-Segments,

and Phrases. Events are individual MIDI notes and Chords are collections of simultane-

ous Events. Groups are analogous to Cope’s “Groupings,” and Voice-Segments are short

musical passages which may contain Events and/or Chords. Phrases are composite struc-

tures containing one or more Voice-Segments, the sequence of Groups that intersect those

Voice-Segments, and all contained Events and Chords. The boundaries delineating differ-

ent Voice-Segments and Phrases are determined through SPEAC analysis.

All descriptors are implemented as software objects with data fields defined for specific

analytic qualities, and object referencing is used to define the relationships between the

objects. When queries are made, the search is performed over all objects in the scope of

the given search and data can be accessed either from the returned object, or from any

object directly referenced by the returned object. Using this approach, it is possible to have

different search and return types, so that one may use a series of Chords to search for a

melodic interval sequence, or a rhythm to search for a series of Chords. However, as is

46

clear from the above discussion of Cope’s work, the proliferation of data made available

by such recombinant techniques can often lead to a similar proliferation of problems re-

quiring solutions. Such is the case with the MusicDB where, in many cases, queries may

lead to a wealth of information, with little guiding structure to aide in the recombination

process. Extensive transformations are often required to adapt the extracted material to

the novel compositional context, and this process must be carried out either by a separate

compositional system, or by the user of the MusicDB. This is by no means a simple pro-

cess, and promoted our continued search for a more integrated, holistic approach to music

recombinance.

2.5 If Composers are Creative, What Does That Mean?

Having discussed the models of compositional thought implied by various generative ap-

proaches, we will now look at a range of interpretations of what it means to create; that is,

at what might be considered the ultimate goal of a generative system. Theories of creativity

range from the philosophical and metaphorical to the formalized and quantifiable, but few,

if any, cover the field in its entirety. In their overview of the subject, Kozbelt et al. [122]

present a cross-section of prominent theories, framing their discussion according to a rule-

of-thumb classification referred to as “the six P’s of creativity.” Briefly, this model proposes

six general aspects of creativity that a given theory might address: process, product, per-

son, place, persuasion, and potential. Process theories addresses the mental mechanisms

and thought processes of individuals engaged in creative acts, while product theories ad-

dress the products of creativity themselves, such as art works, inventions, publications,

and so on. Person theories are concerned with understanding the personality traits of cre-

ative individuals, while place seeks to explain the role of geographical, cultural, and social

context on creativity. Theories addressing the notion of persuasion bring to light the fact

that creative acts and/or products are not always recognized as such by the larger public.

Rather, it is often the case that influential individuals must persuade the public as to the

value of a particular creative act or idea, in order for its creativity to be broadly accepted.

Finally, theories of potential focus on types of creativity that might not be recognized as

such, but that are distinctly creative, and might one day be recognized by the larger public.

For the current discussion, aspects of person, place, and persuasion, while clearly of in-

terest to understanding the phenomenon of creativity, are not of particular interest. Rather,

47

our focus will be on creative processes and products, and where appropriate, the potential

for creativity that exploration in the area of process affords.

While any theory of creativity must obviously address the great creative thinkers of

history—the Einsteins, Darwins, Mozarts, da Vincis, Shakespeares, and so on—it must at

the same time account for creativity on a more modest scale. For example, the ability to ex-

press an idea in language is a capacity that virtually all human beings share. But it is also a

distinctly creative act. We do not express ourselves by simply reciting valid sentences from

memory, but rather combine words in novel, yet functional ways to communicate specific

ideas in specific situations. Similarly, many individuals engage in creative acts like painting

or writing, and often with a high degree of competence. But in the vast majority of cases,

the results of these efforts cannot be classified on a par with the creative works of the mas-

ters. Aesthetic quality aside, however, it is clear that creative thinking must be involved.

These more localized, everyday creative acts suggest that creativity should perhaps be

understood in terms of its magnitude. To this end, many theorists have adopted a classi-

fication scheme proposed by Csikszentmihalyi [55], which accommodates the possibilities

for “smaller c,” or “Larger C” creativity. Larger C creativity applies to the great achieve-

ments of humanity, like the general theory of relativity or the Mona Lisa, while smaller c

creativity applies to the many broader, more commonplace acts, which would nevertheless

be impossible without creative thinking.

2.5.1 Boden’s Creative Magnitudes and Types

Margaret Boden made an important contribution to the examination of creative magnitude

by proposing the categories of “P-creativity” and “H-creativity” [24]. P-creativity, or psy-

chological creativity, refers to ideas that are novel to the individual who created them.

P-creative ideas need not alter the course of civilization; as far as the individual knows,

they are original, and thus could not have been produced without some form of creativ-

ity. H-creativity, or historical creativity, on the other hand, refers to ideas that have been

recognized as novel by humanity as a whole (or at least on a large scale), and have thus

altered the course of history in some way. It should be noted that P-creativity necessarily

subsumes H-creativity, since an H-creative idea must, at the very least, be novel to its orig-

inator. For this reason, Boden suggests that it is more important to understand P-creativity,

even though the results of H-creativity may be more intriguing or appealing.

48

Extending these basic magnitude categories, Boden also proposes three categories of

type: combinational creativity (C-creativity), exploratory creativity (E-creativity), and trans-

formational creativity (T-creativity) [24]. Combinational creativity involves the generation

of novel ideas by the association of disparate, or only tangentially related ideas. Thus,

C-creativity proceeds fundamentally by analogy; the two (or more) ideas being brought to-

gether share some similarity of form, conceptual structure, or semantic content, and the

novel idea reveals this similarity. The creative insight involved in C-creativity necessarily

relies upon vast stores of knowledge, like that possessed by adult human beings. Signif-

icantly, this knowledge enables not only the generation of C-creative ideas, but also the

appreciation of those ideas, since it is the comprehension of the underlying similarities that

supports the meaning (and relevance) of the novel idea. As an example, Boden provides a

short stanza from Shakespeare, which draws a series of analogies between sleep, mend-

ing a torn sleeve, a soothing bath, a balming ointment, and the second course of a meal, all

in four lines of poetry. The feat of imagination and creativity on Shakespeare’s part is clear,

but what is perhaps not so clear is that any reader who comprehends and appreciates the

stanza is likewise relying on C-creativity to do so13. Because of its reliance on knowledge,

Boden suggests that C-creativity is perhaps the easiest for human beings to achieve, and

conversely the most difficult for computer systems, which generally have limited, and overly

specified knowledge structures.

E-creativity involves the exploration of a conceptual space for novel possibilities. An

important aspect of such conceptual spaces is that they predate the individual creators

that explore them; that is, they are cultural, social, and collectively defined spaces of ideas

and possibilities. Examples of conceptual spaces include styles in the arts, theories in

chemistry or biology, fashions or trends in couture, and so on. Such conceptual spaces are

developed through the collective work of populations, and reflect the assumptions, values,

and preferences of the culture (or, in some cases, another culture from which they are

borrowed). Exploration of such spaces is thus always constrained by the parameters of the

conceptual space itself, so that radical alterations or deviations are not permitted. More

specifically, it is not necessarily a question of them being permitted, but simply that they

will be rejected by the culture as a whole for failing to accurately represent the values of

the group—which explains why exceptionally creative artists like Vincent Van Gogh, for

example, may fail to achieve any degree of acceptance in their lifetimes.

13It is worth noting that Boden generally makes room for the creativity of the observer, showing that a degree
of creativity is often required to appreciate other creative ideas. This is an idea developed by Peterson in the
context of music, who looks at the creative role of the listener [188], as discussed in Section 2 (p. 9).

49

Even within a given conceptual space, however, there is often considerable room for

exploratory creativity. For example, the sheer size of the conceptual space represented by

a poetic style, like the “limerick,” makes it essentially impossible to explore the space of

possibilities in its entirety. Thus, any individual who comes up with a novel possibility within

the conceptual space—i.e., a novel limerick—is exhibiting E-creativity. In many cases, new

E-creative ideas can lead the way for new ways of thinking within the conceptual space,

sometimes opening up large and unsuspected areas for future exploration. Boden uses

the metaphor of following a map on a country drive. The map represents the conceptual

space which, while not a true representation of the open and unstructured geography of

the terrain, nevertheless represents the structurally defined space of navigable roads and

passages. One can depart from the freeway, and travel along backroads in an exploratory

manner, without having any specific knowledge of where they will turn up. But it is always

a certainty that the roads will lead somewhere, and that this “somewhere” can ultimately

be located on the map. By this metaphor, we understand that it is the direction, path, and

order of destinations that can vary—and on a map of sufficient size and complexity, the

number of possible variations is staggering—but one must always follow a road or path, so

that movement is always constrained.

Breaking the limitations of a predetermined conceptual space falls to the realm of trans-

formational creativity. T-creativity takes some particular rule, formalism, or idea from the

exploratory space and literally changes it, so as to enable the pursuit of some new possibil-

ity or space of possibilities. T-creativity is like following your road map to a known location,

spotting some far off vista, and leaving the road to drive there directly. The promise of

adventure is great, but so is the potential for failure. Thus, Van Gogh’s break with the con-

ceptual space of naturalistic painting proved devastating to himself financially, but ultimately

invaluable to the future development of the art form. An important point about T-creativity is

that it literally enables one to think in ways that were not possible in the conceptual space

prior to the transformation. Perhaps more significantly, because it opens up new avenues

for thought, T-creativity also frequently leads to rapid developments in the field (generally

new E-creative ideas) arising from the sudden expansion of the conceptual space. Perhaps

not surprisingly, T-creativity is exceptionally difficult for humans to do. This is not always

because there is anything particularly incomprehensible in the result. On the contrary, it is

often the case that the T-creative idea reveals a possibility that seems beguilingly simple

or transparent upon reflection; like the answer to a riddle. But however simple the alter-

ation may be, the conceptual space has changed, and would not have changed without the

50

advent of the T-creative idea. As an example, the musical spaces opened up by Reich’s

minimalism seem self-evident now, in spite of the fact that they were anything but obvious

at the time Reich introduced them to the musical public. This is not surprising, since the

conceptual space Reich inherited from the modernist avant-garde was so constrained, dis-

torted, and over-determined as to make his approach to form seem almost nonsensical at

first. And yet, once the conceptual space opened up by minimalism began to be explored

by the musical community, it flourished to become one of the most influential compositional

approaches of the twentieth century.

2.5.2 Schmidhuber’s Theory of “Compressor Improvement”

Jürgen Schmidhuber presents a compelling formal model of creativity based on information

compression and intrinsic reward for compressor improvement [208]. The model includes

a compressor/predictor representing an adaptive world model, a learning algorithm that at-

tempts to improve the world model, a system of intrinsic rewards for improving compressor

performance, and a reinforcement learner that tries to select actions that will optimize future

reward. The underlying idea is that, because human beings live in an information-heavy

world, learning to detect order in that world is implicitly rewarding; crudely stated, we enjoy

learning to do things, and our brains enjoy learning to simplify information we encounter.

This process of simplifying representations can be described as a form of compression. As

Schmidhuber explains:

Newton’s law of gravity can be formulated as a short piece of code which allows

for substantially compressing many observation sequences involving falling ap-

ples and other objects. [209]

This notion of compression is a formal concept, and is framed specifically in terms of

computational models, but the fundamental point is that the concept of gravity (whether

defined formally or not) allows us to accurately predict the immediate future of objects

dropped, thrown, knocked off ledges, and so on. Beyond the specific case of gravity, there’s

also a certain utility in learning to predict environmental events; one can save oneself

a great deal of confusion, wasted effort, or even serious physical harm (and death), by

learning to better predict events in the world. Thus the intrinsic motivation of learning to

understand the world can also be seen as a strategy for improving external reward, by

extending the life of the organism.

51

Beauty in Schmidhuber’s model is proportional to the compressibility of the information.

For example, faces that are highly symmetrical, maintain fairly normal proportions, and are

more similar to very familiar faces tend to provide the standard for beauty. In a similar

manner to Schmidhuber’s example of the theory of gravity, these are faces that compress

many observations of other faces into “a short piece of code,” representing an optimal face.

However, Schmidhuber is quick to point out that this does not mean that such faces are

interesting. Interestingness, unlike beauty, is proportional to the ability of the compressor

to further compress the information; that is, it is linked to the intrinsic reward received for

compressor improvement. If a face is too conventionally beautiful, we lose interest quickly.

Thus, faces that are highly symmetrical, have fewer unique features, and are familiar can

only be interesting to the degree that all of these attributes are moderated by some kind

of uniqueness; that is, by the presence of information that cannot immediately be repre-

sented in an optimally compressed form. It is the desire for comprehension—the striving

for compressor improvement, which Schmidhuber refers to as the “learning curve”—that

is intrinsically rewarding, and therefore maintains our interest. Considered in the context

of music the model suggests that music with enough familiarity and regularity to be con-

sidered beautiful, but enough novelty to challenge the compressor, will be most rewarding

for the listener. Thus, music that is overly familiar, or overly simplistic, given the listener’s

knowledge and experience, will soon become boring, just as music that is overly complex

or irregular, with no perceivable pattern, will also become boring. As a final note, it is worth

mentioning that Schmidhuber’s model, being focused more on a process (i.e., “compres-

sor improvement”) than a product, can also directly account for the creativity inherent in

perception, as discussed in Peterson’s examination of creativity in music listening [188].

2.5.3 Graeme Ritchie: Quantifying Computational Creativity

Graeme Ritchie’s work on creativity theory emphasizes the evaluation of creativity, with

a particular focus on assessing the potential for creativity in computer systems [197, 198].

Similar to Schmidhuber, Ritchie gives a relatively simple, quantifiable definition of creativity,

founded on the estimation of three properties: novelty, quality, and typicality. In Ritchie’s

definition, novelty is the extent of a produced item’s dissimilarity to a given class of items,

while quality is the extent to which a produced item can be considered an example of that

class [198]. Typicality is slightly different, in that it takes into account the “artifact class”

of the item. Generally speaking, in human evaluations of creativity, it is assumed that

the item being evaluated is a member of a known class of artifacts; e.g., songs, stories,

52

poems, pictures, and so on. Typicality, then, concerns the extent to which a produced

item is an example of such a known class. Ritchie acknowledges, but does not directly

address, the rather important issue of distance/similarity metrics, which remain an open

question in music research. However, the formalism presented by Ritchie does not concern

the quantification of such comparisons, since his stated assumption is that evaluations of

creativity are generally made by human subjects. This is not to say that machine evaluation

is impossible, but simply that the mode of evaluation is not important, only the estimation

of novelty, quality, and typicality. Given a set of judgements (human or machine) based on

these attributes, Ritchie’s formalism will provide an overall estimate of creativity.

Unlike Schmidhuber’s approach, which is not specifically concerned with categories (as

in Boden, for example), Ritchie’s approach is fundamentally grounded in set comparisons.

He provides a comprehensive list of “criteria” calculations, which give [0,1] evaluations of

the estimated creativity of a given set of productions R, based on comparison to the set

of all members of the artifact class B, and a set of “inspiring” artifacts I, which represents

the implicit or explicit assumptions of the program designer regarding the formal properties

of the artifact class (which have potentially guided the development of the system). I can

represent a set of specific sample works, as in corpus-based machine-learning systems, or

the set of rewrite rules defined by a formal grammar. Interestingly, I can also be empty, as

in mathematical models, or other “sonification” approaches, which make no assumptions

about musical structure. Ritchie makes the important observation that a system capable

of replicating an item from I—for example, literally quoting from the corpus—though not

particularly creative, may nevertheless be useful, as its implementation may reveal impor-

tant information about the formal structure of I, or the creative process that gave rise to

the class. It is also worth noting that Ritchie’s formulation of I, as a sort of “meta-class”

of creative items, can also be said to represent the composition theoretical assumptions of

the system’s design. For example, a system based on simple Markov chains only assumes

that a given class of compositions can be represented by a probability distribution, and that

generation is a predictive process, as was suggested in Chapter 1. If such a system uses

a 1st-order Markov model induced from a given corpus (i.e., rather than being coded by

hand, as in Xenakis’ early work with Markov models), then, as was shown in the simple

example of the Mozart melody, the probability of reproducing an item from I is vanishingly

small. Such an incapacity to represent I could thus indicate a weak theory of composition.

53

Creativity and Style Imitation

As a sort of epilogue to this discussion of creativity, the question is often asked why Cope,

or any other researcher studying computational creativity in music, would focus on style

imitation; i.e., in teaching a computer to compose “in the style of” Bach, Mozart, Chopin,

and so on. The most straightforward answer is that style replication provides a solid ground

for assessing the “quality” side of the novelty/quality/typicality formula. If a system can

convincingly compose in the style of a given composer—often times a composer already

noted for H-creative musical contributions—without merely replicating existing works, then

that system must at least be capable of some form of P-creativity. Further, in consideration

of the many applications of generative systems in the field of CAC, it is reasonable to

ask that a compositional “collaborator” have enough skill in the field to produce convincing

results, that are at least recognizable as such by the user of the system; i.e., that are

successful in terms of typicality. Often, researchers in the development of creative systems

focus too quickly on H-creativity, ignoring the fact that it is often difficult, if not impossible, for

individuals to assess the H-creativity of a given artifact, the necessary information simply

not being available to the individual assessor.

54

Chapter 3

Music Perception and Cognition

In his book Music and Memory [216], Bob Snyder provides an overview of research in

music perception and cognition, introducing central theories about the memory structures

and cognitive processes involved in understanding music. It is important to acknowledge

that much of Snyder’s discussion is “transcription-based” or “note-based” [205], reveal-

ing a clear intention to connect the perceptual and cognitive functions of audition to the

higher-level capacity for musical and compositional understanding. This approach, while

potentially biased from the purely psychological point of view, is well-suited to our work,

which also focuses on relating concepts from the music perception and cognition literature

to the highly specialized act of music composition. A comprehensive discussion of the liter-

ature is beyond the scope of this dissertation, but the following chapter will provide a brief

overview of those concepts that are directly relevant to our work.

3.1 Echoic Memory

Snyder’s discussion begins by addressing the earliest stages of auditory processing, in a

short-term memory function referred to as “echoic memory.” The primary role of echoic

memory is to allow an acoustic stimulus to persist in memory long enough that it may

be subject to processes of “perceptual binding” and “feature extraction” [216]. Through

these processes, vast quantities of acoustic information—impulses emitted by thousands

of nerve cells in the ear—can be categorized and “grouped” into basic percepts, allowing

the brain, for example, to “bind” a set of simultaneously sounding frequencies into a sin-

gular perception of “pitch.” Extensive theoretical and experimental work has been done

on the subject of echoic memory, and computational approaches have been proposed

55

[56, 106, 117, 145, 182]. However, because the generative music systems we are dis-

cussing here deal with symbolic music representations, low-level functions like pitch per-

ception and onset detection are treated as a priori requirements, and will not be discussed

in detail.

There are, however, a few key aspects of echoic memory processing that are directly

relevant to our work on MusiCog; in particular, the notion of “primitive grouping.” Perceptual

binding and feature extraction transform temporal processes into discrete percepts, allow-

ing us to identify the various actors and forces in our immediate auditory environment—a

speaking voice, music, traffic in the street outside, water pouring into a glass. However,

in order to derive meaning from such auditory streams, we must first become sensitive to

qualitative changes in the streams over time.

When some aspect of the acoustic environment changes sufficiently, a bound-

ary is created. This boundary defines where a grouping begins or ends and is

the most basic kind of feature that is detected in the earliest stages of percep-

tion. [216]

Such boundaries are perceived via a phenomenon known as “closure,” which gives

groupings a sense of separation and identity, transforming the continuous flow of acoustic

information received by the ear into a sequence of meaningful auditory events. Primitive

grouping thus provides the foundation for the higher-level cognitive processes that allow

phonemes to be combined into words and words into sentences, or individual pitches com-

bined into motives, phrases, and melodies in music. A sudden change of pitch, or the

separation of events by a period of silence, both provide strong sensations of closure, and

are thus frequently cited as mechanisms for primitive grouping [30, 185, 216]. Significantly,

primitive grouping also appears to be an innate capacity of the auditory system, functioning

independently of acquired musical knowledge or high-level cognitive processing.

Closure need not be absolute, grouping all features of an auditory stream equally.

Rather, different features of the stream—pitch and rhythm, for example—may suggest dif-

ferent points of closure; a phenomenon referred to as “partial closure” [216]. In partial

closure, a pitch boundary may be detected independently of a rhythmic boundary, or vice

versa. Stronger sensations of closure, and thus more prominent boundaries, tend to be

characterized by partial closures across multiple features; e.g., simultaneous pitch and

rhythm closure. It is worth note, however, that rhythmic closures, particularly those involv-

ing periods of silence (i.e., “rests”), tend to dominate the overall perception of closure in

56

melodic contexts [184, 225], such that pitch transitions that would not otherwise be per-

ceived as boundary forming may be perceptually separated by the introduction of rests or

significant alterations of rhythm. Boundaries may also be suggested by changes involving

other features like loudness (i.e., dynamic accents), pulse or “tactus”, and metre.

3.2 Auditory Stream Segregation

An important cognitive phenomenon arising from the low-level categorization of acoustic

information in echoic memory is the formation of auditory streams. A detailed discussion of

auditory stream segregation is beyond the scope of this dissertation. However, some un-

derstanding of this fundamental idea is vital to any account of the cognitive roots of music

composition, since the conceptual foundations of many compositional practices arise as a

direct result of the phenomenon of streaming. As discussed in Section 3.1, the formation

of individual auditory percepts in echoic memory supports the identification of forces and

actors in our surrounding environment. In general, these forces and actors, as physical

entities in the real world, maintain a degree of continuity through time. For example, real-

world things do not move instantaneously from one spatial location to another; rather, they

transition continuously between locations, in a generally predictable manner. Thus, when

two successive sounds do come from completely distinct directions, it is likely that they

have two separate causes. Over the course of evolution, the auditory system has become

attuned to the fact that sounds maintain certain statistical regularities through time, and that

these regularities can be used to identify the sources of the sounds themselves. Sources

of harmonic, or pitched sounds, for example, generally have physical properties that con-

strain the specific mixture of frequencies—or spectra—they produce, so that sounds with

dramatically different spectra are also likely to come from different sources. It is a simi-

lar case with the production of sequences of pitched sounds. Voices, for example, do not

transition instantaneously from one pitch to another, but rather transition in a continuous (if

rapid) manner. Over millennia, the auditory system has become sensitive to the fact that

pitch sequences with a consistent register (i.e., with relatively small differences in funda-

mental frequency) are likely to come from the same source. Over time, continuity of spatial

location (“localization”), spectral structure (“timbre”), and pitch have come to be used as au-

ditory cues for building a predictable mental model of the forces and actors in the physical

environment.

57

In music, auditory stream segregation has played a central (if unconscious) role in the

exploration of form and structure. The constraints imposed upon basic formal types like

homophony and polyphony, as well as many techniques in the field of orchestration, can

be understood as direct responses to the subjective experience of auditory streaming,

and in some cases the desire to expand and challenge our experience of it. Huron has

shown [105] that the common voice-leading rules outlined in contemporary harmonic the-

ory texts—i.e., avoidance of voice crossings, avoidance of melodic leaps, avoidance of par-

allel motion, etc.—can be explained as the intuitive optimization of compositional practice

in support of auditory stream segregation. Further work by Cambouropoulos [32] extended

these findings to the field of computational voice-separation. Starting from an interrogation

of how the term “voice” is commonly understood in music theory, Cambouropoulos noted

that single monophonic lines, in many cases, would outnumber perceptual streams, due

to processes of “onset synchrony” (notes occurring at the same time), “co-modulation of

pitch” (in music theory, “parallel” or “similar motion”), and “vertical integration” (the percep-

tual fusion of harmonically related pitches—a phenomenon of grouping). Musical passages

exhibiting all of these properties could lead to the illusory perception of a single musical line

in cases where multiple monophonic voices were actually involved. The most obvious case

is the orchestral practice of “doubling,” where a single line is played by two different in-

struments. When done expertly, doubling can produce a sound quite distinct from that of

either instrument heard in isolation, giving a strong impression that a single—and poten-

tially unfamiliar—instrument is playing. In other contexts, stream segregation can produce

a perceived multiplication of voices, when only a single voice is present. This phenomenon,

referred to as “virtual polyphony” [248], has been exploited extensively in music, often by

introducing unexpected pitch leaps in the context of rapid, isochronous rhythmic values.

An example of virtual polyphony is shown in the excerpt from Bach’s E Major Partita for

violin solo, BWV 1006, in Figure 3.1. Here the close pitch proximity and repetition-based

expectancy produced by the upper figures form one stream, while the slow descending

passage (A4, G]4, F]4) invokes the perception of a separate stream below.

58

virtual voice 1

virtual voice 2

Figure 3.1: An example of “virtual polyphony” in the Preludio from Bach’s E Major Partita
for violin, BWV 1006.

3.3 Short-Term Memory or “Working Memory”

Once echoic memory has categorized acoustic stimuli into basic auditory objects, an im-

mediate interaction with higher-level cognitive processing takes place, through which long-

term memories are said to become “activated” [216, 245]. Significantly, these interactions

between echoic and long-term memory (LTM) appear to be pre-attentive, and have been

shown to be influenced by expert knowledge, so that, for example, trained musicians are

more discriminating of musical sounds in both attentive and non-attentive situations than

non-musicians [118]. The long-term memories activated by echoic memory are not neces-

sarily all brought into conscious awareness in a uniform manner. Rather, those memories

that are more highly activated tend to be more easily retrieved, and are thus considered

to be immediately accessible to conscious attention. This temporary memory store, which

has been supported by associations in LTM and is thus immediately accessible to con-

sciousness, is referred to as short-term memory (STM). Similarly to echoic memory, STM

is quite limited in its storage capacity, but unlike echoic memory, which retains raw auditory

percepts, STM deals primarily with categorized auditory objects. STM is generally consid-

ered to be a memory process (rather than a discrete memory system), which appears to

operate over a number of different types of information, associated with different sensory

modalities. An important property of STM is that it preserves the serial order of experi-

ences in our immediate past, thus helping to build a relatively stable mental representation

of the world (in spite of the fact that our conscious perceptual experience is actually quite

fragmentary and discontinuous). As such, the ability to extract and follow the semantic

59

structure of event sequences, so essential to understanding musical discourse, is quite

unimaginable without the functioning of STM1.

Like echoic memory, there is a limit to the number of unique items STM can store at

any given time. Whether this is truly a “hard-wired” capacity limit, a function of time or

duration, or some side-effect of attention, interference (i.e., with other concurrent informa-

tion), or other cognitive factors, is a topic of continuing debate in the research community.

Nevertheless, experimental and theoretical work suggests that some sort of capacity limit

does appear to exist, though it is more commonly associated with a limit on the number

of “chunks” (see Section 3.4) that can be retained, rather than the number of individual

items [53]. Where STM duration is concerned, the experimental values are generally simi-

lar to the limits of echoic memory, showing decay around 2-5 seconds, but extending to as

long as 10-12 seconds under certain conditions [216]. In order for short-term information

to be retained for longer periods, some form of “rehearsal” is required to keep memories

activated. This rehearsal may involve the conscious, deliberate repetition of items, or it

can be more subtly enacted. For example, the common rhetorical device of emphasizing a

point by repeating its central idea or concept, often through the use of synonymous verbal

structures (i.e., the individual items are different, but the associated ideas are the same),

is a literary/oratorial form of passive rehearsal. In the case of music, this is often achieved

through repetition and imitation, by which composers are able to support a musical idea in

the listener’s memory without the listener necessarily becoming consciously aware of the

rehearsal process.

A more general short-term model referred to as “working memory” (WM) is used to iden-

tify the broader collaboration of echoic memory, STM, and LTM, while adding a separate

processing element required for carrying out cognitive tasks. Perhaps the most popular and

influential model of WM has been proposed by Baddeley [12]. This model includes an exec-

utive controller and two slave systems: the “phonological loop” and the “visuospatial sketch

pad.” The phonological loop itself consists of two parts: a temporary information store and

an articulatory rehearsal process, similar to subvocal speech [13]. The temporary store is

limited not by the number of unique items, but rather by the duration over which any single

item can be stored, so that rehearsal is required to maintain items in the store. However,

because rehearsal is proposed to take place in real-time, items will often be dropped from

memory before the rehearsal is completed. The visuospatial sketchpad was proposed as

1In fact, short-term memory deficits have been shown to be a factor in congenital amusia, an impairment in
the processing musical information [244].

60

a system for dealing with visual information in a way that made an important distinction

between the appearance of objects and the spatial relationships between those objects.

Logie [150] proposed an extension to Baddeley’s original model, which incorporated a “vi-

sual cache” providing a similar function to the temporary store in the phonological loop; i.e.,

allowing visual information to be temporarily stored for rehearsal, manipulation in the visual

imagination, and so on. Similarly, Berz [19] proposed an extension to Baddeley’s model,

which introduced a separate “music memory loop,” potentially attached to the phonological

loop, and allowing for the processing and storage of musical stimuli separate from verbal

and visual information.

3.4 Memory Optimization and “Chunking”

Given the rather modest capacity of STM/WM it seems that some additional mechanism

must support our ability to quickly store and recall relatively long streams of information.

This mechanism, referred to as “chunking,” is a form of compression that collects associ-

ated information into groupings that can be recalled as unified items or concepts. Snyder

gives the example of trying to recall the numeric sequence: 1776148220011984. A naïve,

“brute force” attempt will prove quite challenging, since the information is presented as a

sequence of 16 seemingly random digits. However, once it is realized that the sequence is

actually a series of dates, the information can be “chunked” into only four elements, greatly

reducing the cognitive effort required for storage and recall. In part, this is due to the fact

that dates have a familiar formal structure (i.e., a 4-digit value, generally less than or equal

to the current year), but also because they are often included in still higher-level chunks,

associating information about historical events, personal experiences, and so on. In the do-

main of music, a similar problem is posed by the task of recalling moderately long melodic

passages. The opening theme from Mozart’s 40th symphony, for example, comprises a

20-note sequence. Based on STM capacity alone, it should be quite challenging for a lis-

tener to maintain a mental representation of this structure during listening. However, when

the phenomenon of chunking is combined with the previously discussed notion of grouping

via closure, the cognitive demand of the task is greatly reduced. Taking grouping into ac-

count, this 20-note sequence can be reframed as a series of six melodic chunks: (E[, D,

D), (E[, D, D), (E[, D, D, B[), (B[, A, G), (G, F, E[), (E[, D, C, C). It is worth note that this

particular passage also exploits imitative compositional techniques, further aiding storage

and cognition (i.e., via passive rehearsal), as discussed in Section 3.3.

61

Another important property of chunking is that it is recursive, so that repeated exposure

to information will facilitate the construction of higher-level chunks, as sequences (or col-

lections) of lower-level chunks. This process results in further memory optimization while

also enabling the development of hierarchical knowledge structures. When learning and re-

calling longer musical sequences, chunks are connected together via “cueing”; a process

in which a chunk’s ending becomes the “cue” for another chunk. It is worth noting, how-

ever, that although this process helps support storage and recall, the elements within the

stored chunks become difficult to access individually, without reference to the original se-

quence. Thus elements at the chunk’s “boundary” tend to be easily recalled [25, 216], while

other elements must be recalled by stepping through the original sequence, beginning at

the boundary. For this reason, elements located in the middle of chunks tend to become

difficult to recall without reference to the complete sequence. The structures defined by

chunks, aside from aiding in the storage and recall of sequential information, also provide

a degree of conceptual abstraction. Chunks can be regarded as mental concepts in their

own right, with certain general properties and structural relationships to other chunks, and

often to associated items of declarative knowledge like titles, composers, styles, historic

periods, techniques, and so on.

Language in Music Psychology, Music Theory, and Composition:

Clarifying Terms

As should be clear from the previous discussion, the cognitive process of chunking leads

to the formation of musical concepts, which possess a degree of abstraction. In a certain

sense (and to a certain degree), they can be contemplated independently of time, and

treated as constitutive units in a kind of grammar. These units have been given names in

the musical vernacular like “motive,” “klang,” “phrase,” and so on, and their structural and

relational properties have tempted many theorists to draw analogies between music and

natural language [18, 47, 183, 190]. This association has led to a fairly widespread bor-

rowing of linguistic terms in the field of music psychology, without always taking care to

clarify the musical sense of the meaning. The term “musical surface,” for example, appears

frequently in discussions of the cognition of musical form, but the significance of the term

is not always made clear. As it is generally applied in music, the term is synonymous with

a related idea from linguistics (via Chomsky [?]), and refers simply to the musical sounds

as they are experienced in time (or indeed, as they are performed by a musician, or read

62

from the printed page). Of course, this seems obvious, since sounds are clearly the to-

kens of musical communication. But in the context of Chomskian linguistics such surface

events must be considered in relation to higher levels of so-called “deep” or “background”

structure, as is the case in Schenkerian analysis or the structural formulations of Lerdahl

and Jackendoff’s GTTM [146]. Thus, when a music psychology study highlights a listener’s

ability to extract information from the “musical surface” alone, there is often a connotation

that a significant influence from higher-level cognitive functions is also involved, enabling

the inference of structural features with long-term temporal dependencies; a common ex-

ample is the induction of tonal hierarchy. In this sense, the use of the term, considered for

its special connection to linguistics, carries a meaning that might not be made clear through

the use of more pedestrian language.

In a similar manner, the term “musical parallelism” is often used in place of the sim-

pler, or at least more familiar term, “similarity.” Like the notion of the musical surface, the

term parallelism also comes to music psychology discourse via linguistics; or more pre-

cisely from grammar, language, and rhetoric. In writing and speech, parallelisms are used

to support grammatical or rhetorical structure, improving written (or verbal) communication

and aiding comprehension [22] (i.e., through a form of passive rehearsal in WM, as outlined

above). For example, the mixing of gerunds and infinitives is an error of parallelism that

is considered poor writing style, and leads to confusing statements; e.g., “Like most com-

posers, he enjoys drinking, carousing, and to sleep.” A correct parallel construction would

use only gerunds and would read: “Like most composers, he enjoys drinking, carousing,

and sleeping.” In rhetoric, on the other hand, parallelism refers to the use of structural

and/or semantic repetitions in order to provide emphasis. Quoting Stravinsky: “Cacophony

means bad sound, contraband merchandise, uncoordinated music that will not stand up

under serious criticism” (parallelisms in italics). The important point here is that the paral-

lelism, though grounded in a certain type of similarity, does not require surface similarity;

i.e., the words do not resemble one another. Rather, the similarity is found at a higher,

or more abstract, structural or semantic level. In music, parallelism is difficult to quantify,

as it may be displayed through multiple modalities—e.g., pitch and/or rhythm—the inter-

dependencies of which are not entirely understood. Pitch contour, due to its efficacy for

short-term melodic identification [187], tends to be an effective source of parallelism, but it

is by no means the only such source. It is worth note that Cope’s notion of “unifications”

(Section 2.4.4, p. 42) is in many ways a description of musical parallelism.

63

3.5 Cognitive Modelling

Purwins et al. [193] provide an overview of existing approaches to computer modelling

of music perception and low-level music cognition. Building on this foundation, they go

on to present a number of systems [192] that can be used to explain higher-level music

theoretic concepts like rhythm, beat, musical voice, consonance, and so on. One important

outcome of their survey is its recognition of the need for an overarching theory of how the

different aspects of music cognition—and by extension, the various systems that model

these aspects—combine and interact during the cognitive processing of music.

A number of cognitive theories of musical form can be described as generative—i.e.,

they are both descriptive and prescriptive theories. Lerdahl and Jackendoff’s GTTM [146],

Narmour’s Implication-Realization (I-R) model of melodic perception [175], and Desain’s

(De)Composable Theory of Rhythm [60], are a few examples. These theories are not sys-

tems used to produce music directly, but rather are generative in the Chomskian sense that

they characterize the kind of knowledge an agent must possess in order to understand and

express musical ideas. The formalization of such knowledge in a system can become ex-

traordinarily complex—which may explain why there is, as yet, no direct implementation of

the GTTM. Further, because such models are often grounded primarily in music theoretical

knowledge derived from the analysis of existing musical works, they tend to be character-

ized by exceptions, preferences, and special case rules, added to maximize applicability

and generality in the face of the vast array of subtly differing contexts encountered in actual

music.

3.6 Cognitively-Grounded Music Generation Systems

Although the use of cognitive models for autonomous music generation is relatively rare—

the majority of systems function as tests of specific computational formalisms—a number

of interesting approaches have been explored. We will introduce three systems here.

3.6.1 The IDyOM Model

Wiggins et al. developed their IDyOM (Information Dynamics Of Music) model [242] with

the specific intention of using an empirically validated cognitive model of listening [186] for

the generation of chorale melodies, under the general assumption that “in order to com-

pose music, one normally needs to learn about it by hearing it” [242]. IDyOM is a statistical

64

n-gram model, based on the multiple viewpoint approach of Conklin and Witten [45]. It

operates on two separate time-scales, utilizing a short-term model and a long-term model.

The short-term model builds an incremental statistical representation of event sequences,

as they are encountered during prediction, whereas the long-term model is trained on a cor-

pus of source works, and is intended to represent the statistical regularities demonstrated

by an entire genre [186]. Both models work together in the process of forming predictions.

Features used for the unsupervised training of IDyOM were chosen based on their abil-

ity to maximize predictive success during listening. Composition in IDyOM involves the

extraction of a pitch distribution from the state space of the trained model using stochastic

sampling techniques. Beginning with a set of 7 corpus melodies (which had been excluded

from the training set), 7 novel melodies were generated using 5000 iterations of Metropo-

lis sampling; a process that stochastically replaces the sample melody events with events

from the statistical model. Wiggins et al. are careful to point out that they do not suggest

that such a stochastic sampling process represents human compositional thinking, but sim-

ply that it helps to produce an unbiased sampling from the statistical model2. Evaluation of

IDyOM’s output, by a panel of 16 experts using Amabile’s “Consensual Assessment Tech-

nique” [5], revealed that the model was incapable of consistently generating convincing

chorale melodies [242]. Although there are many possible reasons for the model’s limi-

tations, a number of which are given by the authors (the Metropolis sampling approach,

features selected for training, etc.) [242], the results do throw into question the general

notion that listening alone provides sufficient knowledge for composition. Or, if we accept

this notion, we must question whether a successful model of melodic prediction can gen-

uinely be considered equivalent to a successful model of listening. By deduction, we might

ask whether there is any reason to equate stochastic selection from a model of musical

prediction with the kind of understanding required for composition.

In Figure 3.2 we provide a manual segment/phrase structure analysis of IDyOM’s most

successful chorale melody (as estimated by the listening model). The example reveals

a general weakness of IDyOM’s output in the areas of motivic exploitation and paral-

lelism, and repetition structure; features that strongly characterize the original Bach chorale

melody.

2In this sense IDyOM is not specifically a cognitive model of composition, but rather a cognitive model of
listening. Compositionally, the model suggests that new music is fundamentally a stochastic sampling from a
knowledge representation of previously heard music.

65

 IDyOM System D Melody (base melody: Jesu, meiner Seelen Wonne)

 J.S. Bach Jesu, meiner Seelen Wonne: "Base melody" for IDyOM Generation

a a'

a'' a

b a' b'
c c

c b

+ - + -

+ - + -

2a

2a

a' b' c
+2a'

+2a'

a b c b' d f
(d' ?)

e

(b'' ?)
g e' e' g' d' b' e'

02a -

02a -

Figure 3.2: Comparison of motive and phrase structure in the Bach’s Jesu, meiner See-
len Wonne, and IDyOM’s most successful generated melody using the Bach as a “base
melody.”

3.6.2 The Anticipatory Model of Cont et al.

The “Anticipatory Model of Musical Style Imitation” (AMMSI) of Cont et al. [46] is designed

to model the role of expectation in music, looking specifically at the notion of anticipation.

The authors define anticipation as “the mental realization of possible predicted actions and

their effect on the perception of the world at an instant in time” [46]. Like IDyOM, the model

uses a multiple-viewpoint representation, but rather than storing long-term knowledge in

a statistical n-gram model, it is represented using a pattern-matching data structure and

algorithm called the Factor Oracle (FO) [4]. Because a central focus of AMMSI is to model

musical interaction in an improvisatory context, the FO is an ideal representation, as it

builds its data structure incrementally, in real time. The FO can be traversed in various

ways, by following “links” in the data structure, and can be rapidly searched for a context

66

matching that of an input musical sequence. The FO is the generative formalism used in

the well-known “Omax” system for MaxMSP, by Assayag et al. [9].

AMMSI uses multiple, situated agents whose environment is represented either by live

musical input, an incrementally presented score, or feedback from its own output. The

system learns to adapt to its environment using a Reinforcement Learning (RL) system. RL

is grounded in the notion of assigning reward for successful interactions between an agent

and its environment, and the goal of the RL learner is to optimize its received reward over

time. In AMMSI, reward is associated with the appropriate estimation of the agent’s musical

context (i.e., the environment), and the generation of appropriate musical materials, given

that context. Reinforcement signals in AMMSI are used to guide the system toward states

in the memory model (the set of FOs) that are most productive for learning and generation.

Cont et al. suggest that this represents a form of attention direction, focusing the agent’s

processing on the most appropriate locations in memory. However, because the FO, as

a generative model, is prone to falling into repetitive loops if a given memory location is

directly supported by current input, AMMSI also employs a suppressive reward scheme

when responding to feedback input. A particularly interesting aspect of AMMSI’s design is

its use of a competitive and collaborative approach to model selection. Similar to Conklin

and Witten’s earlier work with multiple-viewpoint context models, AMMSI uses predictive

success to guide the selection of agents and FOs during learning, assigning the RL reward

signal to the best performing agent.

Due in part to the generative power of the FO, which stores all musical information in

its training corpus, in its original sequential order (and is thus arguably a more strictly re-

combinant system than IDyOM), AMMSI is a fairly successful generative model. Analyzing

the sample generation provided [46] we noted that the system demonstrates a degree of

motivic exploitation, and also an ability to reuse phrase-level structures. Somewhat un-

characteristic syncopations do appear in the output, but are generally short-lived, returning

to more characteristic rhythmic patterns with acceptable regularity. It is worth noting, how-

ever, that AMMSI does not specifically attempt to model melodic composition, but rather to

model improvisation. This is by no means the same task, as melodic composition gener-

ally involves motivic development and the promotion of closure (see Section 3.1, p. 3.1),

whereas improvisation is, broadly speaking, focused more on elaboration and exploration

of a musical space.

67

3.6.3 A Deep Learning Approach

Another area of active investigation is the use of so-called “deep learning,” and “deep belief

networks” (DBNs) for music classification, prediction, and generation (for an overview of

deep learning, see [16]). Deep learning systems are connectionist models that attempt

to construct multi-level, hierachical representations of a given input space. The goal is

to untangle the many complex, non-linear relationships between simple features of the

sensory environment and the vast number of combinations of those features that constitute

a world model. Deep learning proposes a method to discover, for example, the complex

combinations of simple shapes that combine in cognition to form a face, or the relationships

between individual sounds, notes, melodies, and so on that combine to form high-level

abstractions like “song,” “symphony,” or “Mahler’s 5th.” Jeff Hawkins’ Hierarchical Temporal

Memory model [98], which served as the basis for our earlier work on the Hierarchical

Sequential Memory for Music [161], was essentially a deep learning model, though the

implementation used a novel Bayesian approach. Although deep learning does not seek to

model individual cognitive functions (i.e., from the psychology literature; perception, STM,

LTM, declarative knowledge, and so on), dealing rather with relatively high-level modelling

of neocortical functions, its direct connection to neuroscience makes it highly relevant to

the current discussion.

As yet, there are only a few examples of the application of deep learning to music

generation. One example is the generative model of Bickerman et al. [20], which uses

a DBN for learning and generation of Jazz melodies. It should be noted, however, that

this model is designed to follow a given harmonic outline, and is thus perhaps more closely

related to Allan’s work with HMMs [3] for chorale melody harmonization (see Section 2.4.1).

Obviously, the model of Bickerman et al. reverses the terms, generating a melody for a

given harmonic sequence (as is common practice in Jazz music), but both situations are

clearly different to the case of autonomous melodic generation.

The model of Bickerman et al. uses a set of interconnected Restricted Boltzmann Ma-

chines (RBMs) to learn hierarchical structure from a training corpus of 4-bar Jazz “licks,”

set to a cycling 4-chord progression: ii-V-I-VI7. RBMs are simple two-layer neural network

models, with a single visible layer and a single hidden layer. A more detailed description of

RBMs can be found in Bengio’s survey [16]. DBNs are built by associating the hidden layer

neurons of one RBM with the visible layer neurons of another, resulting in multi-layered ar-

chitectures in which the hidden layer representation at one level becomes the input feature

vector at another. By interconnecting RBMs in this way, the DBN can learn to estimate

68

features of features, building complex hierarchical representations. Bickerman et al. used

a 30-member bit vector to represent both the melodic and harmonic structure of the inputs

to the DBN. Vectors were produced from the source music at a predetermined temporal

resolution of 12 notes/vectors per beat, and data was passed to the DBN for training us-

ing a 4-bar sliding window, incremented one beat at a time. Prior to generation, the DBN

was seeded with a sequence of vectors representing the desired harmonic progression

and randomly assigned melody bits. The chord bits were clamped, so that they would not

be altered by the stochastic nature of the RBMs. For melody generation, a similar sliding

window approach was used, and melodic bits were generated by the system for each con-

secutive beat. After generating a beat, its melody bits were clamped in order to provide a

stable melodic input representation as a context for the continued generation.

Bickerman et al. reported that the model was able to follow the chord progression ac-

curately, while generating well-formed melodic patterns, and also that it performed similarly

at different transpositions when trained on transposed inputs (i.e., the representation it-

self was not transpositionally invariant). Unfortunately, there is no detailed discussion of

melodic structure, and the limited number of example generations provided make it diffi-

cult to determine whether higher-level melodic form was generated. On the other hand,

it is also unclear to what degree higher-level melodic structure was demonstrated by the

training set. The authors do note that a grammar-based melodic generator provided with

the “Impro-Visor” Jazz education tool [114] (used during evaluation) generated subjectively

superior output to the DBN model.

3.7 Integrated Cognitive Architectures

The design of Integrated Cognitive Architectures (ICAs) focuses on modelling intelligent

behaviour at an architectural level. The field dates back to the early years of Artificial Intel-

ligence (AI) research, and can generally be distinguished from the larger field of AI expert

systems by its emphasis on modelling domain-general intelligence. Though studies inves-

tigating domain-specific performance of ICAs like ACT-R, SOAR, Icarus, SASE, Cerebus,

and others, are common, the general goal of such architectures is to model intelligence

without the requirement of task-specific knowledge and/or heuristics, which should be ac-

quired by the agent through perception and action.

As Vernon points out in his overview of cognitive systems [235], the notion of cognition

proposed by ICAs is fundamentally embodied, drawing on functions of perception, action,

69

deliberation, and motivation, and is generally opposed to more insular conceptions of cogni-

tion as a purely mental process of abstract reasoning. However, although all ICAs embrace

this notion of embodiment as situated perception and action, there exist two fundamentally

different views on the nature of an intelligent agent’s relationship to its environment. Ac-

cording to Vernon, the cognitivist view proposes that the world has a concrete objective

reality that is fundamentally logical, and can be accurately expressed through a symbol

system. Thus, although cognitivist agents are situated, due to their positivist underpin-

nings they do not, in principle, need to be embodied. Their representational systems are

assumed to provide a reliable interface with the world, and therefore interaction with the

representation alone may suffice for generating intelligent behaviour [235]. The emergent

view, on the other hand, makes no assumptions about the objective reality of the outside

world, and does not assume that it can be expressed through a symbol system. Represen-

tations therefore are not assumed to have any correspondence with objects in the environ-

ment, and are only interpretable inasmuch as they give rise to behavioural responses in the

agent. With no external symbol system to “interpret,” emergent agents must necessarily

be embodied, since there is likewise no internal representational system to be operated

upon—or at least no representational system with direct correspondences to items in the

environment. Emergent cognitive systems are thus dynamic and self-organizing, and must

generally be understood through their behaviour alone, since examination of their internal

state may reveal little about their knowledge [235].

Another important aspect of cognition is robustness. A cognitive system must respond

to unexpected conditions in an appropriate way, and should also learn to anticipate and

avoid such situations in future. Clearly this implies some form of learning, but on a more

subtle level it also suggests that learning should not be exclusively “declarative” (i.e., de-

scribing knowledge “about” things), but should also include implicit knowledge acquired

through interaction with the environment (e.g., object avoidance and navigation), as well

as procedural knowledge of how to achieve certain goals. Generally speaking, “explicit,”

declarative knowledge captures an agent’s intentional, goal-directed learning about a given

subject or context. Implicit knowledge, on the other hand, consists of knowledge or skills ac-

quired unintentionally while carrying out specific tasks [130]. ICAs tend to represent such

explicit and implicit forms of knowledge separately, as in the Clarion architecture [222],

which conceptualizes them on two different “levels.” Clarion is interesting in this regard, as

the top level, which deals with explicit, declarative knowledge, is fundamentally cognitivist

in nature. That is, it represents knowledge symbolically, thus ensuring that such knowledge

70

remains accessible to external analysis. The lower, implicit level, on the other hand, is im-

plemented using a connectionist approach [84], and is thus fundamentally emergent and

inaccessible to external analysis [222].

As implied by the term “integrated,” ICAs are defined by the interaction of a set of

modules, each responsible for carrying out certain tasks, or handling certain capabilities

of the agent. Most ICAs have modules for handling perception, planning, deliberation, and

action, and also data structures representing different types of memory; short-term memory

(STM), long-term memory (LTM), and procedural memory. The ACT-R architecture, for

example, while lacking a specific short-term or working memory “module,” represents short-

term, task-specific knowledge through a series of “buffers,” responsible for storing relevant

data. Information is drawn from long-term memory into the short-term buffers through a

process of “activation,” in which perceptual input is matched against representations stored

in LTM [7, 142]. Any task-relevant knowledge found in LTM is moved into the short-term

buffers, where it can be applied to performing specific tasks. Such tasks are treated as

“goals” of the system, and are represented as declarative “chunks” in memory. Additional

information required for the task, that was not found in LTM, is learned by the system and

associated with its implicit knowledge of the perceptual/environmental context of the task,

and with the explicit knowledge used in completing the task. Thus, when encountering the

situation again in future, the system may draw directly on information previously applied to

achieving the goal.

Unlike the ICAs introduced above, MusiCog does not attempt to model domain-general

cognition. Rather, it uses the underlying theoretical approach of ICA design to integrate

previous ideas from the fields of cognitive psychology, music perception and cognition,

musical knowledge representation, and generative music, in the hope of gaining a better

understanding the of computational modelling of human music composition. The following

chapter will present MusiCog in detail.

71

Chapter 4

MusiCog: An Integrated Architecture

We now introduce MusiCog, an integrated cognitive architecture for symbolic music learn-

ing and melodic generation. The development of MusiCog has been motivated by our

desire to bring together research in music perception and cognition, musical knowledge

representation, and generative music, for the creation of an autonomous musical agent. In

its current state of development, MusiCog focuses only on the acquisition of musical knowl-

edge that has been experimentally demonstrated to be accessible to musically untrained

listeners; we do not explicitly model music theoretical or compositional knowledge. For this

reason, we consider melodic generation in MusiCog to be “musically naïve”; i.e., drawing

as much as possible on knowledge acquired through listening only, and not on any explicit

representation or formalization of compositional thought. To the extent that familiar music

informs our capacity to conceive of new music, MusiCog’s melodic output can be consid-

ered a form of musical style imitation. Although style imitation is a well established field

[46, 51, 54, 73, 180], an adequate definition is conspicuously absent in the literature. We

propose the following:

Given a style S, a style imitation system aims to generate pieces that would be

classified as S by an unbiased observer.

Once again, however, it is important to note that we did not set out to create an optimal style

imitation system with MusiCog. Rather, we sought to investigate the underlying hypothesis

that, by integrating ideas from music psychology and the cognitive modelling of music,

musical style imitation might arise as an implicit form of behaviour.

Just as the integrated cognitive architectures discussed in Section 3.7 are modular in

design, so too is MusiCog divided into a set of processing modules, which work in conjunc-

tion when carrying out perceptual/cognitive tasks. An overview of the MusiCog design is

72

shown in Figure 4.1. Before entering into a detailed description of the various algorithms,

we will introduce the main processing modules and outline the music descriptors used for

input. MusiCog operates on MIDI information, and symbolic representations (Section 4.1)

are assumed throughout this discussion.

MusiCog is fundamentally a symbolic cognitivist model. However, it should be noted

that we do not maintain a cognitivist conception of cognition. Rather, we take a symbolic

approach because it offers a relatively straightforward way of modelling concepts from the

experimental literature in music perception and cognition, and also has the advantage of

being easily accessible to analysis. This is in stark contrast to the approach taken in our

previous work on the HSMM [161], for example, which had the disadvantages of high com-

plexity and inaccessibility, making it extremely difficult to interpret the states of the system.

Working with a symbolic system, we are able to trace the relationship between perception,

learning, and action; in this case, the generation of musical output. Since our primary

goal was to produce a musical agent amenable to analysis during both perception and

generation, our symbolic cognitivist approach was pragmatic rather than theoretical.

Working Memory (WM)Perception
Module (PE)

Chunking

MusiCog
Learning &
Inference

Input MIDI
note data

(polyphonic)

 Output MIDI
note data

(monophonic)

Streaming &
Segmentation

Production
Module (PM)

Long-Term
Memory (LTM)
(Cueing Model)

Hierarchical Structure
Learning

Generation

L1 -
0 +

-

L2 0 0 0 +

Figure 4.1: An overview of the MusiCog architecture.

The architecture of MusiCog is shown in Figure 4.1, and consists of a set of four pro-

cessing modules:

73

• Perception Module (PE): Responsible for accepting musical input, separating poly-

phonic material into streams (Section 3.2), and performing low-level melodic seg-

mentation (Section 3.1, p. 56) on each stream. In the PE, streams are considered

analogous to the music theoretical notion of “voices” (i.e., independent monophonic

parts1).

• Working Memory (WM): A temporary memory for musical input, responsible for

chunking familiar patterns (Section 3.4) and maintaining the set of active streams.

Items are retained in WM as a function of the musical structure of the input in combi-

nation with several cognitive factors, as discussed in detail Section 4.2.2.

• Long-Term Memory (LTM): A Long-Term Memory representing the hierarchical

structure of monophonic musical voices. The LTM is backed by our “Cueing Model”

(CM) algorithm and data structure [160], which can learn from multiple, concurrent

voices, and can create associations between the different voices in polyphonic tex-

tures, thus building an implicit representation of harmony. Formally, it is a mixed graph

in which the directed edges represent sequential event transitions and the undirected

edges represent associations between concurrent/synchronous events. During train-

ing the CM learns a set of directed subgraphs, each of which represents a different

level of musical structure, similar to “time-span reductions” in the GTTM [146]. A

detailed description of the CM is given in Section 4.2.3.

• Production Module (PM): Responsible for the generation of musical output. Dur-

ing generation the PM draws on the corpus-based knowledge of musical structure

learned by the CM, and also on material held in WM, as described in Section 4.2.4.

Output from the PM is directed back to the PE as input, forming a feedback loop,

which facilitates self-evaluation and leads to complex, non-deterministic behaviour.

4.1 Music Descriptors

MusiCog takes either live MIDI performance data or standard MIDI files as input. At the

time of writing there is no tempo/beat-tracking function, so events are assumed to be time-

stamped on input with reference to an external beat. When processing MIDI files, the beat

1Note that this is in contrast to Cambouropoulos’ model, as discussed in Section 3.2. The implementation
of a variant of his approach is of interest for a future version of MusiCog (see Section 8.1).

74

implicit in the specification of MIDI ticks is used. As discussed in Section 4.2.3, input de-

scriptors are divided into three main categories, corresponding to three degrees of musical

specificity: Schema, Invariance2, and Identity. Schema descriptors represent general qual-

itative changes that can be associated with a metaphorical sense of direction. A common

example, used for melodic pitch sequences, is the notion of “melodic contour”, which is

commonly described as ascending (+), descending (-), or repeating (0). The Invariance

category employs descriptors that are more specific than the Schema category, but re-

tain a degree of generality by remaining invariant under some specific transformation. For

example, melodic pitch intervals are transpositionally invariant, just as beat-based times-

tamps are invariant to changes in tempo. Finally, the most specific category of Identity

descriptors, represents the absolute, non-invariant values of events—e.g., MIDI note num-

bers, absolute timestamps (i.e., from the beginning of the work), Inter-Onset Intervals in

ms (IOI—time between consecutive onsets), and so on.

MusiCog represents pitch Identity using the conventional descriptor of MIDI note num-

bers (C4 = 60 = middle-C). The pitch Invariance descriptor is the pitch interval (difference

in semitones), and pitch contour (+, 0, -) is used for the Schema representation. Note in-

puts are timestamped using real-numbered beat values, such that whole numbers indicate

even beats and fractional values indicate offsets within the beat. We use the IOI in ms to

represent rhythmic Identity values. For rhythmic contour (Schema), we use the notation de-

scribed above, corresponding to rhythmic lengthening (+), repetition (0), and shortening (-),

and for rhythmic Invariance we use a novel descriptor called the “Beat Entry-Delay” (bED).

The bED indicates the duration in beats of an onset from the local beat of the preceding

onset. Figure 4.2 gives an example of the bED representation of a simple rhythmic pattern.

In the figure, the local beat can be seen as a window, grouping together events with onsets

occurring within the span of a single beat. Once an event has been processed within the

current window, the beat associated with that window becomes the frame of reference for

coming events, until a new beat arrives. When bED = 1, this indicates that the event falls

directly on the beat3 (events 1, 5, and 6), whereas a fractional bED value indicates an off-

set position within the beat. For event 3, bED = 1.5 indicates that the event occurs halfway

through the beat, but that the beat of the last onset occurred one beat earlier—i.e., the

2This term is used not in its computational sense, but rather in its musical sense, indicating values that
are invariant under some specific transformation (e.g., the invariance of melodic interval content under pitch
transposition).

3We use the value 1 to indicate on-beat events so that the bED value can be added directly to the previous
(truncated) onset time; e.g., b2.5c+1.0 = 3.0. An on-beat value of zero would prohibit such simple decoding.

75

referent event occurred in the previous window. Since event 3 establishes a new window,

event 4 is then measured in relation to this new window, resulting in bED = 0.75.

1 2 3 4 5 6
1.0 0.5 1.5 0.75 1.0 1.0

1 2 3 4 5 6
1.0 0.5 1.5 0.75 1.0 1.0

& 44
Violin

Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ œ œ

&6 œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Œ œ œ

&
10

œ œ œ œ œ œ œ œ œ œ œ œ œ œ

&12 Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

*

& 44
Violin

Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ œ œ

&6 œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Œ œ œ

&
10

œ œ œ œ œ œ œ œ œ œ œ œ œ œ

&12 Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

*

1 2 3 4 5 6
1.0 0.5 1.5 0.75 1.0 1.0

& 44
Violin

Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ œ œ

&6 œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Œ œ œ

&
10

œ œ œ œ œ œ œ œ œ œ œ œ œ œ

&12 Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

*

& 44
Violin

Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ œ œ

&6 œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Œ œ œ

&
10

œ œ œ œ œ œ œ œ œ œ œ œ œ œ

&12 Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

*
1 1.5 2.5 2.75 3 4

1	
 0.5 1.5 0.75 1 1

Event

Timestamp

Local beat

t1 t2 t3 t4 t5 t6

bEDt

Figure 4.2: An example of the Beat Entry-Delay music descriptor.

Thus, for fractional values where bED > 1 (e.g., event 3) the integer part indicates the

number of beats since the last detected beat/window. The function for deriving bEDt from

two consecutive beat-based timestamps (nt−1,nt) is given in Equation 4.1. In a generative

context, when given the previous timestamp nt−1 and bEDt , a new timestamp nt can be

calculated using Equation 4.2.

bEDt(nt−1,nt) = (nt−bntc)+(bntc−bnt−1c) (4.1)

nt(nt−1,bEDt) =

{
bnt−1c+bEDt +1 if bEDt ≤ (nt−1−bnt−1c)
bnt−1c+bEDt otherwise

(4.2)

Since the bED representation encodes onset times with reference to a local beat, it is

particularly convenient for generation, as it allows generated rhythms to automatically align

with the beat structure of the new musical context. This can be seen in Figure 4.3, where

the bED pattern (1.5,0.75,1,1) from Figure 4.2 is rendered as a continuation of an altered

rhythmic introduction (we have added a pitch contour for emphasis). It will be noticed

that the recontextualized pattern derived from the bED retains its original relation to the

beat, whereas the IOI-derived pattern (1,0.25,0.25,1), encoded from the same original

sequence and rendered as a continuation of the same rhythmic introduction, does not.

Although the IOI-based rhythm retains the time interval ratios from the original sequence

(i.e., in its internal structure), the continuation ignores the rhythmic shortening introduced

by the altered context, resulting in a highly syncopated overall pattern—a pattern that has

76

actually been uniformly shifted one sixteenth-note back in time. In a generative context,

such shifting can be awkward, since it is often carried over multiple measures.

11

13

15

25

C
C

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& ∑

& ∑

& ∑ ∑

& ∑ ∑

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

œ œ ™ œ œ œ œ œ

œ œ ™ œ œ œ œ œ ™ œ œ
1.0 0.25 0.25(0 0.25) 1.0

1.5 0.75 1.0(1 0.25) 1.0

IOI

Altered Context

bED

Figure 4.3: The Beat ED retains the relationship between rhythm and beat, whereas the
IOI does not.

It is worth noting that the bED will also faithfully reproduce syncopated patterns in

novel contexts, as shown in Figure 4.44. Because pulse and metre are tightly bound to pro-

cesses of rhythm classification in listeners [61], style-based generation that inadvertently

shifts from straight rhythmic patterns to highly syncopated patterns (as in the IOI pattern

in Figure 4.3), or vice versa (as in the IOI pattern in Figure 4.4), runs the risk of violating

the rhythmic tendencies of the musical style being modelled. Because the bED represents

relative durations in terms of an established beat, we believe it reflects the internal state of

listeners more accurately than conventional IOI-based representations. To the best of our

knowledge, this specific approach to rhythmic representation is unique in the literature.

Rhythmic Quantization

Because time is a continuous musical attribute and MusiCog is a discrete symbolic model, it

is useful to limit the potential number of rhythmic representations using some form of quan-

tization. In MusiCog, all rhythmic values are quantized using a fuzzy clustering method, in

which each cluster represents a unique rhythmic value. The quantization function begins

with a default set of clusters, representing common rhythmic values, as might be expressed

4Note that when deriving the new timestamp for the first generated bED in this example, case 1 from
Equation 4.2 is used since 0.25≤ (0.75−0)

77

11

13

15

C
C
C

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& ∑ ∑
& ∑

& ∑
& ∑ ∑
& ∑
& ∑ ∑

& ∑

& ∑

& ∑

œ œ ™ œ œ œ œ œ

œ œ ™ œ œ œ œ œ ™ œ œ
œ œ œ œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ œ œ œ

œ ™ œ œ œ œ œ œ œ œ œ

œ ™ œ œ œ œ œ œ œ œ ™J ≈

11

13

15

C
C
C

& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
& ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

& ∑ ∑
& ∑

& ∑
& ∑ ∑
& ∑
& ∑ ∑

& ∑

& ∑

& ∑

œ œ ™ œ œ œ œ œ

œ œ ™ œ œ œ œ œ ™ œ œ
œ œ œ œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ œ œ œ

œ ™ œ œ œ œ œ œ œ œ œ

œ ™ œ œ œ œ œ œ œ œ ™J ≈

0.25 0.5(0 0.25 0.25 0.25 0.25) 0.5

0.25 0.75 1.25(1 0.25 0.5 0.75 1) 0.5 0.75 1

IOI 0.25 0.25 0.25

0.25 0.5 0.5 0.25 0.25 0.25(0 0.75)IOI

(1 0.75) 0.25 0.75 1.25 0.5 0.75 1

Altered Context

bED

bED

Figure 4.4: The bED also retains correct beat relationships in syncopated contexts.

by music notation5. When a rhythmic input is received, the quantization algorithm (Algo-

rithm 4.1) iterates over the set of stored clusters C and calculates the (triangular) fuzzy

membership R of input r, given each stored cluster value. We use a triangular window to

indicate that, in rhythmic notation, there a conceptually “ideal” rhythmic value, represented

by the peak of the triangle. The cluster Cq that best classifies the input is identified as the

index with the maximum membership in R (i.e., argmax(R)). If this membership exceeds

a given threshold value λ , the input is quantized to the value of the stored cluster Cq, oth-

erwise, a new cluster is created for the input value r. The RHYTHMICREPRESENTATION

function gets the appropriate rhythmic value from element ε (i.e., so that the descriptor can

be classified by the clusters stored in C). The fuzzy membership of r in C is calculated on

line 5, where r is the input value, c is a stored cluster centre, and υ is a parameter con-

trolling the width of the membership window. Note that the membership function adjusts

the width of the window proportionately to the value of r so that smaller rhythmic values

receive a narrow window and larger rhythmic values a wider window. Rhythmic values that

are not tempo invariant, like the IOI in milliseconds, are recalculated using the quantized

values (e.g., the IOI in ms, if needed, is recalculated from the IOI in beats, given the current

tempo).

5The rhythmic values used are: {1.0, 2.0, 0.5, 4.0, 0.25, 0.333334, 1.5, 0.75, 1.25, 0.666667, 1.333334,
1.666667, 3.0, 0.125, 0.2, 0.4, 0.6, 0.8, 0.375, 0.166667}. These values were chosen to provide relevant
quantization points for both bED values and beat-based IOIs

78

Algorithm 4.1 Rhythmic quantization
1: function QUANTIZEINPUT(ε,C) // Quantize input ε in set of clusters C
2: r← RHYTHMICREPRESENTATION(ε) // Get rhythmic value from ε

3: R← /0
4: for i← 1, |C| do

5: Ri← 1−
∣∣∣ r−c

c
υ

∣∣∣ // Fuzzy membership function
6: if Ri < 0 then Ri← 0
7: end if
8: end for
9: q← argmax(R)

10: if Rq > λ then
11: Cq←Cq +

r−Cq
2 // Shift centroid slightly toward r

12: r←Cq
13: else
14: C|C|+1← r // Add r to the set of clusters
15: end if
16: return r
17: end function

4.2 Processing Modules

We will now describe in detail the data structures and algorithms used for processing within

each of MusiCog’s main modules.

4.2.1 Perception Module (PE)

The PE is the first module in MusiCog’s processing chain and is responsible for accept-

ing musical input, separating polyphonic material into streams, and performing low-level

melodic segmentation on each stream. It operates using three primary data structures:

• Element ε : The basic atomic type handled by MusiCog. Elements can be individual

events (i.e., musical notes) or chunks (Section 4.2.2). Each unique element occupies

a single unit of WM memory capacity. For convenience, we use dot notation to identify

properties of individual musical events; e.g., MIDI note = ε .pitch, onset time = ε .onset.

• Group Gt = {εt : εt ∈ Σ}: The set of attacking or sustaining musical events at the

current time step. The events in a group are unique elements from a finite alphabet

Σ, containing the set of MIDI pitches and quantized rhythmic values.

79

• Stream S = {εk, ...,ε1}: An ordered collection of elements, stored in the WM. A

stream is implemented as a FIFO structure, so that εk is the oldest element. The

set of all currently active (non-empty) streams is notated as Ωt . Each stream main-

tains its own state Sδt , as described on page 99 below.

The functions of polyphonic voice-separation (or stream segregation) and melodic seg-

mentation are closely related. Although voice-separation must logically be performed first,

the same underlying notion of continuity or cohesiveness informs both processes. Gen-

erally speaking, voice-separation involves assigning each event in group Gt to a separate

stream, such that the melodic cohesiveness of each stream is maximized. This process is

often conceptualized in terms of voice-leading cost, where cost is inversely proportional to

cohesiveness; i.e., low cohesiveness = high cost [36, 111, 113, 116, 156]. Melodic seg-

mentation, on the other hand, occurs when changes in pitch or rhythm reduce this sense

of cohesiveness, leading to the formation of perceptual boundaries. The task of the PE is

thus to find the set of stream/event pairings with the lowest total cost, and to locate points

of decreased cohesiveness in each stream and label these as segment boundaries.

At initialization, the PE contains an empty set of streams Ωt = /0. When MIDI inputs are

received, they are collected into a new group Gt such that the onsets of all events fall within

the same temporal window (40 ms in our implementation). With no active streams, the PE

creates a new stream for each event. For future inputs, when |Ωt | > 0, events in Gt are

assigned to streams using a cost-based voice-separation algorithm similar to other gestalt-

based approaches [36, 111, 156]. In general, such algorithms attempt to minimize the total

voice-leading cost across all streams. The PE’s cost calculation includes measures for 1)

pitch proximity, 2) rhythmic proximity, 3) melodic well-formedness, 4) predictability, and 5)

the avoidance of voice-crossings. We consider voice-leading cost in terms of the melodic

“cohesiveness” caused by assigning a given input εt to a particular stream S, so that the

cost of a particular voice assignment is proportional to the complement of its cohesion. The

entire process of calculating the voice-leading cost for an input event εcost
t and the melodic

cohesion associated with that event Φεt , is given in Algorithm 4.2. We will describe the

various steps in the algorithm with a focus on the music psychological principles underlying

each calculation.

1) Pitch proximity Pρ is a [0,1] value indicating the distance between adjacent MIDI

notes. It is calculated as a function of the melodic interval between consecutive pitches

80

Pt−1 and Pt . The function used for the non-zero case (line 12) is designed to assign approx-

imately equal values to step-wise motions, and to decrease more rapidly for leaps greater

than a major 3rd.

2) Rhythmic proximity Rρ (line 16) is also a [0,1] value based on a non-linear scaling

of the IOI in seconds. The function is designed to fall to zero for IOI values greater than 5

seconds in duration, in order to approximate the influence of short-term memory retention

times on low-level rhythmic grouping [216].

3) Melodic well-formedness is conceptualized in terms of expectancy, and com-

bines pitch and rhythm factors. Pitch expectancy is already partially accounted for

by the pitch proximity calculation, since stepwise motions tend to be more expected

than leaps [216]. However, we also include a more specific pitch expectancy χP cal-

culation, based on Huron’s general observation that melodic patterns tend to grav-

itate toward the mean pitch of the melodic context. Huron’s model [108] can be

seen as a generalization of Narmour’s notion of “post-skip reversal” [175]; the ten-

dency for leaps of the “implicative interval” (i.e., the interval preceding the current in-

terval) to be followed by reciprocal movement in the opposite direction. However,

Huron’s approach has the advantage of generalizing to cases where leaps are fol-

lowed by continuations, as long as the continuation moves closer to the mean. We

implement this form of expectancy in the PE’s RETURNTOMEAN function (line 20),

which takes the implicative interval It−1, the current interval It , and the running mean pitch

P as arguments. If interval It moves the input pitch closer to the mean pitch P, and It−1

is greater than 2 (i.e., larger than a major 2nd), the pitch expectancy χP is calculated as a

function of the size of the implicative interval (otherwise χP = 0).

81

Algorithm 4.2 Calculate melodic voice-leading cost and cohesion

1: procedure MELODICCOHESION(S,εt) // Estimate cost and cohesiveness of
extending stream S with event εt

2: εt−1← GETMOSTRECENTEVENT(S) // Get most recent event in stream
3: a← 0.82
4: b← 0.18
5: I← εt .pitch− εt−1.pitch // Get melodic interval
6: P← UPDATEMEANPITCH(S,εt) // Calculate running mean pitch
7: IOI← εt .onset− εt−1.onset // Get IOI in seconds
8: OOI← εt .onset− εt−1.offset // Get OOI in seconds
9: if I = 0 then

10: ρP← 1
11: else
12: ρP← 1− 1

1+6e−
x
2+2 // Pitch proximity calculation

13: end if
14: ρR← 0
15: if 0 < IOI < 5 then
16: ρR← 1− 1

1+IOI−
e
2

// Rhythmic proximity calculation

17: else
18: ρR← 0
19: end if
20: χP← RETURNTOMEAN(It−1, It ,P) // Pitch expectancy function
21: χR← DESAINEXPECTANCY(IOIt−1, IOIt) // Rhythmic expectancy function
22: ΦP← fmax (

ρP,χ P)
23: ΦR← fmax (

ρR,χ R) // Combine proximity and ex-
pectancy to estimate cohesion

24: ΦPR← fmin
(

ΦP,Φ R
)

// Combine pitch and rhythm cohesion
25: ν ← 1
26: if 0 < OOI < 2 then
27: ν ← 1−0.77× log10(OOI) // Calculate loss of cohesion over rest
28: else
29: ν ← 0 // Rests ≥ 2 s eliminate cohesion
30: end if
31: ΦPR′←Φ PR×ν // Scale cohesion for duration of rest
32: εcost

t ← 1−Φ PR′ // Calculate base cost

33: εcost
t ← a

(
εcost

t

)
+b
(

1− ε
pred
t

)
// Include predictability cost

34: x←VOICECROSSINGCOST(Ω,εt) // Calculate voice-crossing cost
35: εcost

t ← fmin
(
εcost

t ,x
)

// Final cost includes voice-crossing cost

36: Φεt ← fmax

(
1− εcost

t ,εpred
t

)
// Event cohesion combines complement

of final cost with predictability
37: end procedure

82

For the rhythmic aspect of melodic well-formedness, the DESAINEXPECTANCY function

(line 21) calculates the rhythmic expectancy χR using the “basic expectancy” measure from

Desain’s “(De)composable Theory of Rhythm” [60]. Desain’s theory models the general

observation that listeners tend to expect rhythmic continuations that form low-integer ratio

relationships with the most recent IOI. His “basic expectancy” calculation estimates the

expectancy of the current IOI ratio rt as a sum of gaussians centred around a series of

low-integer ratios
{

1
n , . . . ,

1
2 ,1,2, . . . ,n

}
[60] (n = 7 in our implementation). The adaptation

used in the PE is shown in Equation 4.3, where χR is the estimated expectancy, and j is a

control on the width of the gaussians (j = 5 in our implementation). The function is plotted

in Figure 4.5.

rt =
IOIt

IOIt−1

χR =

7

∑
k=1

1
k

e
(

jk− j 1
rt

)2

+
7

∑
k=1

1
k

e(jk− jrt)2

2

(4.3)

1 2 3 4 5 6 7 80

1

IOI Ratio

Ex
pe

ct
an

cy

Figure 4.5: The rhythmic expectancy function, based on Desain’s “basic expectancy” from
his “(De)composable Theory of Rhythm.”

It is difficult to quantify the interaction of proximity and expectancy values as they im-

pact on the perception of melodic cohesiveness. In some cases proximity simply obviates

expectancy, as can happen in rapid melodic passages, which tend to be grouped primarily

83

by proximity. In other cases, however, sudden changes of IOI can promote the perception

of melodic boundaries even in the presence of relatively close proximity relations. For this

reason, we use the combination function shown in Equation 4.4 when combining proximity

and expectancy values into a composite “cohesion” value. This function uses the value of

x to scale the value of y, reducing the influence of y in the combination.

a,b ∈ R

x =

{
max(a,b), fmax

min(a,b), fmin

y =

{
min(a,b), fmax

max(a,b), fmin

ς(x) = 1− 1

1+ e−xπ2+π2
2

f (x,y,ς(x)) =
x+ ς(x)y
1+ ς(x)

(4.4)

When applying Equation 4.4 the bias can be weighted toward either the greater or

lesser of a pair of inputs a and b by assigning x and y to either max(a,b) or min(a,b)
accordingly. Thus, in order to reduce the influence of low values on a weighted combination,

the assignment x =max(a,b), y=min(a,b) can be used, so that low values of either a or b
have less impact on the final combination. Conversely, the assignment can be reversed, so

that lower values have a greater influence on the final combination. We will refer to these

two versions of the combination function as fmax(a,b) and fmin(a,b).
Because the pitch expectancy calculation tends to return low values, except in the case

of “post-skip reversals,” we use the fmax(a,b) function when combining pitch proximity and

expectancy values on line 22 of Algorithm 4.2. Dynamically weighting toward the higher

value helps suppress the influence of frequently low expectancy values. Since proximity

also tends to have a strong influence on rhythmic grouping, we again use the fmax(a,b)
function when combining rhythmic proximity and expectancy on line 23. The resulting pitch

and rhythm cohesion values, ΦP and ΦR, serve two purposes: 1) to estimate the percep-

tual cohesiveness of assigning a given element εt to a particular stream S (i.e., for use

during voice-separation), and 2) to identify transitions in a given stream that might indicate

perceptual boundaries (i.e., for melodic segmentation purposes).

In a manner similar to the interaction of proximity and expectancy, the way in which pitch

and rhythm factors jointly influence the cohesiveness of melodic sequences is also complex

84

and highly context sensitive. In many situations rhythm appears to have a stronger influ-

ence [115], while in other cases pitch factors alone should be considered (e.g., in melodic

passages with uniform rhythm). To model the context sensitivity of this relationship, we

combine pitch and rhythm factors (line 24) using the fmin(a,b) version of the combination

function. This is intended to model a simple form of attention; i.e., since high cohesion

implies continuity, low cohesion implies discontinuity, change, or surprise, which should be

attended to. The use of fmin(a,b) allows variations in the lower of the two cohesion values

to exert a stronger influence on the overall cohesion, thus increasing the PE’s sensitivity to

local decreases of cohesiveness in either pitch or rhythm.

Once the pitch and rhythm cohesion values have been combined, we apply a uniform

scaling ν in order to model the presence of rests. The amount of scaling is proportional to

the duration of the rest, as shown on line 27, where OOI is the Offset-Onset Interval (i.e.,

the time between the previous offset and the next onset) in seconds. In our implementa-

tion we scale a logarithmic curve by 0.77 so that scaling will reach zero by the end of a

2-second rest, modelling the strong tendency for silences to demarcate perceptual bound-

aries. Having estimated the cohesion of a transition, we then calculate the base cost εcost
t

as the complement of the cohesion, so that high cohesion equals low cost, as shown on

line 32.

4) In order to account for cognitive “top-down” factors based on familiarity [205], we

also include a predictability measure ε
pred
t , based on the contents of WM. As outlined

in Section 4.2.3, the WM provides a [0,1] estimate of the predictability of a given input,

based on a pattern-matching search over the chunks and segments currently held in WM.

The predictability can be used to bias the cost of voice-leading choices toward patterns that

have been observed previously in the musical context. The base cost is updated to account

for predictability on line 33, as a weighted combination using weights a and b. The weights

in our implementation (a = 0.82, b = 0.18) were determined through experimentation and

may have different optimal values for different corpora.

5) In polyphonic textures, voice-crossings occur whenever two or more voices have

intersecting pitch registers, such that the lower voice transitions to a higher pitch than the

higher voice. Such crossings jeopardize the integrity of independent melodic lines [32],

and are generally avoided in voice-leading and counterpoint. To model this tendency, the

VOICECROSSINGCOST function (line 34) calculates the voice-crossing cost as the number

of crossings a particular voice-leading assignment (S,εt) would incur, divided by the total

number of streams |Ωt |−1. Since avoidance of voice-crossings is generally an important

85

principle of voice-leading, the base cost and the voice-crossing cost are combined using the

fmin(a,b) function so that increases in voice-crossing cost will have a significant influence

on the base cost; this determines our final voice-leading cost. The last line of Algorithm

4.2 updates the cohesion of event εt given stream S as a combination of the complement

of the final cost and the predictability. The fmax(a,b) version of the combination function is

used to prevent low predictability values—a “top-down” factor in MusiCog—from providing

too much influence over the “bottom-up” gestalt principles that are the focus of the PE.

When streams outnumber the events in group Gt (i.e., |Ωt |> |Gt |), voices are assigned

iteratively, starting with the lowest-cost stream/event pairing (S,εt) and removing pairings

after each assignment. However, when |Ωt | ≤ |Gt |, the streams must compete for events.

In this case, we use an heuristic based on the notion of “compromise” to order the iterative

assignment process. For each pairing (S,εt), the compromise is the cost difference be-

tween the two lowest-cost solutions—i.e., the cost penalty that would be incurred by taking

the second-best solution. The best overall solution can be considered the one requiring

the least overall compromise. Therefore, we reverse-sort the streams according to their

calculated compromise values, then iterate over pairings, assigning the lowest-cost pairing

on each iteration (i.e., so that the lowest-cost voice-leading choice is given to the stream

with the highest potential compromise), and removing pairings after each assignment.

Once the events in Gt have been assigned to streams, the PE attempts to locate low-

level segment boundaries for each active stream. Because we are modelling online per-

ception, we cannot rely on the use of a look-ahead function, as is common in melodic

segmentation algorithms (for an overview, see [184]). However, after several attempts with

more complex approaches, we found that by combining the cohesion Φεt with the pre-

dictability ε
pred
t (line 36), an acceptable segmentation could be achieved. This approach is

based on the notion of maintaining cohesion between the stream’s most recent segment S1

and event εt . The segmentation algorithm thus identifies as a boundary β any event that

causes an instantaneous decrease in cohesion. This is shown in Equation 4.5, where σΦ

is the running standard deviation of cohesion, and ϕ is a scaling factor referred to as the

“cohesion tolerance,” which permits small decreases in cohesion to occur before identifying

a boundary. In order to avoid one-note, singleton segments, we also include a routine to

group singletons with either the preceding or following segment, based on minimizing local

differences in cohesion.

βt =

{
1, if Φεt− (σ Φϕ)< Φεt−1

0, otherwise
(4.5)

86

When PE processing is complete, the incoming events from group Gt will be separated

into n > 0 streams, and bottom-up, event-level segment boundaries will be defined. It is

worth noting that, using the dynamic combination function in Equation 4.4, we were able to

remove several parameters from our original PE design [160].

Mode and Tonality Induction

There is one final perceptual phenomenon modelled in the PE, added primarily for use in

the melodic generation process. In order to maximize flexibility and context sensitivity dur-

ing generation, the PM utilizes melodic interval information when determining pitch output.

A potential problem with this approach is that generated intervals may not conform to the

scale structure of the current musical context, leading to undesirable chromatic alterations

in the output. In order to mitigate the effects of this problem, it is useful to include some

form of pitch quantization, so that generated pitches remain in the desired scale/mode. Of

course, in an online system designed to learn musical structure in a style-agnostic manner,

we cannot arbitrarily choose a pitch scale in advance. Rather, we would prefer that the

system respond to the scale and tonality arising in perception (if, indeed, such a percep-

tion arises). For this reason, rather than pre-selecting a target scale as a parameter in

MusiCog, we chose to include a form of scale/mode induction. There are two music psy-

chological principles underlying our approach: 1) that human listeners tend to more easily

induce scales that are constructed from sequences of unequal intervals [229], and 2) that

in many musical styles, frequency of note usage, note duration, and accent structure tend

to emphasize certain pitches over others.

To model this general notion of the scale as a perceptually organized pitch space, we

include two steps; one to estimate the mode, and another to estimate the tonal centre. The

result of these estimations is expressed through a “confidence” rating that indicates the

degree to which a single mode and tonality can be induced from the given musical context.

In MusiCog, we refer to the “tonal centre,” as opposed to the “tonic,” to emphasize the fact

that we are not modelling tonality in the music theoretical sense of “functional harmony,”

but are interested only in finding the most salient pitch in a given context. Similarly, our in-

terest in “modes” lies not in a bias toward modal (or even diatonic) composition, but rather

in a desire to acknowledge the apparent cognitive bias toward pitch scales of 5 to 7 notes,

formed by sequences of unequal intervals [72, 218]. Our implementation was inspired by

Huron and Parncutt’s tonality induction method [106], which models the influence of echoic

memory (Section 3.1) by allowing the spectral content of sequential events to overlap in

87

time. Using this representation, Huron and Parncutt were able to calculate the mutual har-

monic support of non-simultaneous pitches in melodic contexts, improving upon the tonality

induction results of previous systems that lacked the echoic memory function [106]. Unlike

Huron and Parncutt, who worked with audio content, we are working with symbolic repre-

sentations and therefore do not have access to spectral information. For this reason, we

chose to synthesize a hypothetical spectral energy distribution for each MIDI note using

the set of harmonic weights shown in Table 4.1. The intervals in this table represent the

spectral components being synthesized (as defined by their interval distance from the “fun-

damental” MIDI note) and the weights represent their relative synthesized amplitudes. By

using this scale, and calculating the summed spectral content of all melodic pitches in a

given stream, we are able to mimic the tonality induction behaviour of Huron and Parncutt’s

model.

Harmonic MIDI Interval Weight
1 0 3.16
2 12 1.0
3 19 0.7
4 24 0.52
5 28 0.39
6 31 0.3
7 34 0.22
8 36 0.15
9 38 0.09

Table 4.1: Synthesized spectral weights used for calculating the harmonic support of adja-
cent and/or simultaneous MIDI pitches.

In our implementation, we build a chroma vector by summing the synthesized spectral

content for all elements in the WM stream, where the contribution of each pitch-class is

proportional to the element’s duration. The induced tonality is decided as the peak index

of the chroma vector (i.e., argmax(chroma)). Once the tonality is estimated, we rotate

the stream’s chroma vector to the pitch-class index of the induced tonality and perform

mode induction by multiplying the rotated chroma vector by a binary “masking” vector. The

masking vector is based on the Ionian mode and multiplication is carried out across each

of its 7 diatonic rotations. The sum of the cross-product is used as an estimate of the

induction function’s support for the given mode. The mode with the greatest support is

considered the best mode for the melodic passage. This process is demonstrated in Table

88

4.2, using a hypothetical chroma vector, the weights of which suggest a tonal centre on G

in the minor/Aeolian mode.

C C# D E♭ E F F# G A♭ A B♭ B SUM
0 1 2 3 4 5 6 7 8 9 10 11

Chroma 0.3 0 0.5 0.2 0 0.3 0.1 0.8 0 0.2 0.4 0
argmax = 7

Ionian Mask 1 0 1 0 1 1 0 1 0 1 0 1
Chroma rotation (7) 0.8 0 0.2 0.4 0 0.3 0 0.5 0.2 0 0.3 0.1

 Mask rotation 0 1 0 1 0 1 1 0 1 0 1 0 1
Chroma x Mask = 0.8 0 0.2 0 0 0.3 0 0.5 0 0 0 0.1 1.9

Mask rotation 2 1 0 1 1 0 1 0 1 0 1 1 0
= 0.8 0 0.2 0.4 0 0.3 0 0.5 0 0 0.3 0 2.5
... ...

Mask rot. (Aeolian) 9 1 0 1 1 0 1 0 1 1 0 1 0
= 0.8 0 0.2 0.4 0 0.3 0 0.5 0.2 0 0.3 0 2.7

 Mask rotation 11 1 1 0 1 0 1 1 0 1 0 1 0
= 0.8 0 0 0.4 0 0.3 0 0 0.2 0 0.3 0 2

Max sum of (Chroma x Mask) = 2.7 = Aeolian Mode (minor)

Ionian Dorian Phrygian Lydian Mixolydian Aeolian Locrian
Mask rotations 0 2 4 5 7 9 11

Table 4.2: Estimating the mode using the chroma vector and a modal “masking” vector.

Since induction of 7-note scales is not appropriate in all musical situations, we include

a confidence measure, which can be used to determine whether pitch quantization should

be applied. Here, confidence is proportional to the standard deviation of non-zero support

ratings across all modes. The underlying assumption is that highly chromatic passages

will receive support for several modes, and that therefore the standard deviation across all

non-zero estimates should be relatively low. Conversely, music that fits well in a particu-

lar mode will be highly supported for that mode, and receive relatively low support for the

others, resulting in a greater standard deviation across all non-zero estimates. Using the

confidence, we can determine whether or not pitch content should be adjusted to better fit

a given mode, so that highly chromatic material can be left unquantized when confidence

is low. During training, mode/tonality induction is run on all streams in WM, and the con-

fidence rating updated with each pass of the induction function. Through this process we

89

are able to derive a mean confidence level for each training corpus, which can be used as

a reference during generation.

4.2.2 Working Memory (WM)

As mentioned in the introduction to this chapter (p. 74), the WM provides temporary storage

and maintains the set of active streams. It also exploits two new data structures, segments

and chunks, to model the cognitive phenomenon of “chunking” (see Section 3.4):

• Segment vLn = (ε1, ...,εk): A finite sequence of elements, where Ln indicates the

formal level of the segment (i.e., the amount of hierarchical nesting)6. We index the

individual elements in a segment using subscripts: vLn
1 , ...,vLn

k . Segments are con-

structed in the PE using gestalt-based segmentation rules (see Section 4.2.2 above),

and may contain discrete musical events (L1) or chunks (L2,L3, . . . ,Ln). The initial

note event in a segment has a special perceptual/cognitive significance and is re-

ferred to as the “boundary event” βvLn . When a segment is learned or inferred by

the LTM, it is assigned a “terminal node” vLnθ i
k, which represents a reference to the

segment in LTM. This process is outlined in Section 4.2.3.

• Chunk C(vLn): A chunk is essentially a “wrapper” around a segment. As such,

chunks demonstrate the same principles of hierarchical nesting as segments. The

important difference between chunks and segments is that a chunk represents a seg-

ment that has been committed to LTM and subsequently recognized. Further, chunks

can be grouped together into higher-level segments, which can themselves also be

“chunked” (i.e., via recognition in LTM). Whereas segments are treated by the WM

as sequences of elements occupying |vLn| spaces in memory, chunks are treated as

single elements, regardless of the amount of nesting. Because chunks always con-

tain events at the lowest hierarchical level, every chunk will have a boundary event

βC(vLn). Likewise, every chunk will also have a terminal node C(vLn)θ i
k, taken from

the wrapped segment during the chunking process (see Section 4.2.2).

The WM builds streams as FIFO structures of elements, which may be segments or

chunks. Elements are retained in WM based on a combination of factors including 1)

element predictability, 2) element recency, 3) musical parallelisms [31, 146] between the

element and all other elements stored in WM, 4) habituation to the element, given the WM

6For compactness, the level notation can be simplified to v1,v2, ...,vn.

90

contents [155], and 5) the basic storage capacity of WM. These factors are combined in

a measure of “cognitive salience,” which provides an estimate of the element’s utility for

understanding the larger musical context [252]. The complete process of calculating the

cognitive salience is given in Algorithm 4.3. It is important to note that we do not increase

the cognitive salience7 of elements. Rather, we impose a scaling on the salience, adjusting

its rate of decay according to a number of cognitive factors. The remainder of this section

will outline in detail the relevant operations in Algorithm 4.3.

Algorithm 4.3 Update cognitive salience of elements in WM

1: procedure UPDATECOGNITIVESALIENCE(Ω)
2: κ ← 9 // Capacity threshold
3: ψ ← 0.2 // Salience threshold
4: t← 15 // Outer limit on WM decay function
5: h← 12 // Time parameter for habituation function
6: for S ∈Ω do
7: v1← S1 // Get the most recent segment
8: v1sal← v1pred // Initial salience = predictability in LTM
9: V ← FLATTENSTREAM(S) // Flatten all elements in stream to

a sequence of L1 segments
10: for ε ∈V do
11: if |ε|> |v1| then
12: ε ← GETSUBSEGMENT(ε , |v1|) // Get subsegment of length |v1|
13: end if
14: τ ← v1

k.timestamp− εk.timestamp // Calculate age of segment ε

15: D← 1− 1
t 1
1−ψ

τ // Linear WM decay rate

16: if D < 0 then
17: D← 0
18: end if
19: Γ← 1 // Set parallelism to 1
20: if εθ n

k 6= S1θ n
k then // If terminal nodes do not match

21: Γ← 1− 1
κ

22: end if
23: εsal← εsal×D×Γ // Scale salience by recency and parallelism

24: H← εsal×
(

1− 1−(1−εsal
k)

1+eτ+12

)
// Habituation function

25: εsal← εsal×H // Scale salience by habituation
26: end for
27: end for
28: end procedure

7It is also important to note that we do not currently model perceptual salience; i.e., the relative importance
of unexpected or novel events [8].

91

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.5

1

C
og

ni
tiv

e
Sa

lie
nc

e

Time (seconds)

C
og

ni
tiv

e
Sa

lie
nc

e

Time (seconds)

salience threshold ψ = 0.2
τ = 0,ε i

sal = 0.3
τ = 6.3,ε i

sal <ψ

τ = 11.84,ε i
sal <ψ

τ = 0,ε i
sal = 1.0

salience threshold ψ = 0.2

Figure 4.6: The decay of an element’s cognitive salience in WM as a function of its initial
salience εsal, the duration for which it has been retained in WM τ , and habituation.

Before stream processing begins, the basic capacity threshold κ is set 9 to approximate

the STM “rule of thumb” limit of 7± 2 elements8 [216]. The salience threshold ψ , outer

duration limit t, and habituation time h have been determined (ψ = 0.2, t = 15 s, h = 12 s)

so that low-salience elements will fall below the salience threshold after approximately 6

seconds, and high-salience items that lack strong support from musical parallelisms will

fall below the threshold after approximately 12 seconds9, as can be seen in Figure 4.6.

1) The predictability of a perceived element εpred reflects the LTM’s capacity to predict

the element in the current musical context, as discussed in Section 4.2.3. The predictability

of a segment or chunk is the mean predictability of all its constituent elements. As indicated

8This is by no means a hard-limit in MusiCog, as will become clear during the following discussion.
9Without the influence of habituation such elements would remain in WM for up to 20 seconds. However,

this is a purely hypothetical situation, since the scaling imposed by the habituation function is proportional to
salience.

92

on line 8, we define an element’s initial salience (i.e., at stream index 1) according to its

predictability. Since all elements are initially added at stream index 1, this value is implicitly

assigned to all elements in WM.

2) The recency (or “age”) of an element indicates the duration for which it has been

retained in WM. For each segment/chunk, recency is calculated using the timestamp of its

most recent element (εk on line 14). With no other influences, the salience of an element

will decay as a linear function of its retention time, as modelled by the scaling value D
calculated on line 15.

3) The contents of WM (and LTM) are used to calculate the degree of musical paral-

lelism [31, 146] a given element shares with the current contents of the WM; i.e., how many

musically similar elements are currently being stored. The estimation of musical similarity

is a complex problem [11, 27, 31, 58], which admittedly deserves closer attention, but as

a provisional definition we say that two segments (or chunks) are similar if they share the

same Schema representation (e.g., matching pitch contour). The set of all such similar el-

ements is thus analogous to Deliège’s notion of the “imprint” [59]. If a given element lacks

parallelisms with the current contents of WM, the rate of decay is accelerated (see line 21),

reducing the element’s longevity in WM. The parallelism is determined by comparing the

terminal nodes of the two elements (line 20), such that if they are equal—specifically, they

have matching Schema representations (discussed in more detail in Section 4.2.3)—the

two elements are considered to express a parallelism.

4) Another important cognitive phenomenon influencing the longevity of elements in

WM is habituation; the decline in response to a repeated stimulus [155]. To model habitua-

tion, we use the function on line 24 to scale the cognitive salience proportionally to its own

value, and to its recency, so that elements that have maintained high cognitive salience for

relatively long periods of time will have their salience more aggressively suppressed. The

function introduces habituation-based scaling after approximately 10 seconds of retention

in WM. When the number of stored elements exceeds the WM’s capacity κ , any element

with a recency greater than T seconds and a cognitive salience less than the salience

threshold ψ will be discarded from WM. This process is carried out in the UPDATESTREAM

function, given in Algorithm 4.4. Of course, salience is only one factor influencing retention,

since chunking processes (discussed in the following section) can also support the reten-

tion of elements by embedding them in higher-level representations. Thus, WM retention

time in MusiCog is a function of the musical content, so that there is no a priori maximum,

93

resulting in a highly dynamic memory model, in which the structure of the musical content

is a primary factor in the model’s retention capacity.

Algorithm 4.4 Update contents of stream
1: procedure UPDATESTREAM(S,εt) // Update contents of stream S given input εt
2: κ ← 9 // Basic capacity = 9 elements
3: T← 5 // Basic duration in WM = 5 seconds
4: ψ ← 0.2 // Cognitive salience threshold = 0.2
5: if |S|> κ then
6: e← Sk // e is oldest element in stream
7: τ ← εt .timestamp−ek.timestamp // Calculate age of e
8: if τ > T ∧esal < ψ then
9: REMOVEELEMENT(e,S) // Remove e from stream

10: end if
11: end if
12: end procedure

Chunking in the WM

When a new stream S is created, an empty segment is added to the end of the stream. As

the PE assigns events to streams, each new event is appended to the end of the segment

at S1. When the PE detects a low-level segment boundary, a new segment is created

for the boundary event, and inserted at S1. The WM then “closes” the segment at S2,

indicating that it is complete. At each time-step, the WM passes the segment at S1 (i.e., the

most recent segment) to the LTM for learning. After learning/inference, the LTM assigns

the segment a “terminal node” representing the learned state of the segment in LTM. With

repeated exposure, a given segment’s representation in LTM becomes increasingly specific

(see Section 4.2.3 for details). Segments that can be inferred by the LTM are said to be

“recognized,” so that segments inferred at higher tiers are more familiar than those inferred

at lower tiers (i.e., since each tier represents a degree of recognition10). When a segment

can be perfectly recognized by the LTM—i.e., having all of its transitions inferred at the

Identity tier—it is “wrapped” into a new chunk, which replaces the segment in WM. For

each segment vLn that is converted to a chunk C(vLn) in this manner, WM capacity is

increased by
∣∣vLn
∣∣−1. The chunking process is illustrated in Figure 4.7.

10This notion of recognition is analogous to the idea of predictability, but is more specific with regard to past
events. While the notes in a phrase we’ve just listened to are, by definition, perfectly predictable, this does not
mean that the phrase was familiar or recognized.

94

WM: High-level processing

WM: Low-level processing

WM: High-level processing

B¨ A G G F E¨ E¨ D C C

E¨ D D E¨ D D E¨ D D B¨ B¨ A G G F E¨ E¨ D C C

E¨ D D E¨ D D E¨ D D B¨

L2 chunk formed

B¨ A G G F E¨ E¨ D C C

E¨ D C CL1 chunk formed

LTM

Terminal node
assigned

D

PE
Input

LTM

Segment recognized

Terminal node
assigned

Boundary detected

D

S1

Sk+1

S2

S4 S3 S2St
re

am
: S

t
St

re
am

: S
t

(4)

S2 (1)

(6)

(1)

vL1 vL1C(vL1)C(vL1)

L1

L2

C(vL1)

vL2

C(vL1) C(vL1) C(vL1) C(vL1) C(vL1)

L3

C(vL2)

E¨ D D E¨ D D E¨ D D B¨ B¨ A G G F E¨ E¨ D C C

Sk+1

St
re

am
: S

t+
n

(6)

C(vL1)

vL2

C(vL1) C(vL1) C(vL1) C(vL1) C(vL1)

D

S1

vL1

...

...
Sk, …, S1

Segment
recognizedSk, …, S1

Figure 4.7: Chunking in the WM is based on the recognition of segments in the LTM.

Phrase Boundary Detection in the WM

The WM is also responsible for higher-level phrase segmentation, which is generally

thought to be a top-down, cognitive process [31]. In MusiCog, phrase boundaries are

associated with the detection of non-contiguous musical parallelisms between segments

or chunks. The repetitions must be non-contiguous because contiguous repetitions would

fail to convey a specific higher-level parallelism; or more precisely, they would represent

some arbitrary set of potential parallelisms. This is illustrated in Figure 4.8, where the se-

quence of identical segments, 4.8a, can be partitioned arbitrarily into several higher-level

chunks. Sequence 4.8b on the other hand, which contains a non-consecutive repetition,

95

C, D, E C, D, E C, D, E C, D, E

C, D, E G, F, E C, D, E A, B, C

parallel
parallel

parallel

b) Non-contiguous repetition

chunk?
chunk?

chunk chunk

chunk?

a) Contiguous repetition

parallel

Figure 4.8: Higher-level chunks are formed by non-contiguous repetitions.

has a clear parallel structure that can be partitioned into only two chunks. It is the reiteration

of a motive introduced earlier (and retained in WM) that signals the phrase boundary.

Looking at the melody from Mozart’s 40th Symphony (Figure 4.9), we can see two dis-

tinct phrases, the second of which begins one scale-step below the first. The asterisk marks

the point at which listeners will typically identify the phrase boundary. The WM finds these

parallelism-based boundaries by looking for similarities between a newly formed chunk

C(vLn) and the sequence of chunks already stored in WM. When a previously recognized

chunk is detected in a larger phrase structure, this chunk can serve as a phrase boundary.

The process of finding parallelisms in this manner is given in Algorithm 4.5.

The CHUNKPARALLELISM algorithm takes a stream S and a chunk C(vLn) as arguments.

The algorithm iterates over the contents of S, starting with the oldest element Sk, and

searches for a parallelism between the input chunk C(vLn) and a preceding chunk ε . If a

parallelism is found, a new segment is started, to which all contiguous, intervening chunks

are added, until chunk C(vLn) is reached, or the formal level of ε changes. The ISCHUNK

function identifies whether the element is a chunk, and the GETLEVEL function returns the

level of the chunk. The purpose of comparing the levels is to ensure that the chunk C(vLn)

being tested as a boundary is at the same formal level as the chunk ε against which it is

being tested. The ADDELEMENT function adds element ε to the end of segment v′, and the

96

& 44
Violin

Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ

&5 œ œ Œ œ œ œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Œ œ œ

&10 œ# œ# œ# œ ! Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

*

1.

2.

Figure 4.9: Parallelism in Mozart’s 40th Symphony. The asterisk indicates the point at
which the musical parallelism will indicate a phrase boundary.

comparison εθ 0
k =C(vL)θ 0

k compares the terminal nodes of the input chunk and ε . Since

the terminal node acts as a reference to the segment in LTM, two segments/chunks that

share the same terminal node also share the same contour (for a detailed discussion, see

Section 4.2.3). Because contour provides the grounds for the estimation of similarity, the

comparison is made between Schema representations (tier 0) of ε and the input chunk.

The boolean flag B is used to determine whether a new segment is currently being built, in

which case it should be extended (otherwise, a new segment v′ is started). The function

returns ⊥ (i.e., null) if the generated segment v′ is less than two elements long, since a

single-element segment would fail to encode any higher-level structure11. Otherwise, it

returns the new segment v′; a higher-level “segment-of-chunks,” the first chunk of which is

similar to the input C(vLn).

11For example, encoding the sequence (x,y,z) as a series of single-element sequences (x)(y)(z), does not
provide any new information about the sequence. On the other hand, encoding the sequence (x,i,y,i,z,i,j) as
(x,i)(y,i)(z,i,j) reveals the boundary relationships between x, y, and z, established by identifying the repetition
pattern (n,i).

97

Algorithm 4.5 Parallelism-based chunking of elements in a stream
1: procedure CHUNKPARALLELISM(S,C(vLn)) // Find parallelism for chunk C(vLn)

in stream S
2: i←INDEXOF(C(vLn),S) // Get index of C(vLn) in S
3: B← false
4: k← |S|
5: while k > i do
6: ε ← Sk
7: if ISCHUNK(ε) ∧ GETLEVEL(ε) = n then // ε is a chunk at same level as C(vLn)
8: if B = true then ADDELEMENT(ε,v′) // Add element ε to segment v′

9: else
10: if εθ 0

k =C(vLn)θ 0
k then // Compare Schema terminals

11: v′←NEWSEGMENT // Create a new segment
12: ADDELEMENT(ε,v′) // Add ε to new segment
13: B← true
14: end if
15: end if
16: else if B = true then break
17: end if
18: k← k−1
19: end while
20: if |v′|< 2 then
21: return ⊥
22: else
23: return v′

24: end if
25: end procedure

4.2.3 Long-Term Memory (LTM)

The primary function of the LTM is to create a persistent, generalized, long-term repre-

sentation of the contents of the WM. To do this, the LTM uses a novel data structure and

learning algorithm called the “Cueing Model” (CM). The CM is a development of our earlier

“Closure-based Cueing Model” (CbCM) [162], and is a mixed graph representing the tran-

sitions within, and relationships between, segments and chunks from the WM. It is used to

learn the contents of WM streams, and to make inferences on those contents. The CM is

an online learner, which learns to approximate the formal structure of a corpus of training

works. The model utilizes a number of new data types:

• Model Mn: The CM model, where n is the number of levels (defined below) in the

model. Each level is represented as a directed subgraph corresponding to a level of

98

hierarchical form, as encoded by chunking processes in the WM, described in Section

4.2.2.

• Level Ln: A directed subgraph in the CM representing a level of formal structure,

where n is the level number. L1 represents sequences of events, L2 represents se-

quences of chunks C(vL1), L3 represents sequences of L2 chunks C(vL2), and so on.

The relationship between segments, chunks, and levels can be seen in Figure 4.7.

• Node η i
k(υ): A node on a given level of the CM, where k is the depth (i.e., distance

from the root) of the node, i is the “tier” of the node, and υ is the “value.” The depth

corresponds to the sequential position of an element in a learned segment. The no-

tion of tiers is taken from our earlier work on the CbCM [162] and is described in

more detail below (p. 100). A node in a trained model stores a music descriptor,

learned at some tier of specificity (e.g., contour, interval, pitch), in a particular mu-

sical context. Nodes in a level are connected by weighted edges, which represent

transitions between elements. Edges are only added to nodes of the same tier—

e.g., τ
(
η2

k (υ),η
2
k+1(υ)

)
—and their weightings indicate the frequency of the transi-

tion. When identifying nodes in relation to their levels, we concatenate the level and

node notations, so that L1η1
3 (7) identifies a “Level 1 Invariance node at depth 3, with

a value of 7.” We also identify the terminal node as the last node visited by learn-

ing/inference of a given segment, notated as vLnθ i
k (or for chunks, C(vLn)θ i

k).

• State δt =
{

η i
k : η i

k ∈Mn
}

: The set of nodes returned by the CM learning algorithm

(see p. 105 below) at time step t. The state may be discussed with reference to a

single level Lnδt , or to the set of states across all levels, resulting from inference of a

given stream Sδt =
{

L1δt , ...,
Ln δt

}
. For polyphonic music it is also possible to refer to

the state of all streams Ωδt , so that Lnδt ⊂ Sδt ⊂ Ωδt .

• Link ι(a,b): A weighted, directed edge between nodes on adjacent levels. By con-

necting segments at different hierarchical levels, links encode the formal relationships

between fundamental musical concepts like motives and phrases.

• Association α(a,b): A weighted, undirected edge between any two nodes in the

CM. Associations are made when two nodes a and b are visited, or activated, at the

same time step—i.e., when (a,b)∈ Ωδt . The strength of the weighting represents the

frequency of co-activation. When more than two nodes are simultaneously activated,

pair-wise associations are created for all activated nodes.

99

Data Representation

Unlike the CbCM, which encoded surface events at all levels, the CM only encodes surface

events at L1 and L2. L1 encodes relatively short sequences of events comparable to musi-

cal “motives”—as dictated by PE segmentation—while L2 encodes sequences of boundary

events (which are “linked” to L1 segments), to form an abstract representation of musi-

cal “phrases,” as illustrated in Figure 4.10. All higher levels encode sequences of paths

from their adjacent sub-levels, so that L3 encodes sequences of L2 paths, L4 encodes se-

quences of L3 paths, and so on. In this sense, higher level nodes represent “background”

structures, similar to those expressed by non-terminal symbols in a formal grammar [147].

& 44Violin Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ œ œ

&6 œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Ó ! !

&12 Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

& 44Violin Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ œ œ

&6 œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Ó ! !

&12 Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

- 0 - 0
- 0 +

(0) 0 0!

L1: Motifs

L2: Boundaries

Figure 4.10: Encoding phrases as a combination of Motifs (L1) and Boundaries (L2).

The CM encodes events at different tiers of musical specificity (previously called “states”

in the CbCM—see [162]): Schema (tier 0), Invariance (tier 1), and Identity (tier 2). The tier

indicates the relative specificity of the node’s stored representation. It is useful to think of

lower tier nodes “containing” higher tier nodes so that, for example, a tier 0 node could

represent a pitch contour, and would contain a tier 1 node representing a pitch interval.

This pitch interval node would in turn contain a tier 2 node representing the MIDI pitch itself.

Figure 4.11 shows all three tiers of the L1 pitch graph created by the two opening phrases

from Mozart’s 40th Symphony. In the diagram, we see that each lower-tier node contains

a set of higher-tier representations, and that looking from left to right, each tier forms a

directed subgraph, at a different level of specificity. At tier 0 we see a pitch contour graph

(Schema), which subsumes a pitch interval graph at tier 1 (Invariance), and a pitch graph

at tier 2 (Identity). It is worth noting that the Schema graph will always be a tree, whereas

the higher-tier graphs may exploit multiple parents, allowing for increased compression.

This also enables a form of classification, similar to that suggested by Ockelford in his

“zygonic” theory [178], in which new structures are understood by comparison to previously

learned structures. For example, if we look at the musical context implied by depth 3

100

L1 -

1

D

A

C

G

F

2

E♭

3

0

D

C

0

- 0

+

2

B♭

1

E♭

C

D

F#

8

9

0

G
B♭

C

B♭

A Identity
(tier 2)

Invariance
(tier 1)

Schema
(tier 0)

k = 1 k = 2 k = 3

Input

(E♭,D,D) (E♭,D,D) (E♭,D,D,B♭) (B♭,A,G) (G,F,E♭) (E♭,D,C,C)

(D,C,C) (D,C,C) (D,C,C,A) (A,G,F#) (F#,E♭,D) (D,C,B♭,B♭)

Phrase 1:

Phrase 2:

η3
1(8)

η3
1(0)

Figure 4.11: L1 of a CM trained on the opening of Mozart’s 40th Symphony, showing all
three tiers.

101

Invariance nodes η1
3 (8) and η1

3 (0), we see a form of classification, illustrated in Figure

4.12. It is clear that both nodes provide terminals for closely related segments, and that

although the segment marked with an asterisk is not in the original melody, it is nevertheless

a viable melodic structure. It is also worth note that the 2-2-0 structure of η1
3 (0) is actually

encoded by the model before it appears at the end of phrase 2; i.e., the model has learned

enough partial structure to predict the new structure before it occurs.

1

2

0 8

1

2

2 0
*

η3
1(8) η3

1(0)

Figure 4.12: Automatic classification of segments at tier 1. Nodes η1
3 (8) and η1

3 (0) act as
terminals for pairs of closely related segments.

The CM produces fundamentally the same hierarchical structure as the CbCM, but the

connectivity between levels reveals significant differences. In our previous approach, in-

spired by Dubnov and Assayag’s Incremental-Parsing method [73], we attempted to learn

the entire structure incrementally. This meant that boundary connections encoded the re-

lationships between lower-level segment endings (i.e., “terminal nodes”) and higher-level

segment boundaries. However, with the addition of the WM, the CM is able to learn di-

rectly from sequences of chunks, and can thus encode boundary relationships somewhat

independently of the event-level sequential structure. It is worth noting that such a learning

pattern suggests a cognitive (as opposed to a strictly perceptual) process, since chunk-

ing must be carried out before the higher-level structure can be learned. The difference

between the CM and CbCM approaches is illustrated in Figure 4.13.

Here we see that, due to the incremental learning pattern, the CbCM encodes “+1”

transitions at each L2 node, representing the relationship between the D that ends each

segment and the subsequent boundary E[. In contrast, L2 of the CM encodes only the re-

lationships between boundaries (i.e., interval 0). Thus, although the L2 Identity information

is the same (i.e., sequences of E[s), the encoded Schema and Invariance relationships

are not. We believe the CM’s encoding to be a vast improvement, as it more accurately

captures phrase-level structure and is thus better able to generalize across different musi-

cal situations. For example, a CM trained on the first two complete phrases of the Mozart

102

L1

L2

-1D 0D

+1Eb

+8Bb

+1Eb

L1

L2

-1D 0D

0Eb

+8Bb

0Eb 0Eb

CbCM Connections

CM Connections

k=1 k=2 k=3

Figure 4.13: Different approaches to encoding form in the CbCM and the CM.

melody will infer the inherent similarity of all phrases built from the repetition of L1 seg-

ments (motives), whereas the CbCM will not. Figure 4.14 provides an example of how

a CM trained on Mozart’s 40th can recognize, without any further training, the inherent

similarity of a novel melody sharing the same series of contour relationships at L2.

0 0(0) + - -

(0) 0 0 + - -

L2 0 0 0 + - -

Mozart 40

Novel Melody

Figure 4.14: The second, novel melody can be inferred by the same L2 schema structure
as the Mozart melody.

Figure 4.15 shows the links connecting nodes on different levels. The dotted lines indi-

cate terminal links, and the arrows between levels indicate cueing links. Terminal links are

used to connect segment boundaries to lower-level terminal nodes (i.e., segment endings),

whereas cueing links connect terminal nodes to subsequent boundaries. With regard to

such linking connections, another important difference between the CM and the CbCM that

can be seen by looking again at Figure 4.13, is that terminal links in the CM connect to

103

terminal nodes, whereas the CbCM always connects into depth k = 1; a consequence of

incremental learning. This can be a serious disadvantage during generation, since depth 1

will generally be a high-entropy search space, reducing the likelihood of accurately recalling

the L1 segment originally associated with a learned L2 boundary. The CM is able to make

these more specific terminal links because it learns from complete chunks (which possess

both a boundary node and terminal node) at higher levels, as facilitated by the WM. The

strictly incremental learning process of the CbCM could not learn these connections, since

the subsequent terminal could not be known at the time the boundary was established.

From a cognitive modelling perspective, this emphasis on the connection between bound-

aries and terminals in the CM also reflects the tendency for listeners to more accurately

recognize events near phrase boundaries [211]. Finally, it is worth noting that, whereas the

CbCM always omits the first event (e.g., the initial E[), the CM encodes all events on the

musical surface.

L1

L2

L3

0

-
0 0 + - -

0 -

-
0 +

- 0

k =1 k =2 k =3 k =4 k =5 k =6k =0

& 44
Violin

Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ
&

6

Œ œ œ œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Œ œ œ

&11 œ# œ# œ# œ ! Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

& 44
Violin

Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ
&

6

Œ œ œ œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Œ œ œ

&11 œ# œ# œ# œ ! Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

& 44
Violin

Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ
&

6

Œ œ œ œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Œ œ œ

&11 œ# œ# œ# œ ! Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

- 0 - 0
- 0 + - - - - - - 0

0 0 + - -L2 (0)

L3 -

L1

L3 (0)

Transition Terminal Link Cueing Link

12
6

2

6
2

1

1 1

1
2 2 2 2

1 1

Figure 4.15: Schema view of a trained CM showing transitions (grey arrows), terminal links
(dotted) and cueing links (black arrows).

104

Looking at Figure 4.16 we see a detailed view of the links connecting nodes on differ-

ent levels. This example demonstrates the cueing of two consecutive segments (0 - 0 +),

accessing nodes 1 to 4 , and (+ - -), accessing nodes 5 to 7 . Although transitions

between L2 boundaries are encoded by edges at L2, the cueing links allow them to be in-

ferred in cases where the L2 context is not available, and also provide additional support for

selecting transitions when multiple edges are present, as outlined in Section 4.2.4 (Figure

4.19), in our discussion of PM generation.

L1

L2

0

-
0 0 +

-
0 +

- 0

12
6

2

6
2

1

1 1

1
2 2

1

2

3 4

5

6

7

Figure 4.16: Detail view showing the cueing of sequence ((0 - 0 +) (+ - -)).

Learning and Inference in the CM

Learning in MusiCog involves adding nodes to the CM graph, such that the directed sub-

graph at L1 encodes the series of transitions between the events in WM segments, and

higher-level subgraphs encode the series of boundary relationships between WM chunks.

As higher-level subgraphs are learned, so too are the termination and cueing relationships

between nodes on different levels. Nodes for each transition are added at the highest tier

possible, given any prior learning, so that the CM graph representation becomes increas-

ingly specific with increased exposure to the WM contents. Schema tier transitions are

added first, building schematic, contour-based representations. As transitions are received

that can be predicted at the Schema tier, the CM automatically shifts to the Invariance

tier, and begins learning invariant representations. Once the invariant transitions can be

predicted, learning shifts to the final Identity tier.

105

Algorithm 4.6 The main WM update function
1: procedure UPDATEWM(Ωt) // Update all streams in Ω

2: for S ∈Ωt do
3: i← |S|
4: v′← S1 // Get current segment
5: if GETLEVEL(S2) = 1 then
6: −v1← S2 // −v1 is the penultimate segment in S
7: end if
8: UPDATESALIENCE(S,− v1)
9: A←CONTIGUOUSCHUNKS(S) // Get series of contiguous chunks in S

10: for k← i,1 do
11: v′←CHUNKPARALLELISM(S,Sk) // Parallelism-based chunking
12: if v′ 6=⊥ then
13: PROCESSCONTIGCHUNKS(v′) // Train on high-level sequence v′

14: C←BUILDCHUNK(v′) // Create new chunk from v′

15: Sk←C // Replace Sk with new chunk
16: else
17: PROCESSCONTIGCHUNKS(A)
18: end if
19: k← k−1
20: end for
21: if −v1pred = 1 then // CM can predict segment
22: C←BUILDCHUNK(−v1) // Build new chunk from −v1

23: S2←C
24: end if
25: PROCESSEVENTSEGMENT(v1) // Train on segment v1

26: UPDATECOUNTS(S) // Update CM counts for all elements in S
27: end for
28: UPDATEASSOCIATIONS(Ωδt) // Update associations for all WM elements
29: end procedure

The complete process of updating the WM and performing learning/inference on the CM

is given in Algorithm 4.6. This algorithm takes the set of streams as an argument, and is run

at each time step, after the PE has processed group Gt . The UPDATESALIENCE function

updates the cognitive salience and habituation of each element in S, and the RECOGNI-

TION function returns the recognition level of the given segment. The BUILDCHUNK func-

tion wraps a segment in a new chunk, and the CONTIGUOUSCHUNKS function scans the

stream for lists of contiguous, same-level chunks. The PROCESSCONTIGCHUNKS func-

tion performs learning/inference of higher-level segments (i.e., segments of chunks) and

the PROCESSEVENTSEGMENT function performs learning/inference on L1 event segments.

106

The UPDATECOUNTS function scans the stream and runs one inference pass on all con-

tiguous events and/or chunks that have not yet had their counts (i.e., weights) updated, and

updates the counts of all inferred edges. When all streams have been processed, the UP-

DATEASSOCIATIONS function creates and/or strengthens associations between all nodes

visited in the current time step. The various steps in this process will be explained in more

detail throughout the following section.

Algorithm 4.7 Learning and inference of L1 segments
1: procedure PROCESSEVENTSEGMENT(v1) // CM learning of segment v1

2: i← 0
3: δ ← L1η0

0 // Set state to L1 root node
4: for k← 2,

∣∣v1
∣∣ do

5: ε ← v1
k

6: δ ′←SEARCHTRANSITION(τ(δ ,ε)) // Search CM graph for transition
7: if δ ′ =⊥ then
8: δ ←EXTENDLEVEL(δ ,ε) // Add tier 0 node to CM graph
9: else

10: if i < 2 then
11: i← i+1
12: δ ←ADDNODE(δ ′, i,ε) // Add node at tier i
13: else
14: δ ← δ ′

15: UPDATEPREDICTABILITY(v1pred) // Update predictability of segment
16: v1θ i

k← δ // Set its terminal node
17: L1δt ← δ // Update L1 state
18: end if
19: end if
20: k← k+1
21: end for
22: end procedure

When training begins, the model has one level L1, with a single root node L1η0
0 . When

a WM segment vL1 is received, it is passed to L1, and Algorithm 4.7 is used for learning and

inference. In this algorithm, the SEARCHTRANSITION function looks for the given transition,

at the highest tier possible, and returns either the inferred node or ⊥. The EXTENDLEVEL

function adds a new node at depth k and tier 0 with its value derived from ε , creates an

edge for the transition, and returns the new node. The ADDNODE function adds a new

node at depth k and tier i with its value derived from ε , and returns the new node. If

the tier of the new node matches the tier of δ , an edge is added between δ and the

new node. UPDATEPREDICTABILITY calculates a predictability value for the segment vpred,

107

as a function of the learned/inferred node’s tier (tier 0 = 0.3, tier 1 = 0.8, tier 2 = 1). The

predictability assigned to a given segment is the mean predictability level of all nodes visited

during learning/inference of the segment (i.e., all nodes along the inferred CM path). Note

that the first event is skipped (i.e., k← 2), since the objective at L1 is to encode only the

internal shape of the motif, independent of the boundary.

Rather than having the CM maintain its own state after learning/inference, the state is

stored with the inferred stream. By storing the state with the stream in WM, rather than in

LTM, the CM remains stateless, and is thus able to iteratively process multiple, concurrent

streams. Since L1 segments are passed to the CM as they are being constructed, each call

to PROCESSEVENTSEGMENT incrementally updates the L1 state, providing a form of event-

level inference. It is important to note that, due to the iterative and incremental presentation

of segments to the CM, we do not update edge counts as nodes are added. Rather, the

transition counts of all closed (i.e., completed) segments are updated in WM, in a single

pass, as part of the UPDATEWM function (Algorithm 4.6 above).

Learning above L1 is handled by Algorithm 4.8, which follows essentially the same pat-

tern (as Algorithm 4.7), except that processing deals with sequences of chunks. Because

it must now encode the L1 segment boundaries (which were omitted during event-level

learning), this algorithm does not skip the first element in the sequence. PROCESSCON-

TIGCHUNKS takes either an array of contiguous chunks, or a segment containing chunks

(as returned by the CHUNKPARALLELISM function) as input. The GETLEVEL function re-

turns the hierarchical level of the first chunk in A, which it uses as the level for learn-

ing/inference. If the input segment suggests a level of form beyond the current capacity of

the CM, the ADDLEVEL function adds a new level to the top of the CM. The assignment

ε ← βAk indicates that the element being learned is the boundary event (i.e., first event)

of the kth chunk in A. Finally, when the learned/inferred state δ ′ has been set, across-level

links ι(a,b) are created. The first link, at line 37, is a “terminal link” connecting the inferred

boundary δ ′ to the terminal node of the current chunk Ak. The second, on line 38, is a

“cueing link” that connects the terminal node of the previous chunk Ak−1 to the inferred

boundary (as demonstrated in Figure 4.15).

108

Algorithm 4.8 Learning and inference of higher-level segments
1: procedure PROCESSCONTIGCHUNKS(A) // CM learning from chunk sequence A
2: i← 0
3: n←GETLEVEL(A1) // Get level from first chunk in A
4: if n+1 > |M| then // If adding a level will exceed the model’s size
5: ADDLEVEL(Mn+1) // Add a new level to model M
6: end if
7: δ ← Ln+1η0

0 // Set state to Ln+1 root node
8: for k← 1, |A| do
9: ε ← βAk // Get boundary of chunk Ak

10: j← |Ak|
11: δ ′←SEARCHTRANSITION(τ(δ ,ε)) // Search CM graph for boundary transition
12: if δ ′ =⊥ then
13: x← true
14: if k = 1 then
15: ∆←GETSIBLINGS(δ) // Get nodes at same CM depth as δ

16: for δ s ∈ ∆ do
17: δ ←SEARCHTRANSITION(τ(δ s,ε))
18: if δ 6=⊥ then
19: ADDPARENT(δ s,δ) // Transition to sibling found; add parent
20: x← false
21: end if
22: end for
23: end if
24: if x = true then
25: δ ←EXTENDLEVEL(δ ,ε)
26: end if
27: else
28: if i < 2 then
29: i← i+1
30: δ ←ADDNODE(δ ′, i,ε)
31: else
32: δ ← δ ′

33: UPDATEPREDICTABILITY(ε)
34: if ISSEGMENT(A) then // If A is a segment...
35: Aθ i

k← δ ′ // ...set δ ′ as its terminal node
36: end if
37: ι(δ ′,Akθ

i
j) // Link inferred state/node to terminal of chunk Ak

38: ι(Ak−1θ i
j,δ
′) // Link terminal of chunk Ak−1 to inferred state/node

39: end if
40: end if
41: k← k+1
42: end for
43: end procedure

109

When learning at higher levels an important change is made to the learning algorithm

at depth k = 1. If the initial search from node δ (line 11) fails to find the transition, the

algorithm will repeat the search across all siblings of δ (i.e., nodes of equal depth and tier)

at line 18. This routine allows for increased compression, while at the same time preserving

important contextual information—i.e., the boundary contour and interval—encoded by the

depth k = 1 nodes. This can be seen in Figure 4.15, where the two statements of the

phrase have the same basic contour, but different boundaries, as a result of their different

musical contexts. The first statement, which opens the work, has no context (Schema 0)12,

while the second statement is a repetition of the first, transposed down one scale-step

(Schema -). However, since the two contours are otherwise identical, their learned paths

merge at depth 2, allowing both phrases to reach the same terminal node. This shared

terminal node reflects the musical similarity of the two phrases, allowing MusiCog to treat

them as similar musical concepts.

4.2.4 The Production Module (PM)

The knowledge represented by MusiCog’s various processing modules, and captured in its

memory structures, is essentially procedural and implicit. It does not represent knowledge

of music theory, nor any sort of explicit knowledge about music composition, but is rather

an expression of the music psychological principles that inform MusiCog’s design. By way

of analogy, MusiCog could be compared to a musician with some degree of instrumental

training (i.e., it can play sequences of notes), but no explicit knowledge of music theory or

composition. Thus, our investigation of the compositional capacities of MusiCog (see Sec-

tion 5.4) attempts to focus on the architectural factors that influence its musical output. The

PM’s generative algorithms, in its current state of development, are stochastic13. The only

notable exception is the top-down/bottom-up pattern of LTM exploration used during gen-

eration, which suggests a process of compositional “planning” and execution, discussed in

more detail in Section 4.2.4. While this notion of beginning with a higher-level abstract plan

could suggest a philosophy of composition, it is also possible to generate a plan based

on inference of musical input, as is the case when generating musical “continuations” from

MusiCog14. Thus, although our choice to start new generations using a top-down planning

12Strictly speaking, a Schema of zero indicates a repetition. However, we also use the zero Schema in the
case of phrases where no contextual information is available, to suggest that no change has been detected.

13We do not maintain that a stochastic process can explain compositional thinking. This is merely a starting
point for investigating MusiCog’s compositional tendencies at an architectural level.

14This is essentially the routine followed by MusiCog when carrying out extended autonomous generations.

110

process is a compositional decision of sorts, it should be clear that this is not the only

way to generate output from MusiCog. Our justification for starting with a fundamentally

stochastic method is twofold. First, we wanted to gain some understanding of the musical

limitations imposed by the architecture itself, and by its music psychological underpinnings.

Second, by establishing a primarily architectural and stochastic mode of generation as a

sort of ground truth, future research can focus on the influence of specific music theoretical

and compositional knowledge representations and decision processes on the quality of the

generated music.

On an architectural level, the PM generates musical output following the principle that

music comprehension is supported by the retention of materials in working memory, and

that this provides a motivation for composition. Through motivic exploitation—i.e., the use

of musical parallelism—composers are able to guide listeners through the musical dis-

course, introducing thematic materials in an intelligible manner. Models that focus only on

reproducing the note transition probabilities of a training corpus generally fail to produce

convincing results because they ignore musical parallelism (or achieve it only accidentally);

the IDyOM model of Wiggins et al. is a case in point [242]. This notion that working mem-

ory provides the locus for both compositional intentionality and listener comprehension

can be related to Schmidhuber’s theories of compression and creativity [208], and also to

ideas from the field of literary composition theory [85, 99], where working memory capac-

ity is thought to be a determining factor on the quality and complexity of written material

[166, 167] (as discussed in Section 2.2).

PM generation combines high-level planning from the CM with the integration of local

contextual information from WM. There are two basic approaches that can be taken: 1)

Generate a high-level plan and fill-in the surface details according to the plan (i.e., “top-

down”), and 2) Incrementally infer phrase-level plans, based on WM content, and gradually

construct a high-level plan (i.e., “bottom-up”). It has been suggested—for example, in

Collins’ synthesis process model [41] (see Section 2.3)—that compositional thinking en-

lists both processes, used in alternation. During generation, the PM attempts to integrate

knowledge from the WM and CM, with the goal of producing well-formed musical segments

that reflect an appropriate degree of musical parallelism. Since parallelism is generally ev-

idenced in phrase-level form (see Section 4.2.2), the PM must first determine a phrase

structure or “plan” to guide the generation.

111

Formal Planning

In a “top-down” approach to form generation, the PM first probabilistically creates a high-

level CM path PLn
d , of length d, referred to as a plan. This is done using the FORWARDPLAN

algorithm (Algorithm 4.9), which creates a sequence of boundary nodes starting from an

arbitrary input node (generally the Ln root node).

Algorithm 4.9 Predictive generation from a given state
1: procedure FORWARDPLAN(Lnη i

k) // Generate predictive plan given node Lnη i
k

2: P← /0 // Create a new, empty path
3: d← 1
4: ϒ← N+

(
Lnη i

k

)
// ϒ gets the passed node’s out-neighbours

5: if |ϒ|= 0∧ i > 0 then
6: FORWARDPLAN(Lnη

i−1
k) // If no out-neighbours, recurse at subtier

7: end if
8: while |ϒ|> 0 do
9: δ ←CHOOSENODE(ϒ)

10: if GETLEVEL(δ) = n then
11: Pd ← δ

12: else
13: break
14: end if
15: ϒ← N+(δ)
16: if |ϒ|= 0∧ i > 0 then
17: ϒ← N+

(
δ i−1

)
// If no out-neighbours, try at subtier

18: end if
19: k← k+1
20: d← d +1
21: end while
22: end procedure

The algorithm traverses the directed subgraph at level Ln, making weighted probabilistic

selections (using the CHOOSENODE function) from the set of out-edges at each step. The

chosen edge’s incident node is added to the end of plan PLn
d , and the process is iterated

until a terminal node is reached. The condition at line 10 in the algorithm is used to termi-

nate the traversal, in the event that an Ln+1 cueing link is chosen, rather than an Ln child

edge.

This terminating condition is illustrated in Figure 4.17, where we see that cueing links

can identify terminal nodes (i.e., segment endings) that are not necessarily leaf nodes.

Here, the two out-edges of node C connect to a child node and a subsequent boundary

112

node, with weights 1 and 5 respectively, indicating a high probability that the node will

terminate the segment (i.e., by following the cueing link to the L2 boundary node E rather

than continuing along L1 to node G).

L1

L2 B
E

A

C G

D H

k =1 k =2 k =3k =0

Transition Terminal Link Cueing Link

F

5

25

5

2
1

6

4

1

2

5

1

2

2

Probability of L1 segment terminating = 0.83

Figure 4.17: A hypothetical CM graph in which the out-edge weights indicate a high-
probability transition to an L2 boundary node, thus terminating the L1 segment. This prop-
erty of the CM can be used to identify terminal nodes that are not necessarily leaf nodes.

Once a high-level plan PLn
d has been created, the PM then proceeds to “unwind” a series

of level Ln−1 paths, one for each node in PLn
d , using the PATHFORBOUNDARY algorithm

(Algorithm 4.10). This algorithm must account for a number of factors, as illustrated in

Figure 4.18. Here we see that there are three terminals—I, J, and G—connected to node

C, from which an Ln−1 path is to be derived. We also see that the Ln plan continues to node

H. The task is therefore to find a path through Ln−1 that connects node C to node H. In the

algorithm, the GETTERMINALS function returns the set of terminal nodes T connected to

the given boundary Lnη i
k (i.e., node C). The PLANFROMTERMINAL algorithm (Algorithm

4.11) then selects a path leading to each terminal Tj (i.e., from the root node). The path

to Tj is stored at S j, and its probability is stored at p j. Vector t stores the probabilities of

selecting the terminals themselves from Ln, and vector c is a binary vector used to filter out

terminals that do not connect to the given “goal” node Lnη i
k+1 (i.e., node H).

The final probability distribution is the cross-product of p, t, and c, from which the

WEIGHTEDPROBABILISTICINDEX function makes a stochastic selection and returns the

113

Algorithm 4.10 Selection of Ln−1 path given Ln boundary

1: function PATHFORBOUNDARY(Lnη i
k,Lnη i

k+1) // Get sublevel path given boundary
Lnη i

k and “goal” Lnη i
k+1

2: T ←GETTERMINALS(Lnη i
k)

3: S← /0
4: for j← i, |T | do
5: S j←PLANFROMTERMINAL(Tj)
6: p j← P(S j) // Get probability of sublevel path SJ
7: t j← P(Tj) // Get probability of terminal Tj
8: if Lnη i

k+1 ∈ N+(T) then // If Lnη i
k+1 is a target of terminal T

9: c j← 1
10: else
11: c j← 0
12: end if
13: end for
14: x← p× t×c
15: y←WEIGHTEDPROBABILISTICINDEX(x)
16: return Sy
17: end function

chosen index y. This index is used to retrieve the corresponding path from S. In the di-

agram we see that the highest-probability path S3 = 64% has a 0% probability of selection,

due to the fact that it does not connect to the goal node H, and is filtered out by vector c.

The PLANFROMTERMINAL algorithm, which is used to build the set of possible paths

S, takes a terminal node Ln−1θ i
k as an argument, and iteratively backtracks from depth k

to depth 1, stochastically selecting from the parent nodes at each step, and inserting the

chosen node at the start of path A. The stochastic selection is done using the CHOOSE-

NODE function (as in the FORWARDPLAN algorithm), except that in this case the selection

is made from the passed node’s set of in-neighbours (i.e., parent nodes), and termination

is handled by reaching the root node.

114

Ln-1

Ln C

A

D
I

F J

k =1 k =2 k =3k =0

Transition Terminal Link Cueing Link

H

1 4

3

1

3

1

4

1

E1 1

B

5

9
G9

9

S1 = (A,D, I)

c(I , J,G) = (1,1,0)

p(S1,S2,S3) = (0.16,0.07,0.64)

p × t × c = (0.046,0.005,0)

P(I , J,G) = (0.9,0.1,0)

Chosen path for each terminal:

Probabilities of paths, terminals,
and targets:

Terminal selection probabilities:

t(I , J,G) = (0.29,0.07,0.64)

S2 = (A,F, J)
S3 = (B,G)

Figure 4.18: Selection of an Ln−1 segment from Ln boundary C. The algorithm must account
for Ln−1 segment probabilities, terminal probabilities, and connectivity to H via cueing links.

Algorithm 4.11 Generate path to a given terminal
1: function PLANFROMTERMINAL(Lnθ i

k) // Get path to terminal Lnθ i
k

2: A← /0
3: ρ ← N−

(
Lnθ i

k

)
// Get the passed node’s parents

4: if |ρ|= 0∧ i > 0 then
5: PLANFROMTERMINAL(Lnθ

i−1
k) // If no parents, try at subtier

6: end if
7: A1← Lnθ i

k
8: while |ρ|> 0 do
9: δ i←CHOOSENODE(ρ)

10: for j← 1,k−1 do A j+1← A j // Copy nodes in A to next index
11: end for
12: A1← δ i // Insert δ i at start of A
13: if k < 2 then
14: break
15: else
16: ρ ← N−

(
δ i
)

// Get parent’s of δ i

17: end if
18: if |ρ|= 0∧ i > 0 then
19: ρ ← N−

(
δ i−1

)
// If no parents, try at subtier

20: end if
21: end while
22: return A
23: end function

115

Once the lower-level plan has been created in this manner, the same process can be

carried out recursively from P
Ln−1
1 —i.e., selecting a Ln−2 terminal of P

Ln−1
1 , then building a

plan by backtracking from Ln−2θ i
k—until a complete hierarchy is defined. This procedure

can be followed for all nodes {1 . . .d} in PLn
d , resulting in the creation of a series of Ln−1

plans, making it possible to carry out top-down generation of large-scale hierarchical forms.

This approach can be used with a CM of arbitrary size.

In a ‘bottom-up’ approach, form generation begins from the stream state Sδt (which

reflects the contents of WM), then stochastically unfolds the higher-level form by select-

ing transitions on each level, as required, using the CHOOSENODE function. In this case,

CHOOSENODE is given the union of out-edges and cueing links from the current state node,

allowing segment termination to be handled stochastically, as it is in the FORWARDPLAN

algorithm (Algorithm 4.9). Thus, when L1 generation reaches a terminal node, a boundary

for generating the next segment is created by selecting a transition at L2. Likewise, when

L2 reaches a terminal node, a new phrase boundary is created by selecting a transition at

L3, and so on. When bottom-up continuations of this sort occur above L1, the stochastic se-

lection at Ln incorporates the Ln−1 evidence provided by cueing links (described in Section

4.2.3) from the current Ln node’s terminal nodes, in addition to the information provided by

its child edges. This process is illustrated in Figure 4.19, where the choice between tran-

sitions (B,E) and (B,F) is equiprobable on L2, but can be shown to favour transition (B,E)

when the L1 state information (node C) is included. Here it can be seen that cueing link

ι(C,E) is the only link to node E 15.

In order to integrate as much “planning” as possible into the bottom-up approach, the

PM will always generate a new L2 plan when the current plan is finished. After the last node

of the current L2 plan has been used for generation, a new L2 plan is generated, using the

FORWARDPLAN algorithm. This ensures that there is always a current plan ready to guide

L1 generation.

Parallelism, Motivic Exploitation, and Segment Output

As was mentioned in the PM introduction (on p. 111), PM generation is designed to ac-

knowledge the role of working memory in the comprehension of music. In order to do this,

the generation algorithms attempt to exploit previously used motivic material. Through the

learning process, parallelisms in the training material are encoded implicitly in the CM data

15Although there is some probability that node C could cue node F, via node G, this future probability is not
currently considered in MusiCog.

116

L1

L2 B
E

A

C G

D H

k =1 k =2 k =3k =0

Transition Terminal Link Cueing Link

F

5

25

5

2
1

6

4

1

2

5

1

2

2

Figure 4.19: A detailed Invariance tier view of a hypothetical CM for pitch information show-
ing weights for transitions, terminal links, and cueing links. Bold nodes indicate the current
state. Although transitions (B,E) and (B,F) are equiprobable, (B,E) has greater support
from the L1 state, via its cueing link.

structure, via the ratio of boundaries to unique terminals. This can be seen in Figure 4.20a,

where the sharing of terminal X by boundaries T and U indicates the parallelism. However,

as new material is learned, compression in the CM causes these clear points of paral-

lelism to be obscured, as in Figure 4.20b. Here, the parallelism in the melody is expressed

through the sharing of terminal Y between boundaries S and T. However, due to previous

training on melody 4.20a, stochastic selection of terminal Y for boundary T can only occur

at chance level16.

Of course, the connectivity of the CM still represents the parallelisms expressed in both

example melodies, even if their probability of being selected has been reduced. What is

needed, therefore, is a method for supporting the selection of such parallelisms, based on

the developing musical context. One way to do this is to examine the contents of WM as

the generation progresses and to search for intersections between the terminals currently

held in WM and the terminals linked to the current CM boundary state. Looking again at

16Of course, in this specific example, Invariance tier information can help distinguish the two melodies, and
retain the capacity to produce these parallelisms during generation. However, it is likely that further training
will eventually elminate such clear points of differentiation.

117

L1 V W X

L2 S T U

b)

a)

L1 V

W X

L2 S T U

Y Z

SVW TVWX UVWX

SVY TVY UVYZ

Figure 4.20: The melodic fragment represented in CM graph a expresses a clear paral-
lelism via the sharing of terminal X with boundaries T and U. However, the probability of
generating of this parallelism is jeopardized by subsequent learning of melody b.

Figure 4.20, let us imagine that the generation process has recently produced the segment

(S,V,Y), so that the WM currently contains a reference to terminal Y. The boundary for the

next generation is T, which has terminal links to Y and X. In order to exploit the parallelism

represented in the model, with support from WM, we could simply choose terminal Y for

the new generation. Of course, an obvious problem with this approach is that it ignores the

model’s capacity for change by forcing the parallelism (further, it will usually be the case

that more than one terminal is supported in WM). For this reason, rather than automat-

ically using the terminal stored in WM (i.e., node Y), we instead bias the choice toward

this terminal by adding the WM copy to the set of possible choices—i.e., so that the node

representing the parallelism is represented twice in the set of choices, increasing its prob-

ability of being selected. Thus, the set of possible terminals for selection by node T will be

{Y,Y,X}, increasing the probability of selecting the parallelism represented by terminal Y,

while retaining the possibility of selecting the non-parallel terminal X.

When using terminals from WM, the chosen terminal is paired with a boundary drawn

from the current L2 plan, and an L1 path for the terminal is extracted from the CM using

the PLANFROMTERMINAL algorithm (Algorithm 4.11). In this way, the generated segment

draws on both WM and LTM content, and involves both top-down and bottom-up factors.

Since the topology of the CM guarantees that all possible paths to a given terminal share

118

the same contour, this process allows generation to maintain parallelism, while at the same

time promoting variety. Due to this mixing of WM and LTM elements, it is possible that the

pairing of an L2 boundary with an L1 path may not have appeared during training, allowing

MusiCog to introduce novel segments not present in the training corpus, and thus enabling

a form of creativity.

Once an L2 plan is in place, the PM can proceed to generate an output segment. Al-

though outputs are presented on a note-to-note basis, the PM always generates in seg-

ments (or motives), not individual events. All events in the most recently generated seg-

ment are kept in a FIFO buffer and extracted sequentially as the segment is rendered (i.e.,

during playback). The PM also keeps the current L2 plan on a stack, so that the top of

the stack always contains the next boundary for generation. When a new segment is re-

quired, an L2 boundary is popped off the stack, and a new L1 path is generated using

the PATHFORBOUNDARY algorithm (Algorithm 4.10)—or using the L2 boundary, a terminal

from WM, and the PLANFROMTERMINAL algorithm, as discussed above. In order to allow

generated material to adapt to the current musical context, only Invariance tier nodes are

used for generating output events. If the inference process returns an Identity node as the

current WM state (and thus the context for continuation), the PM extracts the node’s asso-

ciated Invariance node (see Figure 4.11) before generating a continuation. The PM uses

the most recent event in the generated stream S1 to determine the context for the segment

to be generated, and extracts Invariance information from the nodes in the generated path,

which it converts to a series of events, wrapped in a segment. In the event that the stream

is empty, the PM must first establish the musical context. To do this, it will start genera-

tion by selecting an L2, depth 1, Identity tier node (i.e., to establish an explicit, context-free

boundary), after which Invariance tier nodes will be used.

Feedback: Acting and Perceiving

In order to complete the agent metaphor, MusiCog must not only act in its world, it must

also perceive the results of its actions. To realize this, segments generated by the PM are

fed back into the PE. This is an important step, because it allows the model to evaluate its

actions, and modify its behaviour accordingly, providing a rudimentary form of intentional-

ity. In the current state of MusiCog’s development, this intentionality is limited to a simple

goal: to generate phrases with well-defined segment boundaries, as indicated by the PE’s

grouping mechanisms.

119

There are two ways that this can be achieved. One option is to evaluate potential

generations before output, using the PE’s segmentation algorithm, and to reject segments

that either continue the preceding segment without triggering a segmentation response, or

that cause a segmentation within the generated segment. The problem with this approach

is that, in certain CM contexts, there may be a large number of potential generations to

evaluate, with no guarantee that an appropriate segment will be found. Thus it is possible

that, even after a lengthy search, the criteria may not be met, leading to the generation

of ill-formed material. The other option is to adapt the PM’s planned generation according

to the segmentation responses triggered in the PE. In this approach, the PM’s pending

boundary is offset to account for the PE’s alteration of the melodic segment structure. This

process is illustrated in Figure 4.21.

Here we see that the PM’s original plan (i.e., the L2 path) was to generate two segments,

the second of which was to begin two semitones above the first. However, the PE detected

a boundary half-way through the PM’s first generated segment, altering the musical context

for the pending generation. If the PM were to proceed without modifying its plan, the “+2”

interval would be applied to the new (and unexpected) boundary “E,” causing the system

to generate the sequence: (C, D) (E, F) (F#, ...). While this result introduces a degree of

novelty, which may be of some value, it does not follow the structure of the original plan.

By modifying the plan in response to the newly perceived boundary, the PM is able to

generate a sequence that maintains the intended structure: (C, D) (E, F) (D, ...). It should

be noted that this process of adapting the planned structure to accommodate for changes

in the perceived structure is perhaps even more crucial with regard to rhythmic generation,

where changes in boundary relationships can lead to overlapping segments, or segments

120

CM

L1

L2 C

+2
+2 +1

+1 +2

+2

PM

PE

WM

PM

OUT

boundary
detected!

{E,F}

context =

error? plannedG
en

er
at

io
n

st
ep

 k
G

en
er

at
io

n
st

ep
 k-
1

{C,D,E,F}

OUT

S1

S = {C,D}

feedback

(C, D, E, F) (+2, ...)

(C, D) (E, F)
(C, D, E, F)

(C, D) (E, F)

(E, F) ≠ (C, D, E, F)

(E, F)+ (+2,...) = (F#,...)

ϕ = βGENν − βS1
= C − E
= −4

(E, F)+ ((+2,+ϕ),...) = (E,...)

Figure 4.21: During generation the PE detects a segment boundary where the PM had not
planned one. The PM responds by adjusting its next output according to the difference ϕ

between the last generated segment’s boundary event β GENv and the boundary event of
the context segment βS1.

separated by unintended pauses. Since the effort to satisfy the PE’s segmentation mecha-

nism during PM generation may lead to potentially lengthy and fruitless searches, we have

chosen to implement the second approach, so that the PM responds adaptively to the per-

ceived segment structure. It would, of course, also be possible to implement both options,

so that the PM would search for an appropriate segment in collaboration with the PE, and

would only modify the original plan if no solution was found.

As a final step, the mode/tonality induction function described in Section 4.2.1 is used

to quantize the pitch content of the generated segment to the inferred mode/tonality. A

threshold on the induction function’s confidence rating (see p. 89) is used to enable/disable

pitch quantization, so that it will only be applied when the PE’s confidence in the inferred

121

mode/tonality is relatively high. In this way, the system can quantize diatonic passages in

an appropriate manner, while retaining the ability to generate more chromatic passages

by disabling pitch quantization. When applying pitch quantization we consider two factors:

1) the estimated mode/tonality of the training corpus, and 2) the estimated mode/tonality

of the newly generated segment. Since our intention is to model only “musically naïve”

composition at this stage, we take a perception-based approach when determining the ini-

tial mode/tonality. First we estimate the mode/tonality for the newly generated segment;

i.e., MusiCog generates an initial melodic segment, performs mode/tonality induction, and

decides on the mode/tonality based on the PE’s response. If the PE’s confidence in a spe-

cific mode/tonality passes a given threshold, the segment is quantized, and the induced

mode/tonality is established for the remaining melodic generation. From this point forward

MusiCog only decides whether or not to apply pitch quantization to subsequently generated

segments. In deciding whether quantization should be applied, we consider the PE’s con-

fidence in the mode/tonality of the new segment, and the mean confidence induced from

training on the original corpus. If the average of these two confidence ratings falls below a

threshold value (0.1 in our implementation), the segment will not be quantized. This can be

seen as a simple form of musical intentionality; i.e., if the new segment is highly chromatic,

this is assumed to be a deliberate compositional goal, and quantization is disabled, leaving

the chromaticism intact.

4.2.5 Handling Rhythmic Information

The above description of MusiCog’s learning and generation algorithms discussed only the

handling of pitch material. It is important to note that rhythmic processing is carried out in

the same manner, and utilizes the same learning, inference, and generation mechanisms

as pitch processing. In the current implementation, we represent pitch and rhythm infor-

mation in two separate CM models. Since the PE uses both pitch and rhythmic information

during segmentation, the most recent segment S1 can be passed to both models for learn-

ing and inference at each time step. The same is true for higher-level processing of WM

chunks. As transitions are learned/inferred in each model, weighted association links are

used to build a statistical representation of the relationship between the pitch and rhythm

models. During generation, we process pitch information first, and fit rhythmic representa-

tions to the planned pitch structure. For example, if an L1 path is generated from a depth

k = 3 terminal node in the pitch model, we will likewise generate from a depth k = 3 termi-

nal in the rhythm model, whenever possible (i.e., as long as a rhythm node at the desired

122

depth is reachable from the current state). The rhythm terminal can be selected probabilis-

tically, via association to the chosen pitch terminal, but this is only done in cases where

the planned rhythmic structure does not correlate with the pitch structure (i.e., where a

planned rhythmic path contains greater or fewer nodes that the planned pitch path). Be-

cause MusiCog is a feedback system, inference of previously generated outputs ensures

that the states of the two models remain musically related.

4.3 Implementation Details

MusiCog is implemented as an Objective-C framework for Mac OS X, and also as a

MaxMSP external. The MusiCog framework makes use of Objective-C 2.0’s “Automatic

Reference Counting,” and for this reason, is 64-bit only. Because the Max external makes

calls to the MusiCog framework, the Max external is also limited to the 64-bit Mac platform,

running on Max 6.1 or later. MusiCog is also the learning/generation system for our

computer-assisted composition application ManuScore [163], discussed in Chapter 7.

The framework and Max external can be downloaded here:

http://www.sfu.ca/~jbmaxwel/MusiCog/downloads.html.

123

http://www.sfu.ca/~jbmaxwel/MusiCog/downloads.html

Chapter 5

MusiCog in Practice

MusiCog was designed with the practical application of Computer-Assisted Composition

(CAC) in mind. For this reason, wherever possible, we will demonstrate the functionality of

its component modules through practical musical examples. Although we will demonstrate

the functionality of all modules, our quantitative testing will focus on monophonic/melodic

generation in the PM.

5.1 The Perception Module

The primary functions of the PE that are directly applicable in a CAC context are

stream/voice-separation, low-level melodic segmentation, and mode/tonality induction.

5.1.1 PE Stream/Voice-Separation

Figure 5.1 gives an example of voice-separation in the PE, taken from the opening of Bach’s

Choral, “Freu dich sehr,” from Part 1 of his BWV 70 Cantata. It is worth pointing out that,

as a cognitive model, MusiCog’s voice-separation algorithm does not include any special

system for maintaining consistent “voice numbers”; a concept derived primarily from music

notation. Aside from influences of timbre and localization, which support stream segrega-

tion through psychoacoustic means (see Section 3.2), the notion of maintaining consistent

voices is fundamentally theoretical, not perceptual [32]. Thus, perceptual streams have no

independent identity, aside from their content at a given moment.

124

voice-crossing

+5 +5

+5

+1 unison

Stream 1

Stream 2

Stream 3

Stream 4

7

Figure 5.1: PE voice-separation of the Part 1 Chorale from Bach’s BWV 70. Since there is
no concept of “voice number,” unison voices are assigned to only one stream, and will not
be duplicated across streams, as is the case with the two occurrences of G3 (outlined).

In a related manner, since MusiCog does not model the influence of timbre on voice-

separation, it cannot discriminate unison voices. This can be seen in Figure 5.1, where

pitches that are shared across parts—in this case stream 3 and stream 4, where the origi-

nal score indicates a unison on G3—cannot be “doubled” by MusiCog’s voice assignment

process. For this reason, one of the voices is replaced with a rest. In the second occurrence

of this doubling, at the bottom of the page, a voice-crossing occurs, as a result of stream 4

“stealing” the pitch from stream 3. Looking at the preceding music in both streams, it can

be seen that the +5 interval motion in stream 4 has occurred more frequently than the +1

motion in stream 3, suggesting that it is probably the predictability value that has caused

the voice-crossing by favouring the more probable +5 motion in stream 4 over the +1 in

stream 3. Since the voices do not, strictly speaking, cross at this point, the voice-crossing

cost has no influence on the result. It is worth noting that it would be trivial to force MusiCog

125

to duplicate the shared voice in such situations, but we did not consider this a priority at

this time.

 voice-crossing

 voice-crossing

unison
Stream 1

Stream 2

Stream 3

Stream 4

5

8

Figure 5.2: PE voice-separation of complex polyphonic material from Bach’s BWV 846
Fugue (motives highlighted manually).

A more complex example of voice-separation is shown in Figure 5.2, this time using

the C Major Fugue, BWV 846, from Bach’s Well-Tempered Klavier. Of note are the voice-

crossings at m. 6, in the second system, and m. 9 in the third system. The first instance, at

126

m. 6, appears to be related to the greedy assignment algorithm, which removes voices from

the selection process as they are assigned. Since stream 4 is sustaining at this onset time,

it is not included in the cost calculation. For the remaining voices, the lower-cost transitions

(G4, A4) in stream 2 and (C4, D4) in stream 1 are assigned first, leaving only the (A3, F4)

transition for stream 3. In the second instance, at m. 9, the crossing is likely due to a similar

problem, in which the maximum proximity transition (D, D) is assigned to stream 4, leaving

the transition (E, C) as the best remaining choice for stream 1. A more thorough approach

that tested all possible pairings would solve these problems. Nevertheless, it is certainly

worth noting that the PE performs reasonably well on this complex voice-separation task,

without the benefit of iterative, offline processing, or a look-ahead function, as is common

in voice-separation algorithms [32, 113]. It also worth noting that all statements of the

primary motive appear intact (highlighted in grey by the authors), without being disrupted

by voice-crossing problems or rests (i.e., as a result of unison voices). Of course, credit for

this goes primarily to Bach for composing a perceptually clear polyphonic texture, but it is

important that MusiCog is able to represent these motivic patterns correctly, so that they

may lead to the construction of well-formed representations in LTM.

5.1.2 PE Low-level Boundary Detection

Figures 5.3 to 5.5 show the PE’s low-level segmentation of three different melodic pas-

sages; Bach’s BWV 846 Fugue (melodic surface only1), Mozart’s 40th Symphony, and

Maxwell’s work for flute solo, Invidere. In the Bach and Maxwell examples, the cohesion

tolerance ϕ (Section 4.2.1, Equation 4.5) was set to zero. The Mozart example, however,

also shows the effect of increasing the cohesion tolerance.

Although there is a considerable contrast of melodic styles across the three works, ex-

amination of the melodic segments produced reveals a syntactic continuity across the three

examples, with pitch direction changes and rhythmic augmentations frequently associated

with the melodic boundaries. Since the PE is intended to model strictly bottom-up pro-

cesses, this is the expected behaviour, but it also reveals an important motivation behind

our choice to take an integrated approach to building a CAC agent. Through the use of the

PE, we can ensure that MusiCog learns from a syntactically consistent vocabulary of musi-

cal statements. Consequently, unlike in conventional Markov models, the LTM is not strictly

1This is a monophonic arrangement made by the authors for the purposes of testing segmentation and
chunking.

127

4

7

Figure 5.3: Low-level boundary detection for Bach’s BWV 846 Fugue (monophonic ar-
rangement).

φ = 0

φ = 0.1
φ = 0.02

5

10

Figure 5.4: Low-level boundary detection for the main theme from Mozart’s 40th Symphony.
At the end of the last system we see the effect of increasing the cohesion tolerance. It is
worth noting that it is not a simple case of removing boundaries as the tolerance increases,
but rather that the syntactical content of the segments is also altered.

128

Figure 5.5: Low-level boundary detection of Maxwell’s Invidere, for flute solo.

learning the variations of a random variable, but is rather learning the sequential depen-

dencies between tokens in a structured vocabulary. This focus on learning from structured

units of input effectively transposes the tokens of musical meaning in MusiCog from the

individual pitches themselves to the series of well-formed motives. By analogy to natural

language, this is like associating meaning with words rather than individual letters.

In the last system of the Mozart example in Figure 5.4, we see the effect that increasing

the cohesion tolerance ϕ has on the segmentation process. It is important to note that it

is not a simple case of removing boundaries. Although boundaries are indeed removed,

in some cases the locations of boundaries are also altered, as can be seen in the shift

from ϕ = 0 to ϕ = 0.02. This is in large part due to the tolerance function, which uses

a percentage of the standard deviation of cohesion, and is therefore quite sensitive to the

specific musical context, but also to the complexities of the rule-based segmentation model

itself.

5.1.3 PE Induction of Mode and Tonal Centre

As explained in Section 4.2.1 (p. 87), MusiCog’s mode and tonality induction functions do

not focus on determining the music theoretical “tonic,” per se, but rather on finding the

best fitting scale formation (i.e., mode) and tonal centre for a given stream or segment. In

particular, our interest is in providing the PM with a guide for pitch quantization, so that its

interval-based generation process does not wander into inappropriate pitch areas. During

processing, induction is performed at the stream and segment levels, but not at the level

of individual events. As a result, the induction tends to follow the segment structure quite

closely, as can be seen in Figure 5.6. In this example, included to demonstrate the use

129

of the “confidence” value as a method for detecting chromatic passages, we see that the

top passage is correctly identified as C Major, with a brief shift to F Lydian (i.e., the modal

equivalent) part-way through, and that this is done with a high level of confidence. In the

lower passage, on the other hand, confidence decreases dramatically, and the mode and

tonal centre are somewhat ambiguously identified as C Major and C Mixolydian. In this

case, the low confidence rating can be used to indicate the presence of chromatic, and

tonally ambiguous material.

Figure 5.6: A test of the PE’s mode and tonal centre induction function. The top passage in
C Major invokes a high confidence rating, whereas the lower chromatic passage shows sig-
nificantly reduced confidence; a behaviour that can be used for the detection of chromatic
material.

130

0

0.2

0

0.2

0

0.2

co
nfi

de
nc

e
D Phrygian |

(D Phrygian) C Dorian D Phrygian C Dorian

(C Dorian) |

5

9

Figure 5.7: Mode and tonal centre induction of the opening melody from Mozart’s 40th
Symphony. The tonal centre settles on C Dorian, which is the modal equivalent of the
correct key, G Minor. Note the decrease in confidence following the introduction of the
chromatic F] (and subsequent augmented 3rd interval) at m. 8.

5.2 The Working Memory Module

The WM supports CAC through “listening” and generation, and also through the process of

chunking, which allows MusiCog to learn hierarchical/non-adjacent temporal dependencies

in LTM. An important factor underlying these functions is the cognitive salience value, and

its evolution through time.

5.2.1 WM Cognitive Salience and WM Retention

Figure 5.8 shows the evolution of the cognitive salience value for the opening motive in the

Mozart melody (E[, D, D). The example shows the final training pass, so that MusiCog has

131

learned the segment to the Identity tier at this point, as indicated by the high initial salience

value. The salience falls to zero in m. 8 as a result of its lack of parallelism with the current

segment (F, E [, D) and the influence of habituation. The segment is released from WM in

the following measure (m. 9). We can also see a period of maintained salience in m. 6,

attributable to an increase in parallelism arising from the imitative restatement (D, C, C) of

the opening motive.

1

0

0.5

1

0

0.5

Sa
lie

nc
e:

 S
eg

 1

Influence of
habituation

Seg 1

Increased parallelism

5

Figure 5.8: Evolution of the cognitive salience over time for the opening segment (“Seg 1”)
in Mozart’s 40th Symphony. The rate of decay is slowed in m. 7 by the imitative restatement
of segment 1, transposed down one scale-step.

In Figure 5.9 we see the development of WM capacity over the course of training on

the Bach BWV 1013, Allemande (top) and the solo flute work Invidere (bottom). Each work

was run through repeated training iterations, until no further nodes, edges, or links were

added to the CM. The dotted line in each plot indicates the number of elements (segments

and/or chunks) in WM and the solid line indicates the number of individual events con-

tained within those segments/chunks. On both plots we see that the WM contents tend to

stabilize into a somewhat fixed pattern as a result of the gradual replication of WM seg-

ment/chunk structure in LTM. We also see that the contemporary work, which has a much

less regular/symmetrical formal structure, produces greater variance of WM contents than

132

the Bach, which produces a fairly consistent ratio of events to elements. The higher max-

imum event capacity of Invidere (Maxwell = 130, Bach = 104) is likely due to the fact

that this work contains several passages containing rapid note repetitions, which are easily

chunked, allowing a greater number of events to be retained in WM. On the other hand, the

higher degree of parallelism in the Bach results in a higher average number of elements

(segments/chunks) retained in WM (Bach = 16.85, Maxwell = 12.14), and also a higher

average number of individual events (Bach = 96.59, Maxwell = 56.99), likely due to in-

creased cognitive salience. Thus the Bach, having a more “chunkable” structure, is able to

compress more elements in WM than the generally less “chunkable” Maxwell.

Invidere: WM Contents

0

35

70

105

140
Elements Events

Bach BWV 1013, Allemande: WM Contents

0

27.5

55

82.5

110
Elements Events

Figure 5.9: Evolution of WM capacity during training on repeated iterations, showing the
number of elements (segments and/or chunks) retained and the number of individual
events contained by those elements for the first Bach partita (top) and the Maxwell work,
Invidere (bottom).

5.2.2 WM Chunking and Higher-level Segmentation

Looking now at the chunking process, Figures 5.10 and 5.11 show the chunking structure

when trained on the Mozart melody, after the first and last training iterations, respectively.

In this diagram, the event-level stream is recorded in the top staff, and each staff below

records the boundary events at a higher level of form. The information is extracted from the

133

stream during training, and the data is updated after each iteration of the UPDATEWM algo-

rithm (Algorithm 4.6) run during CM training (Section 4.2.3). Note that in the first iteration,

MusiCog does not retain the opening segment—as the number of individual, unchunked

events exceeds the WM capacity—and also that an incorrect higher-level boundary is de-

tected at the end of m. 4. It is worth pointing out that such “false positives” will be retained

in LTM, once learned, since the CM currently has no mechanism for forgetting. However,

both of these errors are corrected in the final training iteration (Figure 5.11), which shows

a concise and musically intuitive hierarchical structure.

opening segment not
retained in WM

false identification of
higher-level boundary

Low-level boundaries

5

Figure 5.10: Formation of chunk structure in WM after the first training iteration on the
melody from Mozart’s 40th Symphony.

Figures 5.12 and 5.13 show a similar chunking representation of the first and last train-

ing iteration on the Bach BWV 846 Fugue. Here we see that the more complex material

produces a more fragmented set of chunks in the first iteration, but that completed training

once again produces a concise hierarchical form. Figure 5.13 also highlights the process

through which higher-level boundaries are created by the discovery of parallelisms be-

tween new segments and the current contents of the WM. The phrase boundary in m. 2 is

134

Low-level boundaries

5

Figure 5.11: Formation of chunk structure in WM after training on Mozart’s 40th symphony
is complete.

discovered when the opening motive is repeated at the dominant pitch level (G, A, B, C),

outlined in grey in the example. It is also worth noting the altered boundary structure at the

beginning of m. 7 (outlined), where the strong sense of closure produced by the preceding

segment causes MusiCog to place the new boundary one note prior to the restatement

of the opening motive. The rhythmic augmentation following the series of eighth-notes (C,

F, D), to the quarter-note on G, does suggest a boundary, but tracing the segmentation

process in detail, we also noted that the E at the start of m. 7 is actually detected as a

singleton segment (see Section 4.2.1, p. 86). In order to resolve the singleton, the E is

shifted to the new segment starting on C due to the closer rhythmic proximity of the C than

the preceding G (i.e., eighth-note versus quarter-note).

135

Low-level boundaries

4

Figure 5.12: Low-level segmentation of the theme from Bach’s BWV 846 Fugue showing
the state of hierarchical learning after the first training pass.

phrase parallelism

boundary altered
by context

Low-level boundaries

4

S1: L1

S1: L2

S1: L3

Figure 5.13: Low-level segmentation of the Bach theme after training is completed.

136

5.3 Long-Term Memory: Learning in the CM

Learning in the CM creates a complex data structure that is difficult to visualize in a concise

manner. However, one way to get a general sense of the structure being learned is to look

at how the model acquires new information during training by plotting the growth of the CM

graph through time. In order to track the development of the CM graph, we trained the

model sequentially, learning the complete representation of each work before moving on

to the next. In Figure 5.14 we see the development of the pitch and rhythm models when

trained consecutively on each of the four movements of Bach’s A Minor Partita, BWV 1013.

Each movement was presented iteratively until no further nodes, edges, or links could be

added to the CM graph.

C
om

pr
es

si
on

 R
at

io

1.5

5.625

9.75

13.875

18

Movement Learned
1 2 3 4

%
 o

f T
ot

al
 N

od
es

0%

15%

30%

45%

60%

Movement Learned
1 2 3 4

L1 %
L2 %
L3 %

C
om

pr
es

si
on

 R
at

io

1.5

6.125

10.75

15.375

20

Movement Learned
1 2 3 4

%
 o

f T
ot

al
 N

od
es

0%

18%

35%

53%

70%

Movement Learned
1 2 3 4

L1 %
L2 %
L3 %

55%

23%
22%

65%

22%

13%

Rhythm Model

Pitch Model

Figure 5.14: The development of the pitch and rhythm models when trained consecutively
on the four movements of Bach’s A Minor Partita, BWV 1013. The two left-hand charts
indicate model compression and the charts on the right indicate the percentage of nodes
learned at L1, L2, and L3.

137

The upper charts represent learning in the pitch model and the lower charts represent

learning in the rhythm model. The two left-hand charts indicate model compression, mea-

sured as the number of events in each movement divided by the number of nodes added.

The number of events is calculated as the number of inputs ×3, in order to account for

the Schema, Invariance, and Identity information associated with each event. The charts

on the right indicate the percentage of nodes learned at L1, L2, and L3, measured against

the total number of nodes added. Note that the pitch model achieves an average com-

pression ratio of 9.04, with a clear trend of increasing compression, and the rhythm model

achieves a higher overall compression ratio of 11.88. The difference can be understood by

looking at the charts on the right. Here, we see that the rhythm model shows a dramat-

ically lower portion of learning at L1, suggesting a general lack of rhythmic variety at the

motive level. This is also clear from studying the score2, which shows a predominance of

isochronous sixteenth- and/or eighth-note patterns. As was mentioned in Section 4.2.1 (p.

85), this kind of rhythmic uniformity tends to exaggerate the influence of pitch information in

low-level boundary detection, causing the L2 structure of the rhythm model to mimic that of

the pitch model (i.e., since the rhythmic material alone has little impact on segmentation).

This behaviour is reflected in the similar portions of higher-level (L2 and L3) learning ob-

served across the rhythm and pitch models, suggesting that formal structure in the Bach is

focused not at the motive level, which is dominated by fairly generic, ornamental gestures,

but rather at the phrase level. Figure 5.15 shows the node counts at each tier of the pitch

model, when trained on the Bach Partita.

N
od

es
 A

dd
ed

0

250

500

750

1000

Movement Learned

1 2 3 4

Schema
Invariance
Identity

Figure 5.15: Nodes added at the Schema, Invariance, and Identity tiers (pitch model) when
trained on Bach’s A Minor Sonatas and Partita, BWV 1013.

2A publicly available transcription can be found at http://www.mutopiaproject.org/ftp/BachJS/BWV1013/
bwv1013/bwv1013-let.pdf

138

http://www.mutopiaproject.org/ftp/BachJS/BWV1013/bwv1013/bwv1013-let.pdf
http://www.mutopiaproject.org/ftp/BachJS/BWV1013/bwv1013/bwv1013-let.pdf

Note that the proportions of nodes learned at each tier reflect the compressibility of the

three representations—i.e., Schema values, or contours, use only three symbols (+, -, 0),

the Invariance representation is an unsigned interval, thus representing approximately half

of the total intervals, and the pitches themselves represent all events.

In Figure 5.16 we see a similar plotting of MusiCog’s learning over time, this time trained

on a corpus of Finnish folk songs. Of note here are the generally higher mean compression

ratios—pitch = 52.99, rhythm = 260.99—due to the simpler, more symmetrical structure,

and overall shorter duration of the folk songs, relative to the Bach. It will be noted that

reduced compression, associated with a sharp increase in learning—particularly at L2—

occurs at song 12 (circled). This suggests that a considerable degree phrase-level novelty

was introduced to the corpus in this particular work. Of note also is the fact that rhythmic

L1 learning is relatively flat at this point, whereas learning at L2 increases dramatically (a

similar, though less pronounced effect is seen in the pitch model). This kind of dramatic

increase in learning can occur as a result of new Schema tier patterns being learned, which

require subsequent completion at the Invariance and Identity tiers.

The general tendency to learn more structure at L2 than L1 indicates an important

feature of both the Bach Partita and the Finnish folk songs; i.e., that variety is achieved

primarily through phrase-level structure. This tendency can also be seen in Jazz music,

as shown in Figure 5.17, where we again see an emphasis of L2 learning over L1, when

trained on a corpus of jazz songs (pitch and rhythm are averaged in this chart). This em-

phasis on phrase-level novelty underlines an important principle of Cope’s notion of music

recombinance; i.e., that new music is a recombination of existing musical materials. Thus, a

relatively small set of motivic segments can yield a relatively large corpus of novel phrases.

While this is a somewhat obvious corollary of the combinatorial nature of music3, it is nev-

ertheless an important aspect of musical form that is inaccessible to many music learning

algorithms. By using a multi-level cognitive approach, MusiCog is able to differentiate be-

tween segment-level and phrase-level structure, and thus to build a memory model that

reflects this basic, cognitively grounded, creative strategy of human composers.

It is important to note that low-level segmentation has a strong effect on hierarchical

learning, and that this effect does not follow a simple linear pattern. Although increasing the

value of ϕ will generally lead to the creation of longer L1 segments, this may consequently

impede the phrase boundary detection mechanism (Section 4.2.2), negatively impacting

3By analogy to natural language we can consider comparing the number of novel words to the number of
novel sentences—“words” being encoded at L1 and “sentences” encoded at L2. Clearly there are a staggering
number of novel sentences that can be created with even a relatively small lexicon.

139

%
 o

f T
ot

al
 N

od
es

0

0.15

0.3

0.45

0.6

Works Learned
1 3 5 7 9 11 13 15 17 19 21 23 25 27

L1%
L2%
L3%

%
 o

f T
ot

al
 N

od
es

0

0.2

0.4

0.6

0.8

Works Learned
1 3 5 7 9 11 13 15 17 19 21 23 25 27

L1%
L2%
L3%

42%

52%

6%

22%

70%

8%

C
om

pr
es

si
on

 R
at

io

0

1250

2500

3750

5000

Works Learned
1 3 5 7 9 11 13 15 17 19 21 23 25 27

C
om

pr
es

si
on

 R
at

io

0

350

700

1050

1400

Works Learned
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

29 29

29

Rhythm Model

Pitch Model

Figure 5.16: Learning in the pitch and rhythm models when trained on the Finnish folk song
corpus (ϕ = 0). Of note is the dramatic increase in learning at L2 for song 12 (circled),
suggesting that this particular song introduced fairly significant phrase-level novelty.

MusiCog’s ability to learn structure above L1. A hypothetical example is shown in Figure

5.18, where we see a clear, non-contiguous segment parallelism (C,D,E) exploited to create

two chunks in 5.18a. However, when the ϕ value is increased in 5.18b, the altered low-level

segmentation hides the parallelism within the second segment, impairing MusiCog’s ability

to detect the higher-level form. Thus the selection of the ϕ value has a direct impact on

the learning of hierarchical structure, and the capacity to learn such structure is dependent

upon the musical content itself.

Since training on consecutive iterations of a single work represents a somewhat unre-

alistic situation, it is generally preferable to train MusiCog by presenting works in a ran-

domized order. When the order is randomized, similarities between different works can be

detected by the CM, potentially resulting in a more compact CM graph structure for the

140

%
 o

f T
ot

al
 N

od
es

0%

17.5%

35%

52.5%

70%

Works Learned

1 4 7 10 13 16 19 22

L1 %
L2 %
L3 %

9%

24%

67%

Figure 5.17: The distribution of nodes learned at levels 1, 2, and 3 of both the pitch and
rhythm models, when trained on a corpus of jazz songs.

entire corpus. Table 5.1 shows the average numbers of nodes learned at L1, L2, and L3

for four different ϕ values, when trained on a Jazz corpus (top), and the four movements

of Bach’s BWV 1013 (bottom), over four complete training attempts (i.e., four randomized

orders of presentation).

parallel
ϕ = 0 ϕ = 0.04

?

chunk chunk

a) b)

Figure 5.18: By altering low-level segment structure, higher ϕ values can negatively impact
the detection of higher-level parallelisms.

Since the general goal of the CM’s learning algorithm is to find the most compact hierar-

chical representation for the learned corpus, it seems reasonable to suggest that reduced

node creation (i.e., maximal compression) might be a good criterion for determining the

ϕ setting. However, it is also important to consider variance in the total number of nodes

created, across different random orders, since high variance suggests that the segment

structure is particularly sensitive to the order of presentation. Looking at Table 5.1, when

training on the Jazz corpus, ϕ = 0.025 creates the fewest nodes, but also has the high-

est standard deviation of node counts across the four attempts. The total node count for

141

Mean Nodes (4 attempts): Jazz Corpus
ϕ L1 nodes L2 nodes L3 nodes Total Nodes Std Dev

0.0 1201.25 2064 517 3823.25 35.23
0.01 1188 2114.75 506 3785.75 34.98

0.025 1207.25 2083.25 471 3761.5 54.13
0.04 1212 2164.25 462.5 3838.75 38.35

Mean Nodes (4 attempts): Bach BWV 1013
ϕ L1 nodes L2 nodes L3 nodes Total Nodes Std Dev

0.0 882.75 2008.75 562.5 3454 38.82
0.01 917.5 2001 513.25 3431.75 27.5

0.025 1055.25 2066.75 459.25 3581.25 63.06
0.04 1107.25 1963.5 390.5 3461.25 129.60

Table 5.1: Learning at L1, L2, and L3 for four different values of ϕ when trained on a corpus
of jazz songs (top), and on the Bach BWV 1013 partita (bottom).

ϕ = 0.01 is slightly higher (approx. 1%), but with significantly lower standard deviation, so

we consider this to be a more appropriate ϕ setting for this corpus. For the Bach corpus,

we see that ϕ = 0.01 creates the fewest nodes, and is also the least sensitive to order of

presentation (i.e., it has lowest standard deviation), suggesting that it will also provide an

appropriate setting for this material4.

5.4 Generation in the PM

As mentioned at the beginning of Chapter 4, testing of MusiCog’s generative capabilities

focused on the notion of musical style imitation. During training, we used a randomized

training process that avoided consecutive presentations of a given source work, with a

stopping condition defined as the point at which MusiCog stops adding new nodes, edges,

or links to its CM graph (i.e., no new structure is learned in LTM; see Section 4.2.3).

The duration for each generated work was chosen to approximate the average duration

of works in the training corpus. Generation began with top-down planning, after which

bottom-up prediction was used to construct new plans, in the event that the initial plan

failed to generate the desired duration of music (see Section 4.2.4). Because MusiCog

generates in segments, the precise duration of a given generation varied according to the

4Although this may seem to suggest that ϕ = 0.01 is a generally optimal setting, it is worth noting that
training on the Folk corpus used for generation testing in Section 5.4 revealed an optimal setting of ϕ = 0.

142

generated segment structure. To provide a degree of closure, each generated melody

ended with the boundary event following the last generated segment. The option for Musi-

Cog to learn from feedback was disabled, except where explicitly indicated. Supporting

materials for the following discussion of MusiCog generation can be found at:

http://www.sfu.ca/~jbmaxwel/MusiCog/index.html

At this site you can find audio and score examples of MusiCog’s melodic generation, down-

loads for the MusiCog framework (Objective-C, 64-bit), the Max external and help file (Max

6.1 or later, 64-bit), and MIDI files for all training corpora and MusiCog generations.

We used two analysis packages during testing: 1) Eerola and Toiviainen’s “MIDI Tool-

box” for MATLAB [78], and 2) the SIMILE melodic analysis package by Müllensiefen and

Frieler [173]. From the MIDI Toolbox we focused on two analysis metrics: entropy and

expectancy-based complexity. The entropy function calculates the entropy of pitch/interval

transitions in the analyzed work. The expectancy-based complexity measure (complebm

in the Toolbox) is based on Eerola and North’s model [77], and takes into account tonal,

intervallic, and rhythmic factors. The tonal factors are based on Krumhansl and Kessler’s

“tonal stability” measure [125]—a measure of the relative perceptual prominence of pitches

in tonal music—and are also influenced by metrical position and duration, both of which

contribute to the perceived salience of pitches in melodic contexts. Intervallic factors are

based on Narmour’s I-R model of melodic expectancy, and rhythmic factors include consid-

erations for rhythmic variability, the degree of syncopation, and the density of the rhythmic

passage (i.e., number of events per second). From the SIMILE package we used the opti3

measure; a multi-factor measure designed to provide a cognitively-grounded estimation

of melodic similarity. Opti3 is based on a weighted linear combination of three compo-

nent distance measures from the SIMILE package: nGrUkkon (an n-gram based, pitch

interval measure), rhytFuzz (a fuzzy estimation of rhythmic similarity), and harmCorE (a

correlation-based measure of implied harmonic structure). This combination of measures

was designed specifically for the analysis of similarity in large corpora, and was optimized

to fit the similarity judgements of human experts [172]. A detailed description can be found

in the SIMILE documentation [173].

To aide visualization of the different corpora, and provide an intuitive baseline for un-

derstanding musical differences between test melodies, we also included a set of randomly

generated melodies. For each test case the number of random melodies was equal to the

143

http://www.sfu.ca/~jbmaxwel/MusiCog/index.html

number of generated melodies (which was equal to the number of corpus melodies). Ran-

dom melodies were created by randomly selecting MIDI pitches in the range [48,96] (C2 to

C7), and randomly selecting rhythmic values from the set of defaults used during rhythmic

quantization (see Section 4.1). An excerpt of a “random” melody is shown in Figure 5.19.

Figure 5.19: Excerpt of a “random” generated melody.

Permutation testing

To test for significance in our complexity and entropy measures we used a permutation

testing approach, with correction for multiple comparisons, as implemented by Groppe [95]

(after Blair and Karniski [23]). Permutation testing, also known as randomization testing,

involves the comparison of an initial distribution—the test statistic T0—to a set of random

permutations of that distribution, referred to as the reference distribution. The method

seeks to estimate the correct distribution of the test statistic under a null hypothesis. The

underlying assumption is that, if the null hypothesis is true, then all possible permutations of

observations should be equally likely to occur [143]. The method is well suited to musical

data, as it is applicable to small samples, and removes the need for a priori knowledge

about the statistical population (e.g., the assumption of normality in the distribution of “all”

folk songs). Determining significance involves calculating the ratio between 1) the number

of permutations of the reference distribution with an absolute t-value |t∗| greater than or

equal to that of T0 (i.e., |t∗| ≥ |t|), and 2) the total number of permutations run. If a large

144

number of permutations have a |t∗| ≥ |t|, we can assume that t lies near the middle of the

reference distribution, and that the groups being tested represent a random selection. If

this is the case, we can safely accept the null hypothesis H0. On the other hand, if very few

permutations produce a |t∗| ≥ |t|, then t must lie near the tail of the reference distribution. In

this case it is reasonable to assume that there’s something particular about the ordering of

the original data (e.g., the collection of test melodies), such that permutation of its elements

alters it in a fundamental way. Since encountering such a specifically ordered distribution

of elements is improbable under H0, we can safely reject the null hypothesis.

Because the measurements provided by SIMILE are estimates of the melodic similarity

between a given melody and the corpus—i.e., the data point for each melody represents its

distance from all other melodies—all observations involving a single melody are correlated

and we cannot assume independence. For this reason we use an alternative method

developed by Gonzalez Thomas et al. ([93] in publication), designed to remove need for

independence of observations, when testing our opti3 results. This approach reorganizes

the results data such that T0 accounts for both within-group and between-group differences,

and adapts the t-value calculation accordingly. First, a matrix of similarity ratings s(x,y) is

created, like that shown in Figure 5.20.

s(A,A) s(A,B)

s(B,A) s(B,B)

A

B

A B

Figure 5.20: Matrix of similarity ratings by Gonzalez Thomas et al.

Here, each quadrant represents the similarity ratings for pairs (A,A), (A,B), (B,A), and

(B,B). The t calculation estimates the mean difference both within and between groups,

using Equation 5.1.

t =
(
AA+BB

)
−
(
AB+BA

)
(5.1)

where AA, BB, AB, and BA are the means of similarity readings for each quadrant. As

when using Groppe’s function, our test statistic T0 is the set of similarity readings from test

groups (A,B), and t is calculated using Equation 5.1. Permutation randomly permutes the

column labels, so that the position of each melody in the set of groups is randomly varied,

145

potentially changing the melody’s group membership. As with the complexity and entropy

tests, we run 10,000 permutations for each pair, with an alpha of 0.055 .

5.4.1 Testing on the Folk Corpus

We began by training MusiCog on a corpus of 100 folk songs compiled by Gonzalez

Thomas et al. [92], from which 100 16-measure melodies were generated. Recognizing

that cohesion tolerance (ϕ , see Section 4.2.1, p. 86) has a direct influence on segmen-

tation, and thus potentially on the recombinant aspects of generation, we ran the training

with two different settings: ϕ = 0 and ϕ = 0.05. Figure 5.21 plots complexity and entropy

ratings for the folk, random, and MusiCog groups, at each cohesion tolerance setting. Here

we see a clear overlap between the MusiCog generations and the training corpus, and a

spatially distinct cluster for the random melodies. It will also be noted that increasing the ϕ

value resulted in higher complexity ratings (µ = 4.49 to µ = 4.63), and slightly increased

variability in the entropy ratings (from standard deviation σ = 0.003 to σ = 0.0032).

MusiCog/Folk, !=0

En
tro

py

0.87

0.878

0.885

0.893

0.9

Expectancy-based Complexity
3 3.875 4.75 5.625 6.5

Folk Corpus
MusiCog (!=0)
Random

MusiCog/Folk, !=0.05

En
tro

py

0.87

0.878

0.885

0.893

0.9

Expectancy-based Complexity
3 3.875 4.75 5.625 6.5

Folk Corpus
MusiCog (!=0.05)
Random

Figure 5.21: Comparison of entropy and expectancy-based complexity ratings for Musi-
Cog’s generated folk melodies, a folk melody training corpus, and a set of “random”
melodies.

5The alpha indicates the significance level of a test, and is the probability of making a Type I error (i.e., a
so-called “false positive”).

146

These increases are likely due to the decreased segmentation sensitivity caused by

the higher ϕ value, which tends to promote the creation of longer segments in the PE, and

potentially less compact hierarchical representations in the CM (i.e., more nodes added for

a given corpus—see Section 5.3, p. 141). For example, with the folk corpus, we observed

that training with ϕ = 0 resulted in the creation of an average of 20 segments per melody,

whereas training with ϕ = 0.05 produced an average of only 15 segments per melody.

As segments become longer, they capture more intra-opus information, becoming more

specific to a given source work, and consequently less amenable to recombination (an

implicitly inter-opus phenomenon). These longer segments generate their own internal

expectancies, which may be quite unique in the corpus. When recombined by MusiCog,

such strong internal expectancies are more likely to be violated by the transitions between

segments, potentially leading to increased formal complexity; musically speaking, to an

impression that the formal goals of the melody are changing with each new segment. By

contrast, shorter segments are more generic and thus more amenable to recombination,

since a larger portion of the expectancies generated tend to be built across segments, thus

capturing more inter-opus information.

Significance testing for complexity and entropy revealed a significant difference for com-

plexity, but no significant difference for entropy (p = 0.539). Turning to the SIMILE tests,

we ran the opti3 similarity measure on all three groups (folk, MusiCog, and random), visu-

alizing the results using classical multi-dimensional scaling, as seen in Figure 5.22. Once

again we see a distinct cluster formed by the random group, and a notable overlap between

the MusiCog group and the folk corpus. However, testing the results using the method of

Gonzalez Thomas and et al. revealed a significant difference between the MusiCog group

and the folk corpus6, suggesting that MusiCog had not replicated the folk style adequately

across the total collection of generated melodies.

In order to gauge the effect of feedback learning on generation, we retrained MusiCog

on the folk corpus (with ϕ = 0), and generated 1000 example melodies with feedback learn-

ing enabled. We then tested complexity and entropy ratings for the non-feedback melodies

against the last 100 feedback melodies (i.e., melodies 901-1000) and the folk corpus (with

expected means taken from the folk corpus). As in the non-feedback case, all measures

for feedback melodies 901-1000 produced significantly different complexity ratings, but in

this case a weakly significant (p = 0.035) entropy rating was also observed. More crucially,

significant differences were also found between the feedback melodies and the original,

6Given the MDS plot, the random group was assumed to be significantly different.

147

MDS

-0.2

-0.05

0.1

0.25

0.4

-0.3 -0.125 0.05 0.225 0.4

Folk Corpus
MusiCog (𝜑=0)
Random

Figure 5.22: Multi-dimension scaling plot of the Folk corpus, the MusiCog generations, and
the set of random melodies.

non-feedback melodies, as can be seen in Figure 5.23, where we see a noticeable ef-

fect of feedback learning on ratings for both dimensions. Of course, given that MusiCog’s

generated melodies tend to exceed the complexity and entropy of the folk corpus, it is in-

tuitively clear that learning from its own output—and thus being further influenced by its

own tendencies—would likely exaggerate this behaviour. It is also worth noting that the

CM graph size increased considerably with feedback learning enabled.

Score Analysis of MusiCog Generation

Because results from the statistical tests do not provide enough information to understand

the musical differences between MusiCog’s melodies and the folk corpus, we turned to the

musical scores for further analysis. Two sample scores were selected; the folk melody in

Figure 5.24, and MusiCog generation 43, shown in Figure 5.25. Looking at the folk song,

we see a clear binary structure, expressed through a symmetrical, two-part “call-response”

form. The two main themes, A and B, are four bars long, and each is constructed from a

148

MusiCog/Folk, !=0
En

tro
py

0.87

0.878

0.885

0.893

0.9

Expectancy-based Complexity
3 3.875 4.75 5.625 6.5

Folk Corpus
MusiCog (!=0)
Random

MusiCog/Folk, feedback 901-1000, !=0

En
tro

py

0.87

0.878

0.885

0.893

0.9

Expectancy-based Complexity
3 3.875 4.75 5.625 6.5

Folk Corpus
MusiCog (!=0)
Random

Figure 5.23: Repeated generation (1000 melodies) with feedback learning enabled pro-
duces a clear and significant increase in the complexity and entropy ratings of the gener-
ated melodies.

pair of contrasting two bar phrases. The melody expresses a clear tonality, beginning on G

and ending on the tonic of the key, C. Themes A and B likewise emphasize the dominant

and tonic, with the second bar of phrase Ai ending on G, and the second bar of Aii ending

on C. Theme B follows the same formal plan.

Turning to MusiCog generation 43, shown in Figure 5.25, we see that it is composed

entirely in the key of C major. Recalling the operation of the mode/tonality induction function

(Section 4.2.1), and its application in the PM (Section 4.2.4), we can see that, by the end

of the second measure, the PE could quite easily induce the key of C major (i.e., Ionian

mode, salient pitch-class C), due to the durational emphasis of C57 and the lack of any

ambiguating accidentals (e.g., the absence of F], which might support G major). From

this point forward, MusiCog will have “decided” on the scale for the generation, and pitch

content will be quantized to the induced scale8.

7In these two measures C5 occupies 2.5 beats, A4 occupies 1.5 beats, and all other pitches occupy only 1
beat.

8This will remain the case until a sufficiently chromatic segment is generated from LTM, in which case the
segment will be left unquantized. However, the established mode of C Ionian will remain in force, in the event
that quantization is required again later in the melody.

149

A1 A2

B1

B2

i ii

i ii

i

ii i ii

Figure 5.24: Folk song at median complexity from training corpus.

Figure 5.25: MusiCog folk generation number 43.

150

Signs of Tonalilty

MusiCog currently lacks an explicit model of tonality, and thus had no deliberative routine to

structure melody 43 in a way that would promote a strong tonic function for C. For example,

whereas the folk melody aligns cadences with strong metrical accents, placing the tonic on

the downbeats of mm. 4, 8, 12, and 16, the “tonic” in MusiCog’s generation is accented

much less symmetrically at mm. 5, 7, 8, and 9. Perhaps most crucially, C does not appear

at all in the last five measures of the melody9. Nevertheless, MusiCog’s generation does

contain transitions with strong tonal implications, and these transitions do at times align

with an implied metrical structure. For example, the B4 at the end of m. 4 implies a strong

cadential relationship with the consequent C5 (downbeat of m. 5), and a similar pattern is

repeated in mm. 8/9 (though in this case the B4 occurs in a weaker metrical position). It is

also frequently the case that non-root chord tones of the tonic and/or dominant appear in

accented positions. Recognizing the importance of such tonal implications, we decided to

perform a manual harmonic analysis, shown in Figure 5.26, outlining the harmonic structure

implied by the melody. Of course, this outline displays a degree of subjective interpretation

(the bracketed chords represent choices which, though perhaps less obvious, are entirely

idiomatic), but it nevertheless demonstrates the fact that certain tonal cues are present in

the generated melody.

I V I

(vi) V I V7 I (ii)

I V7 I V76
4()

7

12
V

Figure 5.26: The manual inclusion of a harmonic outline highlights the implied tonal struc-
ture of the MusiCog melody.

9Emphasizing this point, it is worth noting that replacing the final bar with a whole-note on C5 gives the
melody a strong sense of tonal resolution.

151

In order to determine whether the implicit tonal structure of MusiCog generation 43

was simply an accident, encountered only in this particular melody, we decided to test

specifically for indicators of tonality. To this end we used the Toolbox’s maxkkcc measure,

which provides an estimate of the most probable tonality implied by a set of pitches, using

Krumhansl and Schmuckler’s well known key-finding algorithm [126]. The method exploits

Krumhansl and Kessler’s 24 key profiles, an example of which (for C major) is shown in

Figure 5.27.

C Major Key Profile

Li
st

en
er

 ra
tin

g
(g

oo
dn

es
s

of
 fi

t)

1

2

3

4

5

6

7

Pitch-class

C C# D D# E F F# G G# A A# B

Figure 5.27: The Krumhansl-Kessler key profile for C major. The scale represents listener
ratings of goodness of fit for each of the chromatic tones when preceded by either an
individual tone or a diatonic chord.

The profiles were derived experimentally via probe-tone tests on human subjects, and

provide an estimate of the perceived key membership of each of the 12 pitch-classes,

when heard in the context of a specific pitch or diatonic chord [125]. The maxkkcc function

returns the maximum cross-correlation for all 24 key profiles, and is here used to estimate

the degree to which a melody would be perceived as tonal by a human listener.

Testing the MusiCog group against the folk corpus did reveal a significant difference in

the mean strength of tonality between the two groups. However, this only tells us that Musi-

Cog did not replicate the strength of implied tonality demonstrated across the entire Folk

corpus. In order to understand whether the tonal structure observed in MusiCog generation

43 was purely accidental, or perhaps arose as a byproduct of the pitch quantization mecha-

nism, we needed a baseline for measuring the influence of pitch quantization alone. To this

end, we generated a new set of “random” melodies, the pitches of which were constrained

to the key of C major. We then tested the group of random diatonic melodies against the

152

MusiCog group, revealing a significant difference, with the MusiCog group demonstrating a

higher mean tonality rating than the random (diatonic) group. The histograms for all three

groups—Folk, MusiCog, and random (diatonic)—are shown in Figure 5.28.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 10

1

2

3

4

5

6

7

8

9

Tonality (Krumhansl & Schmuckler)

Pr
ob

ab
ilit

y
de

ns
ity

 fu
nc

tio
n

(p
df

)

Random (diatonic)
MusiCog
Folk Corpus

Tonality (Krumhansl & Schmuckler)

Pr
ob

ab
ilit

y
de

ns
ity

 fu
nc

tio
n

(p
df

)

Figure 5.28: Histograms of the strength of implied tonality (using the maxkkcc function) of
the Folk corpus, the MusiCog generations, and a set of random melodies in C major.

Here we can see that the group of random melodies clearly generates the lowest overall

strength of tonality, with a mean of 0.6710. As might be expected, the Folk corpus gener-

ates by far the strongest tonality rating, with a mean of 0.866, while the MusiCog group

generates a mean rating between the two groups, of 0.75. Also of note is the fact that the

random group’s lower tonality ratings (i.e., Tonality < 0.65) account for a relatively greater

portion of its distribution than MusiCog’s low tonality ratings. Conversely, MusiCog’s high-

est ratings (Tonality > 0.85) account for a relatively higher portion of its distribution than the

random group’s highest ratings. In general, the random group’s ratings exhibit a roughly

normal distribution, whereas the distributions of the MusiCog group and the Folk corpus

are generally skewed toward higher tonality ratings.

10The above-chance level observed is likely due to the imposed C major scale quantization. Analysis of the
unquantized random melodies, for example, produces a mean rating closer to chance, of 0.58.

153

Motivic Exploitation

In Figure 5.29 we provide a manual analysis of the segment structure of MusiCog gener-

ation 43. The analysis emphasizes contour and boundary relationships, indicating a few

prominent features of the melody. Determining the actual segment structure of a given

generation is difficult and subject to interpretation, since patterns planned by the PM may

not always be realized precisely, and segmentation by the PE may differ from the seg-

ment structure intended by the PM (as discussed in Section 4.2.4). In such situations,

the state inferred in LTM may be different from that used as the context for the preceding

PM generation, leading to complex behaviour. Also, it can occasionally happen that the

rhythmic segments produced are shorter than the associated pitch segments (see Section

4.3), in which case the PM truncates the pitch segment, altering the segment structure and

thereby altering the inferred context (which in turn alters future generation). When perform-

ing manual segment analyses, we begin by searching for direct repetitions, preferably at

the phrase level. If repetitions can be found, and they appear to occur at the phrase level

(i.e., the repeated segment contains identifiable boundaries), we determine a plausible

manual segmentation for the phrase. Having identified a set of repeated segments N, we

then search the entire melody for segments with contours matching those in N11. We then

label the extracted segments in alphabetical sequence from the beginning of the melody,

identifying related motives using prime symbols (e.g., a, a’, a”, etc.). When a motive is

altered specifically by rhythmic variation, we precede its name with a superscript “r” (e.g.,
ra). It is worth acknowledging here the somewhat counter-intuitive segmentation of the final

motive, rd’, in Figure 5.29. Since we know that the PM will place a final boundary at the

end of the generation, we can safely assume that the second-to-last segment excludes the

final note. In this case, we see that the penultimate segment (motive rd’) shares the same

contour as d, so we identify the segment accordingly. Were this generation to continue, the

PE would most certainly identify a boundary on the first of the two F5s in m. 17 (a result

of the dramatic increase in IOI), effectively “stealing” the F5 from rd’, and placing it in the

following segment.

In this analysis we clearly notice the lack of symmetry, when compared with the highly

symmetrical structure of the folk melody in Figure 5.24. In spite of this quite obvious dif-

ference, the melody does demonstrate a few important formal properties of its human-

composed counterpart. First, we see that there is a clear process of motivic exploitation,

11We search for matching contours because this is the attribute used for identifying and exploiting paral-
lelisms in the PM.

154

Figure 5.29: Analysis of the segment structure of MusiCog generation number 43.

arising from the identification of parallelisms in WM, and their compositional exploitation

by the PM. This is particularly noticeable in the repetition and variation of motives a, b,

and c. These motives undergo transformations of pitch level (i.e., transpositions imposed

by the L2 contour), interval content, and rhythmic structure, creating imitative variations of

the original motives. Motive a’, for example, is an interval variation of motive a, while ra

is a rhythmic variation of a, realized by halving its rhythmic durations. Motives rb and rc

are likewise rhythmic variations of b and c. Motives ra’ and ra are truncated versions of a,

indicating either that the pitch segment has been truncated due to a mismatched rhythm

segment, or that the terminal node used to define these segments was located at a lower

depth along the same CM path as the terminal for a.

Figure 5.29 also draws attention to the multi-segment phrase 2b, which appears in di-

rect repetition in the melody, at mm. 2/3 and 7/8. Since the PM does not implement any

method to simply copy a phrase directly from WM, the generation of such a structure sug-

gests that an L2 parallelism from LTM has been exploited (i.e., via the mechanism outlined

in Section 4.2.4). This motivic pattern also occurs in mm. 5-7, though it is somewhat less

obvious in this instance, due to the rhythmic variation of motives b and c. It is also worth

noting that the entire melody can reasonably be divided into two parts. Part A develops

motives a, b, and c, and runs from mm. 1-9.5. Part B introduces motives d and e, while

also continuing to draw frequently on motive a, and runs from m. 9.5 to the end. Notable

155

structural differences in part B include its lack of direct repetitions, its wider pitch range,

and its introduction of rhythmic syncopation in mm. 14-16, all of which give it a more devel-

opmental quality. This added sense of melodic development may offer some explanation

for the increased complexity scores found in our quantitative testing discussed in Section

5.4.1.

In contrast to the tendency for motivic variation seen in the MusiCog example, the

folk song in Figure 5.24 tends to repeat motives and phrases directly, without variation.

A possible exception is the pitch imitation between the first two segments of phrase B1,

which replaces the (-4, +4) interval pattern with (-3, +3). It is worth noting, however, that

these two patterns are identical if we use a scale-step representation (i.e., (-2,+2)), rather

than an interval representation, in which case it could be argued that pitch imitation is not a

formal feature of this particular example melody (such an argument would also then apply

to the MusiCog generations). Although the MusiCog melody does repeat material directly,

the shifted metrical position of the repeated phrase (i.e., phrase 2b in mm. 7/8), and its

formal separation by a rhythmically varied version (phrase (a, rb, rc) in mm. 5-7), reduce

the sense of formal symmetry and balance.

5.4.2 Imitation of more developed styles

In order to better understand the limitations of the “musically naïve” approach to generation

currently used in MusiCog, we tested performance with a set of more musically developed

styles; a corpus of 22 Jazz melodies, the Bach A minor Partita BWV 1013 for flute solo,

and a solo flute work by contemporary composer James B. Maxwell. In identifying these

corpora as more “musically developed” we are not making an arbitrary division based on

notions of “high” and “low” art, but rather on the level of music theoretical abstraction impli-

cated in their structure. In particular, many of these works follow implicit—and often quite

elaborate—harmonic frameworks, which impose direct constraints on the utilized pitch con-

tent. In many cases, these harmonic structures are not obvious to the ear, given only the

immediate melodic context. This is particularly true of Bach’s music, which contains fre-

quent harmonic shifts and modulations, the logic of which may become clear only after

several beats, when the modulatory motion has resolved. Such structures are deliber-

ate expressions of an underlying Pythagorean conception of music (see Section 2), very

much in vogue in Bach’s time, which sought to reveal music’s deep mathematical structure

[128]. In this sense, while clearly guided by listening, Bach’s music is also dependent upon

theoretical principles. Which is simply to say that it would not have developed as it did

156

without theoretical and technological innovation (not the least of which was the invention of

a so-called “well-tempered” scale).

In the case of the Jazz corpus we have a slightly different complicating factor, in that all

of the melodies have been removed from their original harmonic settings. These melodies,

however, would seldom (if ever) be performed without the accompanying harmonic progres-

sion, which provides an explicit context for the chromatic violations of key that characterize

the style. The Jazz melodies also display an additional layer of ambiguity in their frequent

use of rhythmic syncopation. When the overt rhythmic pulse generally provided by the ac-

companying percussion and “walking bass” is omitted (i.e., when presenting the melody in

isolation, as we do here), the highly syncopated melodic writing often pushes the violation

of rhythmic expectancy to its limit, dissipating any perceptible pulse. Rhythmic complexity

in the Maxwell material presents a similar situation, except that in this case the music is

often composed to deliberately avoid a sense of pulse (i.e., the pulse is not “lost” through

the omission of the pulsed accompaniment, as in the Jazz corpus). This music does not

follow a “functional” harmonic plan like the Bach and Jazz corpora, and thus is not specif-

ically relying on unstated harmonic organization, but it also does not remain in a single

key, or under a constant scale structure. Thus, the strong impulse for listeners to induce a

consistent scale or tonality is deliberately subverted; a situation which, due to the tenacity

of our perceptual scale/tonality induction mechanisms, often requires a paradoxically high

degree of formal organization to achieve.

Jazz Corpus

We began our testing of more developed musical languages by examining MusiCog’s ca-

pacity to generate Jazz melodies. Figure 5.30 shows the expectancy-based complexity and

entropy ratings for a corpus of 22 Jazz “standards,” 22 MusiCog generations trained on the

Jazz corpus, and 22 random melodies. The requested length for the MusiCog generations

was 32 measures. It will be noticed that the Jazz corpus has fairly high variance across

both dimensions, perhaps due to the fact that it contains songs from different periods of

Jazz, mixing so-called “Big Band Era” songs like “All of Me” with more experimental, avant-

garde BeBop songs like “Epistrophe,” by Thelonious Monk. Analysis of complexity and

entropy revealed significant differences for both attributes (complexity p = 0.0285, entropy

p = 0.0012), as is apparent in Figure 5.30. However, there is once again a clear (if small)

overlap between the Jazz corpus and the MusiCog group, and a distinct cluster for the

157

random group. Testing using the opti3 measure from SIMILE likewise reveals significant

differences between all groups.

MusiCog/Jazz, 𝜑=0.01

En
tro

py

0.88

0.893

0.905

0.918

0.93

Expectancy-based Complexity
4 4.625 5.25 5.875 6.5

Jazz Corpus
MusiCog (𝜑=0.01)
Random

Figure 5.30: Plot of complexity and entropy for a corpus of 22 jazz songs and 22 32-
measure ‘songs’ generated by MusiCog.

Figure 5.31 shows the full score for MusiCog’s 18th generation when trained on the

Jazz corpus. MusiCog has quantized the pitch scale of the melody to the key of A major.

This tonality can be fairly easily established after the first 3 bars, or so, due to the preva-

lence of pitches from the A major tonic triad (A, C], E). Figure 5.31 also indicates several

places where chromatic passing tones from the minor key (m7, m3, m6) are used, giving

the melody an idiomatic Jazz sound. This is facilitated by the use of the PE’s mode/tonality

“confidence” rating, which allows the PM to disable pitch quantization in cases where the

generated segment suggests a highly chromatic structure. This can be seen in mm. 4, 10,

16, and 17, where the chromatic segments have been surrounded by more distinctly dia-

tonic segments, indicating the temporary disabling of pitch quantization, and subsequent

return to the A major scale. This melody has a less convincing tonal structure than MusiCog

Folk generation 43, though emphasis of tonic, dominant, and subdominant chord-tones is

quite common. There is also an abrupt leap of pitch register at m. 24, which disrupts the

melodic continuity somewhat. Rhythmically, we notice the use of “rolled eighth” patterns

158

throughout12, giving the rhythms an idiomatic Jazz feel. Thus, in spite of MusiCog’s fail-

ure to replicate the corpus quantitatively, important aspects of the style have clearly been

captured in some of MusiCog’s generated melodies.

Establish A major

Figure 5.31: MusiCog’s 18th generation when trained on the Jazz corpus. Arrows indicate
chromatically altered tones.

12These rhythms are written using triplets, in order to accurately capture the perceived rhythmic figures.
When transcribed for human performers—for example, in Jazz “fake books”—such rhythms are often written
using “straight” eighth-notes, with the understanding that the performance practice dictates the use of a “rolled,”
or “swing” feel.

159

Bach A minor Partita, BWV 1013

Next we trained the system on the 4 movements from Bach’s A Minor Partita for flute

solo, BWV 1013, and generated 4 MusiCog melodies of 112 measures each. Once again,

quantitative testing revealed significant differences for all measures; complexity, entropy,

and SIMILE’s opti3 measure. A multi-dimensional scaling plot of the 4 Bach movements,

MusiCog’s generations, and 4 112-measure random melodies can be seen in Figure 5.32.

It is worth noting that the within-group distances recorded for the Bach corpus are consid-

erably greater than those recorded for the MusiCog or random groups. This is likely due

to the fact that, as a set of related movements comprising a larger musical work, the Bach

examples could be expected to contain deliberate contrasts, thus demonstrating a higher

level of formal/compositional thought. MusiCog, on the other hand, has no conception

of multi-movement works, and thus begins each generation with no memory of the work

that came before. With no recollection of the preceding generation(s), and no deliberative

mechanism for creating inter-opus variety, variation between works can be achieved only

through stochastic selection.

MusiCog/Bach, 𝜑=0.01 (MDS)

-0.3

-0.075

0.15

0.375

0.6

-0.3 -0.125 0.05 0.225 0.4

Bach BWV 1013
MusiCog (𝜑=0.01)
Random

Figure 5.32: Multi-dimensional scaling plot of the 4 movements from Bach’s BWV 1013
flute partita, MusiCog’s generations, and 4 random melodies.

Of greater interest, however, is the apparent difficulty MusiCog has replicating this par-

ticular style. Studying the score, an excerpt of which is shown in Figure 5.33, it is once

160

Figure 5.33: An excerpt of MusiCog’s 3rd generation when trained on Bach’s BWV 1013,
showing stylistically inconsistent syncopation and rhythmic complexity.

again clear that, although certain aspects of the gestural language of Bach’s music are

evident, the formal integrity of the whole is clearly lacking. In this case, however, formal

problems are apparent both at the phrase level and at the level of the complete work.

Again, weaknesses are evident in a general lack of repetition structure and symmetry.

However, unlike the previous corpora, the MusiCog Bach generations also introduce an

exaggerated and stylistically inconsistent degree of syncopation and rhythmic complexity.

In stark contrast to the rhythmic continuity displayed by the Bach, the rhythmic surface

of all 4 generated works is broken and fragmented, suggesting that there are aspects of

Bach’s style for which MusiCog’s hierarchical, recombinant approach is clearly at a disad-

vantage. This is a noteworthy outcome, since the Bach works tend to be characterized

by extended, isochronous rhythmic patterns (the first movement, for example, is written

entirely in sixteenth-notes), which have little or no hierarchical rhythmic structure13. Thus,

13There is, of course, an explicit metrical structure, but it is not articulated rhythmically.

161

the Bach corpus demonstrates a case in which the perceived segment structure is con-

veyed almost entirely through pitch contour. We will discuss the problems this poses for

MusiCog’s generation at greater length in Section 6.1.

Contemporary Music: Maxwell’s Invidere, for flute solo

As a final test, we trained MusiCog on a contemporary solo flute work, Invidere, by James

B. Maxwell, and generated 10 works of approximately 112 measures duration. Complexity

and expectancy for the original work, the MusiCog generations, and 10 random melodies

(112 m. each), are plotted in Figure 5.34. Because the Maxwell “corpus” is represented

by a single work, we did not perform significance testing. An excerpt of MusiCog’s 10th

generation can be seen in Figure 5.35, for which we can make the same general obser-

vations. Formally, the generated melodies once again lack the symmetry and repetition

structure of the source work (though symmetry in particular is a less important attribute in

of the Maxwell than the previous training corpora), and the rhythm is again less regular—

an excerpt of the Maxwell is shown in Figure 5.36. Harmonically, the quality of chromatic

movement that typifies the implied harmonic structure of the source work has been repli-

cated in the generated material. We also see frequent motive-level chromaticism, indicating

that pitch content has not generally been quantized. This suggests that the PE’s mode in-

duction must have frequently disabled pitch quantization, due to low confidence ratings, as

discussed in Section 4.2.1. It is also worth pointing out that, with this music, the higher

degree of chromaticism and lack of implied functional/tonal harmony are generally better

suited to MusiCog’s interval-based generation than the other corpora.

Although the original work is rhythmically complex, its rhythmic figures do generally

align with simple divisions of the beat (e.g., downbeat, eighth, sixteenth) or along clear

n-tuplet subdivisions (e.g., aligned with the 2nd or 3nd triplet in a beat). In Figure 5.35,

however, we see that rhythms are often subdivided in complex ways, with figures beginning

at counter-intuitive metric/beat positions (e.g., on the 2nd thirtysecondth-note). Of course,

this is partly a symptom of the rhythmic transcription process involved in converting the

generated MIDI file to common music notation, but it is likely exacerbated by the rhythmic

recombination process, which does allow for the generation of novel rhythmic values, not

encountered in the corpus; a phenomenon we discuss in more detail in Section 6.3.1.

As with the previous corpora, another notable difference between the Maxwell work and

the generated examples is that the latter do not demonstrate the clear high-level structure

of the original. Specifically, whereas Invidere has several distinct sections of contrasting

162

material, the generated examples tend to spend more time exploring one or two types of

material. This is likely due to the inability of MusiCog to extract high-level structure beyond

the phrase level, due to limitations of WM capacity. It is worth note, however, that these

limitations are not particularly inconsistent with those of human subjects. In more complex

music, involving large-scale forms, it is part of the function of music notation and the musical

score to provide a kind of surrogate memory, allowing composers to reflect upon previous

material in a manner that would be quite impossible within the confines of working memory

alone. The score allows composers to discover connections between motivic materials,

and build complementary and/or contrasting content, in a manner that would be impossible

for any musician with average skills of memorization and recollection.

MusiCog JBM, 𝜑=0

En
tro

py

0.88

0.893

0.905

0.918

0.93

Expectancy-based Complexity
4 4.75 5.5 6.25 7

JBM Invidere
MusiCog (𝜑=0))
Random

Figure 5.34: Plot of the complexity and entropy ratings for Maxwell’s Invidere, MusiCog’s
generations, and 10 random melodies.

163

Figure 5.35: Score excerpt from MusiCog’s 10th generation when trained on Maxwell’s
Invidere, for flute solo, showing exaggerated rhythmic complexity.

Figure 5.36: Score excerpt from Maxwell’s Invidere, for flute solo.

164

Chapter 6

Discussion: Autonomous
Composition in MusiCog

6.1 Discussion of Test Results

While statistically significant differences were found between MusiCog’s style imitations

and the corpora in all cases, score analysis revealed important similarities of both style

and form. Consistent with our notion of MusiCog as a “musically naïve” composer, the

system had increasing difficulty replicating styles that drew on increasing levels of music

theoretical knowledge. This can be seen in Figure 6.1, which plots the complexity and en-

tropy values for all corpora and all MusiCog generations. Here we clearly see increases in

both complexity and entropy as the music becomes more theoretically derived; specifically,

as the music becomes more dependent upon an underlying harmonic framework. Also of

note is the fact that, as the complexity of the encoded music theoretical principles increases

(e.g., dependence upon explicit or implicit harmonic structure as in the Jazz and Bach cor-

pora, or deliberate subversion of strong cues for pulse induction or tonality/scale induction,

as in the Maxwell), the overall difference between MusiCog’s generations and the corpora

becomes more pronounced. For example, when viewed in relation to all the corpora, the

Folk groups (i.e., corpus and MusiCog) together form a well defined cluster, differing only

in their internal distributions within that space. Likewise, the Jazz corpus shows a clear

area of overlap with MusiCog’s output, indicating that several melodies within the MusiCog

group have replicated the style with relative success. However, for both the Bach and the

Maxwell works, the MusiCog groups clearly occupy their own independent clusters.

165

Corpora/MC, All Styles

En
tro

py

0.86

0.88

0.9

0.92

0.94

Expectancy-based Complexity

3.5 4.5 5.5 6.5 7.5

Folk (x100)
Jazz (x22)
Bach (x4)
Random (x100)
JBM (x1)
MC Folk (x100)
MC Jazz (x22)
MC Bach (x4)
MC JBM (x10)

Figure 6.1: Complexity and entropy for all corpora and all MusiCog generations.

166

Looking at the overall plot, however, it is worth noting that all MusiCog groups form

well defined clusters of “styles,” suggesting that MusiCog is able to capture the internal

differences between corpora, and is replicating these differences during generation. Also

of note is the fact that both the original corpora and the MusiCog groups are distributed

across the complexity/entropy space in a similar manner, with the Folk corpus/MusiCog

pair at the lower left, and each pairing of more complex styles moving toward the upper

right1. Once again, as the styles become formally more complex, MusiCog’s capacity for

style imitation decreases. Interpreting this result from the perspective of the listener, it could

be said that the more musically developed corpora are not as immediately accessible to

perception as the simpler corpora, and require either an accompanying harmonic/chord

progression, or explicit musical knowledge and/or experience for comprehension. Musi-

Cog’s Bach generations indicate further problems, which we will discuss in detail now.

Problems encountered with the Bach corpus

In Section 5.4.2 we noted that MusiCog’s Bach generations demonstrated rather serious

violations of style, primarily through the introduction of exaggerated syncopation. We sug-

gested that this was due to the lack of hierarchical rhythmic structure in the Bach sample

works, which contained extended passages of isochronous rhythmic values. In such a

structure, segment boundaries are conveyed only through pitch contour, and not by the

combination of pitch and rhythm, as in the other corpora. If we consider such a composi-

tional structure from the perspective of recombinance, we see that the stylistic requirement

of maintaining continuous isochronous rhythms is actually quite a narrow constraint. This

can be seen in Figure 6.2, where an isochronous sixteenth-note rhythm is presented, with

an arbitrary segment structure added manually—i.e., the kind of segmentation that might

be created by imposing a pitch contour on the isochronous rhythm. Below the segmented

isochronous sequence are three arbitrary recombinations of the four segments, A , B ,

C , and D . In each case, the boundary position of the segment within the beat is main-

tained. We see clearly that none of the recombined sequences of segments can satisfy

the style constraint of maintaining the isochronous rhythm. Extending this principle to the

recombination of pitched material, Figure 6.3 shows a similar outcome, demonstrated ac-

cording to MusiCog’s generative process of recombining boundaries and terminals. It will

1The Jazz corpus poses somewhat of an exception, by way of its generally high variance, likely caused by
the inclusion of subgenres (e.g., “Big Band,” “BeBop”) within the corpus.

167

be noted that the resulting syncopation is similar to that found in MusiCog’s generations

when trained on the Bach corpus (see Figure 5.33, Section 5.4.2).

A B C D

C D B A

D B C A

C A D B

1)

2)

3)

Figure 6.2: Arbitrary rhythmic recombination of isochronous rhythmic segments produces
a syncopated overall phrase structure.

It could be argued that there is a kind of implicit syncopation of phrasing in Bach’s

music, which is deliberately obscured by the isochronous sixteenth-note rhythms. Indeed,

looking at the Bach excerpt in Figure 6.4, we see that the pitch contour does, in fact,

generate a kind of “virtual syncopation,” reminiscent of the “virtual polyphony” outlined in

Section 3.2, whereby large interval leaps and changes of pitch contour jump out against

the isochronous context. These events create “contour accents” [146], driving our attention

away from the underlying pulse in a manner that mimics the effect of conventional rhythmic

syncopation. This kind of writing is by no means common in the history of music. Rather,

the common practice—particularly in monody, melody, or other monophonic forms—is to

articulate phrasing through variation of both pitch and rhythm. Viewed in this light, it could

be argued that the choice to create music that denies the role of rhythm in melodic seg-

mentation, yet still creates the kind of rhythmic vitality syncopation provides, represents a

deliberate compositional strategy. Though a somewhat hapless result when viewed from

the perspective of musical style imitation, MusiCog’s tendency to make Bach’s underlying

syncopation explicit is a curious byproduct of its recombinant compositional process.

Before we conclude our discussion of MusiCog’s difficulty replicating Bach’s writing, it

is worth pointing out that, since rhythm has a strong influence on segmentation, MusiCog’s

168

B1 B2 B3 B4 B5 B6 B7 B8

T1 T2 T3 T4 T6 T7 T8T5

B1 B2 B3 B4 B5 B6 B7 B8

T1 T2 T3 T4 T6 T7 T8T5

B1 T1 B2 T1 B3 T2 B4 T5

Recombine boundaries and terminals

Original boundaries (B) and terminals (T)

B5 T4 B6 ...

overlap/shiftMelodic recombination

Recombinant rhythm

Figure 6.3: Result of segment recombination from an isochronous musical source.

arbitrary fragmenting of rhythmic structure would also introduce discontinuities between the

hierarchical structure “intended” by the PM, and that “perceived” by the PE (as discussed

in Section 4.2.4). Such discontinuities cause the inferred states in LTM to differ from the

states used to generate the preceding segments in the PM, leading to complex and some-

what chaotic behaviour, as MusiCog jumps between different “interpretations” of the same

material. This kind of behaviour would likely further impede MusiCog’s ability to replicate

the corpus.

169

/ / / / / /

/ / / / /

˘ ˘ ˘ ˘ ˘ ˘ ˘ ˘

˘ ˘ ˘ ˘ ˘ ˘ ˘

/ /

/ / /˘

Figure 6.4: “Virtual syncopation” in the Allemande from Bach’s A Minor Partita.

6.2 Strengths of an Integrated Approach

The integrated approach to modelling music cognition taken in MusiCog has a number of

benefits, which we observed both during development and in subsequent testing. Perhaps

the most obvious is the fact that the modular architecture has allowed us to design and

test specific perceptual/cognitive functions in a given module, without directly altering other

modules. Although the various modules exert direct, and in some cases quite profound

influences upon one another, they are formally decoupled, so that their functions can be

examined independently. Further, the compartmentalization of functions provides a clear

conceptual framework for considering the relationship between ideas from the music psy-

chology literature and their implementation in the model (e.g., melodic segmentation in the

PE, chunking in the WM, etc.).

It has also been valuable to discover, through the interaction of modules, areas where

underlying assumptions of our earlier approaches were conceptually misleading. For ex-

ample, when the CM structure was originally designed [162] our intention was to build a

hierarchical model with the capacity to learn complete musical works. However, with the

introduction of a distinct WM module, designed to approximate the short-term music reten-

tion capacities of listeners, a more concrete limitation was placed on sequence learning.

It soon became clear that an LTM representation that learned only from the sequential

presentation of musical events, and was thus restricted to associative chaining and other

forms of serial order memory [102, 133], should be limited in the amount of hierarchical

structure it can learn [216]. In practice, the span of contiguous, hierarchical musical struc-

ture learned by MusiCog is roughly on the order of an average melody, or 12 to 24 events,

depending on the specific segment structure of the music. As such, MusiCog is unable

to learn complete works as hierarchical sequences; a similar situation to human listeners,

who rely on structural factors [169], various forms of memory (i.e., beyond cued recall),

170

and alternate learning strategies to memorize complete musical works2 [35, 90]. Similarly,

the importance of working memory in the compositional process was not obvious to us

until we switched to a modular approach. Though previously investigated with regard to

literary composition [166, 167], the manner in which music composition enlists the working

memory faculties of composers has received virtually no attention. By creating a feedback

system in which working memory is directly implicated in compositional decision making,

we were able to produce a simple form of cognitively-grounded motivic exploitation, which

is relatively rare in corpus-based, real-time, autonomous generative music systems—the

Anticipatory Model of Cont et al., (Section 3.6), Smith and Garnett’s hierarchical neural

network model [215], and Collins’ Racchman-Oct2010 and Racchmaninof-Oct2010 sys-

tems [42] are of interest in this regard—at least without the specification of high-level music

theoretical heuristics.

Another important aspect of the integrated approach concerns the manner in which

information is structured prior to storage in LTM. For example, by using the PE to model

implicit knowledge of melodic structure (i.e., via gestalt-based melodic segmentation), we

were able to limit the number of distinct patterns stored in LTM. This is in contrast to

other models of musical knowledge, like nth-order Markov models, suffix trees, and cer-

tain n-gram models [73], which store all unique substrings of a given input string. Having

clear segmentation points and a limited vocabulary of well-formed segments greatly facil-

itated MusiCog’s acquisition of hierarchical structure. Additionally, the limited capacity of

the WM provided a natural sliding window for the incremental construction of such hierar-

chies, and the chunking model served to further constrain the types of hierarchical forms

that would ultimately be stored in LTM.

Finally, having a dedicated executive module for composition, modelled by the PM, has

allowed us to involve both working memory and long-term memory—and the interaction

between the two—in the generation of new musical materials. Because the contents of

WM are regulated by the PE’s processing of previous output via feedback (a form of self-

regulation), the structure of WM is highly dynamic in nature, allowing MusiCog to create

novel possibilities from the corpus-based knowledge stored in LTM. Also, since pitch quan-

tization is performed in the PE, as a final step prior to output, material processed through

feedback can be further distanced from the WM/LTM representations from which it is de-

rived, via pitch/interval transformation. This again offers possibilities for the generation of

2Cases do exist in which listeners have been able to recall complete compositions from memory, but such
cases are rare and generally attributed to savants, or exceptionally gifted individuals [179].

171

novelty and, in cases where feedback learning is enabled during generation, allows Musi-

Cog to further expand the space of possibilities represented by the training corpus. The

potential of this kind of feedback and self-regulation has only been touched upon in the

current implementation.

6.3 Questions and Challenges

Broadly speaking, stochastic generation from MusiCog revealed problems related to a lack

of repetition structure and formal symmetry, exaggerated rhythmic syncopation, and in the

case of the Bach corpus in particular, stylistically inconsistent implied harmonic structure.

On the other hand, certain important properties of human composed music were observed;

in particular, the variation and development of generated motivic materials. Also, as ob-

served in a recent comparative study by Gonzalez Thomas et al. [92], MusiCog was able

to better approximate the statistical regularities of training corpora than basic implemen-

tations of a Variable-Order Markov Model and a Factor Oracle [9]. This relative success

is likely due to the CM’s ability to encode temporal dependencies between both adjacent

and non-adjacent events in the training works, as a result of its cognitively-grounded ex-

ploitation of melodic segment structure during learning and generation. MusiCog was also

shown to generate tonal implications, when trained on tonal material, with a regularity that

could not be attributed to its pitch quantization function alone (see Section 5.4.1). How-

ever, in most cases the musical weaknesses of MusiCog’s compositions became obvious

upon inspection of the generated musical scores3. Although the shortcomings of the gen-

erative approach used are largely attributable to an over-emphasis on stochastic decision

processes and the lack of explicit music theoretical and compositional knowledge, certain

problem areas can be more directly attributed to MusiCog’s generation algorithms. We will

discuss these issues, and some possible solutions, in greater detail now.

6.3.1 Stylistically inconsistent rhythmic complexity and syncopation.

Due to the recombinant nature of MusiCog’s generation processes, the system is capable

of creating transitions not contained in the training corpus. A simple example showing

the generation of novel pitch intervals is given in Figure 6.5. Here we see that, given the

boundary relationships contained in phrases 1 and 2, by swapping the terminals of the first

3It should be noted, of course, that listening would also reveal these weaknesses.

172

segments, so that a is replaced with c and c is replaced with a, we can produce both a

repetition (i.e., interval 0) and an ascending major 2nd (“+M2”), neither of which are present

in the example phrases. Although this is desirable as a potential source of novelty, allowing

MusiCog to expand its representational space, it is also a potential source of style violations

during generation. In the case of pitch intervals, serious problems are not likely to arise,

since any training corpus of reasonable size will likely contain a complete set of useful

musical intervals. However, in the case of rhythm, novel intervals (i.e., IOIs) arising through

recombination of this kind can pose more serious problems.

0

a b c d
1) 2)

+M2

dc(B1) a(B2)b

Figure 6.5: A simple example of MusiCog generating novel intervals through recombina-
tion. By swapping the terminals of the first segments, so that a is replaced with c and c
is replaced with a, we can produce a repetition (interval 0) and an ascending major 2nd

(“+M2”), neither of which are present in the example phrases.

In general, novel transitions can occur in MusiCog when two (or more) phrases share a

common L2 boundary transition (i.e., in the CM) that joins together different L1 segments.

In such cases, the L2 transition becomes a kind of ‘pivot’4 between training phrases, al-

lowing the L1 segments to become interchangeable during generation. A simple example

for rhythm is shown in Figure 6.6. Here transitions (A, B) and (C, D) express the same L2

boundary relationship (-1), but use L1 segments with different beat divisions, and different

boundary positions within the beat. During generation, one boundary may select an L1 se-

quence of three eighth-note triplets, while the following boundary selects an L1 sequence of

4The analogy here is to the function of “pivot chords” in harmonic modulation. Pivot chords are harmonic
structures shared between two keys, but having different harmonic functions in each key. The dual function
of the pivot chord is used to generate harmonic ambiguity, easing the authority of the previous tonality, and
supporting the listener’s expectation for harmonic resolution in the new tonality.

173

four sixteenth-notes. If both boundaries fall on even beats then the change in beat division

will align with the beat structure of the music, and a fairly common form of rhythmic varia-

tion will be produced, as in 6.6a. However, if the boundary of the second segment falls on a

weak, up-beat position—for example, on the last sixteenth-note of the beat—the resulting

pattern will modulate the beat division independently of the beat, leading to a complex,

and unexpected rhythmic pattern, as in 6.6b. This kind of recombinant process was likely

involved in the problems observed in Section 5.4.2, where MusiCog’s generations demon-

strated stylistic inconsistencies due to exaggerated rhythmic complexity, as was particularly

apparent when trained on the Maxwell work.

B

novel IOI

1/8th triplet IOI

Beat division modulates
within the beat

C DA

-1 -1 -1

A+B

A+D

-1

 A+D: alter D

0

Fails to retain the
boundary relationship

A+D: alter rhythm

-1

Loses the rhythmic
character of A

a)

b) c) d)

Figure 6.6: It is possible for MusiCog to create novel (and in some cases stylistically incon-
sistent) rhythmic transitions when segments with different beat divisions are recombined
during generation.

The process of resolving such rhythmic conflicts, though simple and intuitive for human

composers, is by no means straightforward for a computational system. Examples 6.6c

and 6.6d show two human-composed solutions to the recombination of patterns A and D,

both of which require some degree of alteration of the patterns themselves. In 6.6c, pattern

D is altered by removing the first note. Despite proposing a fairly dramatic alteration of the

pattern, this is a reasonable solution because it maintains the pitch accent structure of the

original theme by ensuring that the C5 remains on the beat (for this reason, shifting the

entire motive forward, so that the initial B4 lands on the beat, would be a less satisfac-

tory solution). It’s worth note, however, that removing the initial B also alters the boundary

174

relationship, resulting in a flattened L2 pitch contour. The solution shown in 6.6d takes a

different approach by altering the beat division of A, so that it matches the sixteenth-note

division of D. This solution maintains the pitch structure and length of both A and D, while

also retaining the boundary relationship. However, it has the negative effect of reducing the

rhythmic complexity of the passage, sacrificing the suspended quality of the triplet pattern

in A, and losing the feeling of acceleration provided by the shift to sixteenths in D. How-

ever, both solutions are arguably better than the purely recombinant solution produced by

MusiCog. It would be possible, of course, to include a function to test for these sorts of col-

lisions between different within-beat rhythmic divisions in the stochastic selection process,

removing options that would result in such mixed patterns before a selection was made.

Assuming a reasonably well-trained CM, such a solution could provide an effective method

for avoiding such rhythmic problems.

With regard to the problem of exaggerated syncopation, we observed this when trained

on the rhythmically complex material in the Maxwell work, but also, most notably, when

trained on the Bach corpus. In the former case, problems with novel transitions generated

through rhythmic recombination—in particular, the recombination of regular and n-tuplet

patterns in weak, up-beat positions—appeared to be the root cause. In the latter case

of the Bach corpus, however, the stylistic requirement of producing extended passages

of isochronous rhythms—and the extremely tight constraint this poses for a recombinant

system—is certainly the root cause (as discussed in Section 6.1). The solution, however,

is not particularly obvious. One option would be to remove the beat-based representa-

tion provided by the Beat ED, and use a simpler IOI representation. But this cannot be

done without sacrificing the segment-level beat structure, which, in the vast majority of

cases, would be too great a sacrifice (see Section 4.1). Another option would be to group

rhythmic material by beat, as is done by Eigenfeldt [81], rather than by the perceptual seg-

ment boundaries. This approach, while advantageous for the rhythmic generation process,

will generally fail to support the segment structure identified by the PE (which frequently

crosses beats), and is thus inappropriate for a cognitive model like MusiCog. Yet another

option would be to use low-order (e.g., zeroth- and first-order) Markov models for rhythmic

generation, while retaining the segment-based approached used in the CM for generating

pitch structure. However, although it is likely that such an approach would perform better

with this particular material, it does not guarantee the isochronous structure required for

style imitation of such tightly constrained (rhythmic) writing. Further, as with the option

175

of using simple IOI values, this option likewise risks sacrificing the segment structure af-

forded by the current system. However, it is worth pointing out that training on a larger

corpus—even one that contained further examples of this kind of isochronous rhythmic

writing—would greatly improve MusiCog’s chances of replicating the style. That is, it may

simply be a matter of being presented with more combinations of segments that satisfy the

constraint of maintaining isochronous rhythm, thereby increasing the probability of satisfy-

ing the constraint through purely stochastic processes.

The point we would like to stress is that, in this music, Bach has deliberately avoided

the common practice of articulating melody through the joint variation of pitch and rhythm5.

In this sense, the rhythmic structure represents a kind of conceptual “strategy”; i.e., it is a

formal contrivance used to draw attention to a specific compositional objective. In order to

produce a musical work like this, a generative system would likewise have to form a sim-

ilar abstract compositional objective. This is clearly not something that a musically naïve

system like MusiCog can do, and it is a much larger question how such a system should

be designed. Of course, this corpus is of interest because it exacerbates a weakness in

MusiCog’s approach that might not be particularly obvious with other models. However, it

is also of interest because it points out that, in a certain sense, MusiCog is a fairly conven-

tional composer. That is, its compositional understanding is so constrained by bottom-up

perceptual factors, that it is fundamentally incapable of generating music that denies these

factors (as is the case with Bach’s extended isochronous rhythms), even when presented

with examples that establish the musical viability of the practice. Certainly we can well

imagine that even the most naïve human composer, when asked to imitate this style, would

quite naturally produce an isochronous rhythmic pattern. In this sense, MusiCog’s weak-

ness extends beyond its limitations as a “musically naïve” composer. Rather, there is a level

of generalization that is missing; an ability to build an overall conception of the composi-

tional task, and to ensure that the most obvious elements of the musical style are emulated.

The isochronous rhythmic structure is arguably the most obvious feature of this music.

5In designing a study to isolate the role of pitch in melodic accent structure, Huron acknowledges the
difficulty of locating example works that demonstrate this kind of continuous isochronous writing. It is no
coincidence that Bach featured prominently in Huron’s test corpus [107].

176

6.3.2 Inability to reliably produce tonal melodies, when trained on tonal ma-
terials.

Given that MusiCog has no explicit model of tonality, and includes no deliberative routine for

establishing (or supporting) a tonal centre, the fact that it appears to be capable of gener-

ating tonal implications when trained on simple tonal source material (see Section 5.4.1) is

a significant finding. Although the pitch quantization mechanism clearly plays an important

role in producing this behaviour, the constraint of generating within a diatonic scale cannot

itself explain MusiCog’s capacity in this regard, as was shown in Section 5.4.1. Rather,

such tonal structure must arise as an architectural phenomenon, resulting from 1) the seg-

ment structure established by the PE, 2) the chunking provided by WM, 3) the hierarchical

structure learned by the CM/LTM (in particular the relationships between segment bound-

aries learned at L2), 4) the PE’s induction of mode/tonality in response to feedback from

the PM, and 5) the PM’s function of using the induced mode, once established, to quantize

pitches6 for the remainder of the generation.

Of course, tonal composition is a complex problem, since it is clear that, while the

impulse to identify a tonal centre is a fundamental behaviour of music cognition, it never-

theless should not be an a priori assumption of a general purpose style imitation system.

Also, subtle chromatic alterations of key are common, particularly in music of the baroque,

classical, and romantic periods, where they are often used to provide colour, or for toni-

cization of non-tonic chords (e.g., for supporting harmonic modulation)7. Indeed, it was

this desire to maintain local chromaticism that prompted our choice of a segment-based

pitch quantization approach, thus allowing generation to return to the previously induced

scale when diatonic segments are detected. However, such an approach does prohibit

the possibility of modulation—even for brief, intermediate (or “false”) modulations, as are

often found in Bach’s music, for example. One possible solution might involve generalizing

the mode induction function to provide a confidence rating for the diatonicism of the pas-

sage, then providing independent confidence levels for all possible tonics. As in the current

implementation, the “diatonicism” confidence rating could be used to enable/disable pitch

quantization. The individual tonality confidence ratings could then be used to determine

6Recall that pitch quantization will not be applied if the generated segment elicits a low confidence rating
from the PE’s mode/tonality induction function.

7These traits became less common in 20th- and 21st-century music, when functional harmony fell out of
favour, or in popular forms, where violations of key are rare. Jazz music has, for much of its history, utilized
scale modifications as a means of providing character, often relating scale structures to the chords themselves,
rather than to the tonic key, as is the practice in classical, folk, and popular forms.

177

the most probable tonal centre(s) at a given moment. In cases where multiple pitches in-

dicated relatively equal confidence, any previously induced tonic could be deleted, thus

modelling the perceptual ambiguity of “pivot” harmonies, and allowing the system to re-

spond appropriately to modulatory passages. When confidence in a particular tonic was

high, the system could rotate the induced mode to the scale position of the perceived tonic

and perform pitch quantization.

Currently, MusiCog lacks any heuristics for modelling stylistically consistent pitch reg-

isters during generation8. This can occasionally lead to uncharacteristically large registral

ranges, as seen in some of the generated examples, as a consequence of compounding

same-direction pitch contours at different levels of form; e.g., joining descending L1 pitch

segments with descending L2 boundary transitions. Implementing some method for ac-

knowledging the total pitch range when selecting pitch contours between boundaries could

help to reduce the likelihood of such discontinuities of register during generation.

6.3.3 Lack of formal repetition structure and symmetry.

This is perhaps the most difficult problem for generative music systems to solve; to create

convincing musical forms, with adequate repetition, variation, and higher-level structure.

The challenge is to allow for the generation of novel patterns, while at the same time al-

lowing previously generated (i.e., not necessarily learned) patterns to be quoted verbatim;

a common feature in many forms of music. In general, the former problem is solved by

stochastic selection mechanisms, while the latter has perhaps only been adequately solved

by Cope’s systems [52], which use high-level, grammar-based musical knowledge to repli-

cate this kind of formal organization. As was observed in Section 5.4, MusiCog is able to

at least partially solve this problem, by exploiting WM contents, provided by its feedback

architecture, to support the kind of motivic development observed in human-composed mu-

sic. However, because MusiCog still allows for stochastic variation when exploiting motivic

materials (i.e., by generating L1 segments from the terminal nodes held in WM, rather than

simply quoting the segments directly), in some cases the imitation is too distorted (i.e., from

pitch/rhythm transformation) to produce convincing repetition structure.

However, perhaps a more serious impediment to creating the kind of repetition structure

and symmetry found in the training corpora is MusiCog’s current lack of a metric induc-

tion (and composition) mechanism. Metric structure helps ground the expectation patterns

8The PM does include a routine for constraining pitch to a reasonable maximum range (approx. B[2 to F6),
however, this routine did not appear to be used in the generated examples.

178

found in many styles of music, allowing listeners to predict high-level formal patterns given

only short periods of musical context. Of course, there is something paradoxical about this

situation, since it is the musical structure itself that creates the sense of regularity we de-

scribe as metre. Clearly, from the composer’s perspective, the relationship between met-

ric induction and composition is dialogical. However, metric induction/composition alone

would not ensure the ability to generate convincing repetition structure and symmetry. As

discussed in section 4.2.3, MusiCog does encode patterns of repetition and symmetry at

higher levels of the CM, but this structure is often lost during the selection of sublevel ter-

minals and/or the extraction of paths leading to those terminals. Because terminals are

chosen stochastically, as are their paths, the repetition suggested by the higher-level form

is put into jeopardy each time a new stochastic selection is made. By contrast, in human

compositional processes, simple forms of melodic development—restating the theme at

the dominant level, for example—are not fundamentally stochastic, but rather appear to be

rule-based, deterministic processes. Such processes produce variety by applying some

fundamental transformation (in this case, transposition), but maintain unity by ensuring that

this transformation is applied uniformly to the entire musical idea (i.e., segment or phrase).

However, operations like this require that the musical idea itself remain invariant on some

level, so that it can be recognized after the transformation has been applied. This suggests

a fundamentally iterative process; i.e., the idea is first established, then subsequently al-

tered via transformation. Such a process may be purely cognitive, without the need for

explicit “stages” of compositional development (see Section 2.3), but it also cannot reason-

ably be explained by local stochastic selection.

It is also worth noting that MusiCog cannot currently learn formal structures that extend

beyond the capacity of WM, and is therefore limited in the amount of high-level form it

can represent. This limitation is not unfounded from a cognitive perspective, where it is

clear that the kind of episodic, chaining memory currently modelled by MusiCog does not

generally extend to higher formal levels. Indeed, methods for retaining such high-level

form—and the specific structures used to represent high-level musical knowledge—are not

currently well understood by the music psychology community. Most research in the area

speaks of “high-level” form when dealing with musical passages only a few bars in duration,

where the retention of non-adjacent temporal relationships implies a form of hierarchy, even

if the temporal durations are not particularly long. But representation and retention on the

order of complete musical works remains relatively unexplored.

179

The work of Deliège on cue abstraction and schematization (the formation of abstract

representations of high-level form during listening) [57, 58], later investigated experimen-

tally by Koniari [121], is directly related in this regard, showing that high-level cues are

often abstract, invariant representations of general auditory patterns; “frequent trills,” “iso-

lated sounds bound by groups of rapidly flowing sounds,” and so on [57]. However, Musi-

Cog does not currently possess a mechanism for building the sort of linear memory for

sequences of cues9 proposed by Deliège. In a related area, studies of the learning and

memorization strategies of professional musicians [35] suggest that certain methodologi-

cal approaches do exist for retaining and recalling attributes of high-level structure. In part

these involve the recognition of important structural locations or events in a given work (e.g.,

via points of multiple closure [174, 216]), which can be used to cue memories of more local

details. Additional factors include the use of motor, visual, historical, and “structural” mem-

ories [35]—a musical version of Rubin’s “narrative” memory: memory for the sequential

organization and goal structure of a story [201]—to assist in building reliable mental rep-

resentations of complete works. However, it is not clear whether such processes are also

available to untrained music listeners, and if so, to what degree. Composers, of course,

are only required to retain such high-level form in an abstract sense, having recourse to

music notation and other technologies for capturing structures that extend beyond their ca-

pacity for memorization. Further, knowledge of musical form passed down through musical

training also informs the compositional decision process in this regard.

At any rate, this problem of balancing local variety with formal unity (repetition structure

and symmetry) puts into question theories of composition that propose a strictly predictive,

probabilistic process. It seems reasonable to suggest that both stochastic/probabilistic and

deterministic/rule-based approaches must coexist in human compositional thought, in order

for such symmetrical structures to have become so prominent in music. Following Collins’

work [41], we see it as a fair assumption that the compositional process proceeds through

iterative, hierarchically-related stages, in which initial decisions regarding high-level formal

structure and local motivic pattern selection can be made stochastically, but will be subse-

quently fixed in place as concrete compositional rules to be followed during later stages of

the compositional process. Indeed, all of the examples from the folk corpus used during the

testing carried out in Section 5.4 demonstrate a similar degree of symmetry and repetition,

and also a similar binary structure, suggesting that such formal principles are established

9The term “cue” is used here in Deliège’s specific sense, analogous to her notion of the “imprint”; a
schematic, invariant representation of an abstract, perceptually categorizable musical structure.

180

with high probability at an early stage of composition, and are likely even considered a

priori preconditions of the style itself. If this is the case, then such formal strategies are

not “decisions” at all, in the conventional sense, but should rather be considered as con-

crete rules. Seen from this perspective, the process of folk song composition is more

concerned with generating appealing and well-formed motivic segments, that fulfil the re-

quirements of an inherited formal structure, than with any notion of “through composition,”

in the contemporary sense. The same could be said for many of the conventional West-

ern forms (binary, ternary, rondo, sonata), and also the majority of contemporary Pop and

Jazz songs. Other forms, like the style of fantasia that has become commonplace in late

20th- and 21st-century composition, or forms of improvisation, also benefit from a degree

of formal regularity, though cyclic structure and verbatim quotation are often avoided.

6.4 Creativity in MusiCog

Generation in MusiCog has thus far focused on a somewhat automatic, associative pro-

cess, biased toward exploiting musical parallelisms. This approach, while useful for ob-

serving the behaviour of the model on an architectural level, does not yet explore the

model’s potential for creative output. Certainly, its capacity for generating novel, and in

some cases quite acceptable, melodies suggests that the model demonstrates a degree of

E-Creativity (see Section 2.5.1)—i.e., the ability to explore the musical space represented

by a given training corpus. However, as was seen in Section 5.4, MusiCog’s generated

melodies demonstrated consistently lower variance than the training corpora, when mea-

sured in terms of complexity, entropy, and SIMILE’s cognitively-grounded opti3 measure,

suggesting that it currently does not explore the musical space as thoroughly as it should.

Although a single reason for this cannot be assumed, it is likely that the bias toward high-

probability transitions during stochastic generation is a significant factor. Also, because it

strives to support cognition through the exploitation of parallelism, but does not retain a

memory for its previous output when starting a new melody, it tends to constrain the space

of its musical development within generations, and cannot deliberately expand the musical

space across generations.

Since the model will increase its CM structure when learning from feedback output (see

Section 5.4.1, p. 147), it is reasonable to suggest that the model demonstrates basic P-

Creativity; i.e., the ability to create output that is novel to the system itself. Simply put, if

the generated material did not produce novel structures then it would not promote learning

181

in the CM upon feedback. Although it is perhaps a contentious claim, since MusiCog does

have the ability to create novel transitions, and can subsequently learn from those novel

transitions during feedback learning, it could also be said to at least possess the poten-

tial for T-Creativity; i.e., the ability to transform the musical space represented by a given

corpus. This was observed to some degree in the feedback learning test (Section 5.4.1, p.

147), where MusiCog’s output was seen to produce a distinct, higher complexity space than

the training corpus. However, it is important to point out that, while the system’s capacity for

originality appears to be relatively high, its capacity for achieving quality remains relatively

low, when evaluated against its training corpora. Similarly, its capacity for typicality (see

Section 2.5.3) is also relatively low, due primarily to its inability to replicate the higher-level

repetition structure and symmetry that characterized much of the training material.

Nevertheless, as a test of the “musically naïve” approach to composition proposed in

the Introduction (Section 1.1), MusiCog performed acceptably, and demonstrated certain

important traits of human creativity; in particular, the capacity to develop musical materials

of its own devising (i.e., motivic exploitation). This behaviour can be attributed in part to the

learned structure of the CM, but is predominantly due to architectural factors associated

with the integrated approach. Because feedback between the PM and PE allows MusiCog

to populate its own working memory with motivic materials of its own devising, enabling

it to selectively re-use those materials during generation, the form of motivic exploitation

demonstrated can be said to be modelled at an architectural level—a general goal in ICA

design [130].

182

Chapter 7

ManuScore: Cognitively-Grounded
Computer-Assisted Composition

In contrast to the totally autonomous composition demonstrated by MusiCog in the previ-

ous chapter, Computer-Assisted Composition (CAC) focuses on the use of computers as

compositional aides for human composers. Taken in its complete breadth, the field ranges

from the most esoteric research projects to the most highly profitable commercial music

production platforms. The goals of different CAC packages can therefore be quite distinct,

in some cases serving to streamline a set of familiar production techniques (recording, edit-

ing, scoring, and so on), and in others proposing to unlock the creative potential of com-

posers, helping them move beyond the constraints of their musical habits. In developing

his notion of composition theory Laske clearly placed his focus in the latter category, seek-

ing to better understand compositional processes, so that composers could break with the

past and open up new territories of musical possibility. As discussed in Section 2.1, Laske’s

theory focused on three fundamental principles: 1) competence: knowledge of the mate-

rials and syntax of music, required for the conception of musical ideas; 2) performance:

the practical application of accumulated musical knowledge (competence) to create musi-

cal forms; and 3) the task environment : the field of action in which performance draws on

competence for the invention of musical works. In the context of CAC, the task environment

is embodied by a computer and its hardware/software. Laske felt that, due to the inherent

pliability of computer software, the computer-based task environment enabled composers

to access the “virtual music” of their imaginations in a manner unbounded by musical tra-

ditions. He identified the process of conception, design, implementation, and production

183

of the task environment, and its iterative development throughout the compositional pro-

cess, as the “compositional life cycle” [137]. It was Laske’s feeling that software developed

through a compositional life cycle could gradually begin to embody the musical knowledge

of the composer in an explicit, analyzable, and extensible way.

Early CAC tools like Koenig’s PROJECT systems [134], or Truax’s POD systems [230],

took a top-down approach to CAC, in which high-level concepts were expressed paramet-

rically, or graphically, and the software was responsible for generating numerical represen-

tations (or electronically synthesized performances) of musical output. Two important ob-

servations can be made about such systems: 1) They are not corpus-based, and thus will

not generally maintain an explicit connection with the user’s musical past, and 2) They deal

with musical concepts at a high level of abstraction, and introduce significant non-linearities

into the compositional process (i.e., by expressing musical ideas through numerical repre-

sentations, requiring subsequent interpretation by the composer). In this manner, they

distinctly separate composition from the act of listening; an idea that Laske very much sup-

ported (see Section 2.1), believing that such a division could lead to unbounded musical

invention.

Although high-level generative functions are beginning to appear in commercial CAC

packages1, the majority of such programs—Digital-Audio Workstations (DAWs) and MIDI

sequencers—are essentially bottom-up systems, which fulfill the basic tasks of recording

musical performances for subsequent editing and manipulation, or transcribing and elec-

tronically “performing” musical scores. Although applications of this type are often equipped

with extensive feature-sets, directed toward simplifying and streamlining the workflow for

such tasks, their fundamental purpose is to record2. Making up the middle-ground, there

are an increasing variety of CAC tools that demonstrate different (and often quite novel)

forms of musical representation, and introduce varying degrees of interactivity into the

compositional process ([165, 234, 253] etc.). Among this class one could also include the

increasing variety of music programming languages, graphical or otherwise ([10, 224, 238],

etc.), which offer a potentially infinite variety of CAC tools-to-be, and propose potentially in-

finite mixtures of top-down/bottom-up control.

1The “drummer” in Apple’s Logic Pro X software provides a highly sophisticated example of generative
algorithms in a commercial context.

2For this reason some may not consider these to be genuine CAC tools. However, even the rather ba-
sic advent of non-linear editing had a significant influence on popular music production, suggesting that it is
reasonable to include these basic packages under the CAC heading.

184

For the bottom-up tools, competence and performance are essentially unchanged from

the traditional requirements of music-theoretical knowledge, instrumental performance abil-

ity, skill in instrumental music transcription, and so on. With the top-down tools, the demand

placed on competence is shifted (and potentially increased) by the emphasis on abstrac-

tion, while performance becomes focused on the interpretation of numerical representa-

tions of musical materials [136], and/or on the comprehension of metaphorized descriptions

of musical concepts: “density”, “timbral trajectory”, and so on [230].

7.1 Design Motivations Behind ManuScore

Our initial goal in designing ManuScore was to create a music notation-based CAC tool for

music-literate composers, who might already possess a developed musical language and

bottom-up compositional practice, but were interested in exploring a top-down interaction

with their musical ideas. In contrast to Laske’s goal of freeing composers from musical

tradition, ManuScore was built to acknowledge the user’s existing musical practice, so that

working with it need not impose any dramatic change in a composer’s musical language

or compositional output. The intention was to create a task environment to augment a

composer’s practice, not necessarily to dramatically alter it, and certainly not to completely

automate it. In this sense, the system could be aligned with Cope’s CUE software [50],

which draws from a music recombinance database to offer “continuations” and develop-

ments of musical ideas introduced by the user.

Adding to this general conception of a non-interfering, interactive CAC tool with corpus-

based generation, ManuScore was also an investigation into the notion of “object-oriented”

composition [204]. Our conception of object-orientation focuses on the notational aspects

of musical ideas; i.e., on what can be captured in a musical score, what the various nota-

tional structures represent to the composer (i.e., what is their musical “objecthood”), and

how these structures might “inherit” from one another in the developing composition. In

this sense, an object in ManuScore is essentially a “gestalt”; an identifiable, holistic item,

or concept. To whatever degree possible, ManuScore was designed to help composers

explore musical ideas as gestalts, and to represent them accordingly in their composi-

tional task environment. This approach connects ManuScore to programs like PatchWork

(or PWGL [139]) and OpenMusic [10], which also help composers interact directly with

musical concepts, though its focus on notational elements (i.e., leaving aside numerical

operations) in the user interface clearly sets ManuScore apart.

185

Because it is intended as a CAC tool, generation in ManuScore focuses on the notion of

“continuation”—i.e., extending musical fragments introduced by the user—and uses Musi-

Cog as a built-in intelligent musical agent for providing monophonic melodic continuations.

However, our long-term goal with ManuScore is to implement real-time, interactive gener-

ation, so that musical ideas may also be explored through listening and improvisation, not

just through the manipulation of scored musical objects.

7.2 ManuScore Design & Features

The Graphical User Interface (GUI) for ManuScore is designed to emulate a “pencil and pa-

per” workflow, while attempting to maintain a balance between power and flexibility. Wher-

ever possible, it utilizes the standard ARROW UP/DOWN/LEFT and RIGHT keys for moving

objects, selecting accidentals, toggling articulation markings, and so on, requiring the user

to remember only a limited set of possible interactions when learning the software.

7.2.1 An Open Musical Space

At launch, the ManuScore GUI presents the user with an empty space—a blank canvas,

so to speak. The background displays faint vertical guides, which act as a temporal grid

for entering musical events. The grid does not strictly follow the conventions of musical

time signatures. Rather, it presents a visual guide to subdivide the musical space, serving

a similar function to the grid systems found in graphics and drawing software packages,

and provides “snapping” functionality to assist the user in entering rhythmically precise

material. Objects can be moved independently of the grid, so that events can be placed at

any location in musical time.

At the top of the score window, “Metric Markers” can be inserted, allowing the temporal

grid to be subdivided in arbitrary ways. It is worth noting that this division is strictly graph-

ical, and imposes no formal restrictions on the music itself. The numbers in each marker

indicate a grouping/subdivision of time. The top two numbers are conceptually analogous

to a conventional time signature, while the bottom number indicates the number of “beat

divisions” used for object snapping, and is thus capable of producing any n-tuplet subdi-

vision. Figure 7.1 shows a sample score with two Metric Markers added. It will be noted

that the markers only alter the grid for the rhythmic space following the marker’s position.

This can be seen in Figure 7.1, where what appears to be a 4
4 time signature is cut short

186

by a 7
8 signature, inserted part-way through the first measure. In conventional notation soft-

ware, replicating the musical meaning of this structure would require the user to completely

redefine the metrical notation of the music (and in most cases, to delete and re-enter the

musical passage). However, because the temporal grid in ManuScore is essentially in-

dependent from the contents of the staves, this sort of structure can be created at any

time, without altering the existing musical material. In this sense, ManuScore’s rhythmic

representation offers a smooth temporal space for composition, as opposed to the highly

structured metrical space of conventional notation software.

Beat

 Grouping
 Metric Unit
 Division

Divisons (x8) (x5)

Figure 7.1: Metric Markers in ManuScore.

The method for adding staves in ManuScore was directly inspired by Stravinsky’s self-

designed and patented stylus, which he used for drawing staves by hand [221]. The stylus

allowed him to format manuscript to his needs, and also allowed him to insert additional

musical parts into existing scores; borrowing Laske’s term, one could say that his stylus

was a product of his “compositional life-cycle.” In ManuScore, staves of arbitrary length can

be created at any position in the score, helping to promote the sense of an open musical

space. This method of adding staves leads to a “cut-away” style (as seen in Figure 7.2), in

which instruments only appear when they are playing [189], creating a visual representation

analogous to listening while also supporting the notion of gestalt-based, object-oriented

composition that underlies ManuScore’s design.

187

Figure 7.2: The “cut-away” score style supports the notion of musical objects.

188

7.2.2 Note Entry in ManuScore.

Once a staff has been created, single notes can be entered in three ways: 1) Typing n and

clicking on a staff, 2) Using the Step-Entry Cursor (e key), and 3) Using a MIDI keyboard. It

may have been noticed from Figure 7.1 that ManuScore attaches accidentals to all notes,

following the practice used by composers like Witold Lutoslawski. In ManuScore, this is a

direct result of the inherent lack of conventional bar lines, which traditionally serve to nullify

previously written accidentals. Once a note is created, the accidental can be toggled, by

holding the COMMAND key and using the ARROW UP/DOWN keys.

Material can also be entered in complete gestures, using the Gesture Tool (g key). This

tool allows the user to draw a free-hand line on the staff, which is subsequently interpreted

by MusiCog, providing a simple form of gesture interpretation. The Gesture Tool uses

MusiCog to infer the pitch contour of the drawn gesture. The sequence of control points

in the gesture line is converted to a pitch contour sequence, which is passed to MusiCog

for inference at the Schema tier of the pitch model. For each node in the inferred Schema

path, the algorithm then selects Invariance and/or Identity tier nodes that best approximate

the position of the gesture line. ManuScore’s interpretation of a drawn gesture is shown in

Figure 7.3. It is worth noting that, although most of the interpreted pitches follow the line

quite closely, the (G,F,C) segment (outlined) represents a best-attempt of MusiCog, given

its training. MusiCog’s failure to follow this segment of the gesture line indicates that, given

the inferred musical context, MusiCog did not have a learned representation that could

better approximate the path of the line.

The CbCM's best interpretation, given its trainingMusiCog's best interpretation, given its training

Figure 7.3: MusiCog’s interpretation of a Gesture Line.

189

Finally, new material can also be generated directly by MusiCog, as a continuation of a

given musical “seed.” When a note in the seed segment is selected, MusiCog can be made

to generate a continuation from that note. In our initial implementation of this function,

MusiCog generated a set of possible continuations, rendered the first option to a new staff,

and provided a mechanism for toggling through the various options. An example of this

approach is shown in Figure 7.4. In the example, the top staff is the user-defined “context”

and the lower staff is the generated continuation. The text above the generation “P 10/18

- R 1/4” indicates that the CbCM generated 18 pitch continuations, the 10th of which has

been selected, and 4 rhythmic continuations, the 1st of which has been selected. Holding

the OPTION-COMMAND-SHIFT keys and using the ARROW UP/DOWN keys will toggle through

the different pitch patterns, while using the ARROW LEFT/RIGHT keys will toggle through

the different rhythmic patterns. However, working with this implementation could be quite

tedious to use, particularly in cases where a large number of pitch and/or rhythm patterns

were generated. For this reason, we added an alternative method which could be used to

produce a single continuation, rendered directly to the staff containing the musical seed, as

shown in Figure 7.5. In this process, the user selects a specific note and uses a contextual

menu item to assign the note as the “Generation Trigger.” When the score is played back,

MusiCog performs online inference of the music preceding the Generation Trigger note,

from which point it begins its continuation. As a result of the inference process, the musical

line containing the “trigger” note will be assigned a specific stream (i.e., in MusiCog’s WM),

and this stream will be selected for the melodic continuation. As the generation proceeds,

output is fed back into the PE (as discussed in Section 5.4), updating MusiCog’s internal

state. The continuation proceeds until the musical time corresponding to the end of the

Staff passes, at which point the continuation process exits.

7.2.3 Orchestration in ManuScore.

Our goal of maximizing flexibility can also be seen in ManuScore’s approach to orches-

tration. Rather than following the conventional design, in which instruments are created

a priori, on “tracks” similar to those used in analog tape recorders, ManuScore uses an

approach inspired by the practice of composing to “short-score.” When composers work to

short-score, they often add notes about orchestration after the fact, assigning instruments

to specific musical gestures directly on the staff. Orchestration in ManuScore follows the

same process, as shown in Figure 7.6. If the user’s MIDI system has been configured

appropriately, the instrumental switch from Flute to Viola at F]4 shown in this example will

190

Figure 7.4: MusiCog’s presentation of a set of possible continuations from a given musi-
cal context. MusiCog offered a set of possible continuations, allowing the user to toggle
through the various possibilities.

seed
Continuation note

continuation

Figure 7.5: The implementation of MusiCog’s real time continuation in ManuScore. From a
given musical passage a specific “continuation note” is selected. During playback, MusiCog
infers the preceding context, then begins continuation from the continuation note.

191

be played back via MIDI. Instruments can be assigned to notes by typing i, clicking at the

desired location, and entering the instrument name.

Figure 7.6: Assigning Instruments in ManuScore.

Users can define a custom library of instruments in the MIDI Setup window. The win-

dow has four panels: 1) MIDI Setup, 2) Instrument Library, 3) Articulation Library, and 4)

Instrument Builder. The MIDI Setup panel allows users to select input/output ports for their

MIDI system. In the Instrument Library panel, users can create named Instruments, each

with a specific MIDI port and channel assignment. The Articulation Library is used to define

named articulation settings—“legato”, “trill minor”, “snap pizz”, etc.—and to configure any

program changes, keyswitches, and/or controller changes needed to select these articu-

lations on their MIDI devices. Finally, the Instrument Builder allows users to freely assign

Articulations to Instruments. A number of standard, note-attached articulations like “stac-

cato”, “down-bow”, “tenuto”, and so on, are assigned to default names in the Articulation

Library, and are automatically selected when the appropriate score marking is used. Ex-

amples of note-attached articulations can be seen in Figure 7.7. Named articulations (i.e.,

those not selected directly through notation) can be added to the staff by typing a, clicking

at the desired point, and entering the Articulation name.

Figure 7.7: Note-attached staccato, accent, down-bow, and tremolo articulations.

192

7.2.4 Sharing Staff Data with “Links”

A further application of ManuScore’s notion of objecthood comes in the form of “links.” A

link is a graphical connection between two staves that allows one staff to become a source

of information for another—a form of inheritance. Typing l and clicking on a staff will start

the linking process by setting the clicked staff as the “source” of the link. Dragging over

another staff and releasing the link will set the staff under the release as the “target” staff.

The source staff acts as a data source, and the target staff acts as a receiver of some

aspect of the source staff’s data. An example of applying the pitch contour from a source

staff to the target staff is shown in Figure 7.8. Link functions currently include the following

operations:

• Pitch contour : Applies the source staff’s pitch contour to the contents of the target

staff. If the target staff has a greater number of events than the source, the source

contour is repeated.

• Rhythmic contour : Reorders the rhythmic values of events on the target staff to match

the rhythmic contour of events on the source staff.

• Pitch grid : Provides “crisp” locking of target pitches to source pitches.

• Harmonic grid : Provides “fuzzy” locking of target pitches to source pitches. The

locking algorithm uses a histogram of pitches used in the score up to the time of the

target staff, weighted toward the pitches in the source staff.

• Rhythmic grid : Imposes the rhythmic pattern of the source staff onto the contents of

the target staff.

• Trigger Staff : Allows non-linear playback possibilities by causing the source staff to

“trigger” the target staff. When playback of the source staff ends, the target staff

begins, regardless of its horizontal position on the score.

• Interrupt Staff : If the target staff is playing back at the time when the source staff

begins, the target staff is muted; i.e., the source staff “interrupts” the target staff.

193

Select a Link operation ("Use Pitch Contour")

The operation is performed on the target Staff

Figure 7.8: Using a Link to apply the pitch contour from one staff to another.

194

7.3 A Composition Study Using ManuScore

In the spring of 2011 we conducted an applied composition study using ManuScore with

composer James B. Maxwell, working under the supervision of composer/Professor Owen

Underhill. The objective of the study was to test the functionality of the software in a one-to-

one composition study context. During the study, Maxwell was to create two short works;

one using his regular music notation software package (with which he had been working for

many years), and the other using ManuScore. Both pieces were to be approximately 5:00

minutes in duration, and both were to be scored for string quartet. As a further limitation

on the process, both works were to draw source material from Fredrick II’s “Royal Theme”

(best known as the subject of Bach’s Musical Offering). The two works would be premiered

together, in performance, in the fall of 2011, and a listener study conducted at the concert,

as described in Section 7.4.

Although the above limitations do not provide a strict enough framework for quantitative

evaluation, we do feel that they impose enough commonality on the two compositional

processes to isolate, at least to some degree, the software itself as a potential source of

difference between the resulting works. Each working process was recorded using video

screen capture, in order to provide detailed documentation. An excerpt showing score

playback from the ManuScore composition process can be viewed online (audio playback

in the clip is directly from ManuScore, using the “Vienna Instruments” software):

http://www.sfu.ca/~jbmaxwel/MusiCog/MnS_experiri.mov.

It is important to note that, at the time of this study, MusiCog was not yet a full-fledged

cognitive architecture, but rather contained only a simple melodic segmentation algorithm,

and the Closure-based Cueing Model (CbCM)[162]. Generation from the CbCM is carried

out in fundamentally the same manner as the CM; inference of a given musical context

updates the state of the model, and continuation from that state proceeds via stochas-

tic selection of edges and/or links. Prior to the study, the CbCM was trained on three of

Maxwell’s prior works: vovere, for flute and ensemble, limina, for flute, piano, and per-

cussion, and pensare, for wind quintet. Although ManuScore is notation-based, it is not a

195

http://www.sfu.ca/~jbmaxwel/MusiCog/MnS_experiri.mov

music notation package, since it does not currently export standard, modern/mensural3 no-

tation. For this reason, a separate process was required to transcribe the completed work

into standard music notation for performance. This transcription process revealed some

intriguing effects of the ManuScore design, which we discuss further in Section 7.6.

7.4 A Listener Study

The two works composed during the composition study outlined in Section 7.3 were pre-

miered in a concert held at Simon Fraser University’s School for the Contemporary Arts,

Woodward’s campus, in December 2011. The concert was presented by the Musical

Metacreations project at SFU, and also included several machine-composed works by com-

poser/Professor Dr. Arne Eigenfeldt, and one other human-composed work, “One of the

above #1”, also by Dr. Eigenfeldt.

Participants in the study were 46 audience members from Vancouver’s new music com-

munity. The concert featured a total of ten works, written for percussion, string quartet,

Disklavier, and other hybrid combinations of these instruments. Each audience member

received a concert programme, which explicitly indicated that “machine-composed and

machine-assisted musical compositions” would be performed. Each audience member

also received an evaluation card on which they were encouraged to provide feedback. On

the front side of the evaluation card, audience members were asked to indicate, on a 5-point

Likert-scale from 1 to 5, their level of familiarity with contemporary music. This question

was followed by ten similar 5-point Likert-scales for rating their level of engagement while

listening to each of the compositions. Additionally, audience members were asked to indi-

cate which three pieces they felt were most directly human-composed. All questions on the

front side of the card were to be filled out during the performance. The back side of the card

contained an additional ten 5-point Likert-scales, asking audience members to indicate the

memorability of each piece. This was to be filled out at the end of the concert. However,

due to low response rate, this information was excluded from the analysis. Audience mem-

bers were also given space to write in their own comments. Further details on the study

can be found in Eigenfeldt et al. [80].

For the purposes of the current discussion we will focus on the two works composed

during the composition study described above (Section 7.3). Since the primary design

3That is, notation grounded on an implicit pulse, in which rhythmic durations are encoded by the graphical
appearance of the notes.

196

goal of ManuScore is to introduce CAC into the compositional process without disrupting

the development of a composer’s musical language, our working hypothesis was that audi-

ence members would not judge the computer-assisted work experiri to be implicitly more

“human” than the strictly human-composed work, fundatio.

7.5 Study Results

In order to avoid the alpha inflation that arises from multiple comparisons, statistical tests

were made using post-hoc Bonferroni-corrected alpha levels of 0.005 (0.5/10). For part

of the analysis, the 46 audience members were divided into novice and expert groups,

based on the score they indicated for the “familiarity with contemporary music” question.

The novice group consisted of audience members who gave a score of 1-3 out of 5 on the

familiarity scale (N = 25). The expert group consisted of the remaining audience members

who gave a 4 or 5 (N = 19). Two audience members failed to provide a familiarity score,

so their data was excluded from group comparisons.

Table 7.1 gives the engagement rating for all ten works on the programme. The two

works composed during the composition study, fundatio and experiri, are identified in bold

type. The score for “Other, Previously”, also written for string quartet, has been italicized

to draw attention to the fact that a highly significant difference between the averaged en-

gagement ratings for all string quartet pieces (µ = 4.36,σ = 0.73) and the “One of the

Above” series of solo percussion pieces (µ = 3.36,σ = 1.06) was found, t(133) = 8.71;

p < 0.0001. Similarly, a comparison between the string quartet pieces and the “hy-

brid” string/percussion pieces Dead Slow / Look Left and Gradual (µ = 3.69,σ = 1.09)

was also highly significant, t(89) = 4.79; p < 0.0001, suggesting that audience members

were more engaged by pieces containing strings than by those containing percussion. A

comparison between the percussion and hybrid pieces revealed no significant difference,

t(89) = 1.41; p = 0.16 ns.

It is worth noting that comparisons between the expert listener engagement ratings

for the two works from the composition study, fundatio (µ = 4.29,σ = 0.81) and experiri

(µ = 4.47,σ = 0.61) were non-significant, t(18) = 1.00; p= 0.33 ns. Novice ratings for fun-

datio (µ = 4.24,σ = 0.83) and experiri (µ = 4.36,σ = 0.86) were similarly non-significant,

t(24) = 0.72; p = 0.48 ns. Table 7.2 shows the results for the “directly human-composed”

ratings, where it is clear that both fundatio and experiri were estimated to be human-

composed works. Again, there is an effect of instrumentation to be considered, as the

197

other string quartet work was also highly rated (score in italics). However, there was once

again no significant difference between the work composed in ManuScore and the work

composed through Maxwell’s normal process.

Listener Experience
Work Name & Inst. Expert Novice Comb.
1(c) In Equilibrio 3.17 2.71 2.90

(Disklavier) (0.99) (1.23) (1.14)
2(h) One of the Above #1 4.00 3.36 3.67

(Percussion) (1.00) (1.19) (1.13)
3(c) Dead Slow/Look Left 4.16 3.08 3.51

(Str Qrt & Perc) (0.90) (1.15) (1.16)
4(c) One of the Above #2 3.68 3.16 3.42

(Percussion) (0.67) (1.07) (0.93)
5(h) fundatio 4.29 4.24 4.24

(String Quartet) (0.80) (0.83) (0.81)
6(c-a) experiri 4.47 4.36 4.40

(String Quartet) (0.61) (0.86) (0.76)
7 (c) One of the Above #3 3.39 3.12 3.22

(Percussion) (0.76) (1.20) (1.04)
8 (c) Other, Previously 4.31 4.50 4.40

(String Quartet) (0.75) (0.59) (0.66)
9 (c) One of the Above #4 3.63 2.71 3.10

(Percussion) (1.16) (1.00) (1.16)
10 (c) Gradual 4.05 3.88 3.93

(Vl, Perc & Dsk) (0.85) (0.95) (0.89)

Table 7.1: Audience evaluation of “engagement”: (c) computer-composed, (h) human-
composed, (c-a) computer-assisted (standard deviations in brackets).

198

Work Name N
1 (c) In Equilibrio 1
2 (h) One of the Above #1 12
3 (c) Dead Slow/Look Left 8
4 (c) One of the Above #2 2
5 (h) fundatio 30
6 (c-a) experiri 27
7 (c) One of the Above #3 2
8 (c) Other, Previously 24
9 (c) One of the Above #4 2
10 (c) Gradual 14
Total 122

Table 7.2: Evaluation of “directly human-composed”: (c) computer-composed, (h) human-
composed, (c-a) computer-assisted (standard deviations in brackets).

7.6 ManuScore as a CAC Tool

One of our primary goals in designing ManuScore was to create an application for com-

posers that would allow them to experiment with interactive, generative, object-oriented

composition, in a manner that would not dramatically disrupt their existing musical lan-

guage. The fact that no significant difference was found in the level of listener “engage-

ment” between experiri, composed in ManuScore, and fundatio would seem to suggest

that this basic goal was achieved. Further, since listeners were not able to identify ex-

periri as the computer-assisted work, it appears that the system did not dramatically alter

the composer’s musical language. It is also perhaps worth note that, of the two works,

the work composed in ManuScore was rated slightly higher in “engagement,” though it is

impossible to attribute this preference directly to the influence of ManuScore.

Most of ManuScore’s functionality was utilized during the composition process, though

the tools Maxwell reported as most useful were the Gesture Line tool and the “pitch grid”

link function. Although Maxwell does consider the final work to be human-composed, he

did feel that the software exerted a strong influence on both the form and content of the

piece. In particular, he suggested that continuations offered by the CbCM tended to pro-

voke different possibilities for the melodic development of the work, even in cases where

the continuations were not included in their original, unedited form. Continuations provided

by the CbCM were often edited in both pitch content and rhythm, with the former necessi-

tated by key/scale violations in the generated fragments. It is worth noting that the version

199

of ManuScore used in the study employed the initial method of presenting continuations to

the user, depicted in Figure 7.4. Although Maxwell reported that this method offered a great

deal of flexibility, it also became quite tedious to use, particularly in cases where a large

number of options were produced and had to be auditioned. Reflection on this experience

led to the somewhat more “online” approach added to the final version of ManuScore, as

illustrated in Figure 7.5.

Maxwell also reported that working in ManuScore introduced some important changes

into the compositional process, which would be worth discussing further. Specifically, the

manner in which time is represented, combined with the necessity of transcribing Manu-

Score documents into standard music notation, should be considered more closely. During

the transcription process it was noted that the original rhythmic representation of experiri

did not always follow an easily interpretable metrical structure. More specifically, it was

found that the metrical representation in ManuScore often conflicted with the implied met-

rical structure of the written music, as perceived through listening. An example occurs at

the opening of the work, and is shown in Figure 7.9. Looking carefully at the example, we

see that the original ManuScore phrase is written using a “beat division” of 5, suggesting a

quintuplet pattern. However, it was decided during the transcription process that the per-

ceived structure of the phrase was more appropriately represented using a “4+3” grouping

of sixteenth-notes and triplets, rather than the original “5+2” grouping. This change effec-

tively increased the tempo, and shifted the entire metrical structure accordingly.

Beat division = 5

Beat MarkersBeat Markers
Beat Division = 5

Figure 7.9: The opening phrase in ManuScore (bottom) and its transcription into standard
music notation.

200

A similar effect was noticed at measure 12 of the transcription, shown in Figure 7.10.

Here we see a passage which was created as a quintuplet pattern in ManuScore (bottom),

but transcribed as a grouping of six eighth-notes, under a 3
4 metre, in standard notation. It

was felt that such discrepancies arose primarily as an effect of the purely graphical nature

of ManuScore’s temporal grid. Since the grid does not impose a specific metrical structure

on the music, the cyclical process of writing and listening tended to emphasize perceptual,

rather than theoretical, principles in the developing composition. With a temporal grid of

5 beat divisions in place, pitches were easily entered into ManuScore in quintuplet pat-

terns. However, through the iterative process of listening, entering material, editing, and

subsequently auditioning edits, the musical form naturally began to unfold according to

perceptual/cognitive principles, driven by the musical materials themselves. The phras-

ing of ideas in the musical foreground gave rise to certain types of groupings, and these

naturally gave rise to accompaniments that supported those groupings. Because the met-

rical representation in ManuScore does not impose any explicit structure on the composed

music, the conflict between notation and perception did not become apparent until the

transcription process. Further, because the temporal grid was easy to adjust to virtually

any beat division value, it was simply not a priority to alter the metrical structure of the

score during the composition process. In a sense, quintuplets became naturalized as the

“tatum” (the smallest salient rhythmic subdivision of the beat) for the work, and the per-

ceptual reality of the composed rhythmic relationships ultimately superceded their rhythmic

representation in ManuScore. It is interesting to consider what would have happened had

this work been composed entirely in the conventional notation package, where the use of

modern/mensural notation would have imposed strict limitations on the composed music.

Presumably, as the first motivic materials explored in the piece, the quintuplet patterns

would have remained in place, as would the tempo and metre in which they were originally

set, potentially leading to a much different development of the final work. The complete

score for experiri is included as Appendix A.

201

Beat Markers
Beat Division = 5

Beat division = 5

Beat MarkersBeat Markers

Beat Division = 5

Figure 7.10: The music at measure 12 in ManuScore (bottom), transcribed as a metric
modulation in standard music notation.

7.7 Composition in ManuScore with MusiCog

A later compositional study carried out with ManuScore, taking place in the winter of 2012,

focused more on autonomous generation, and used the first ManuScore build with a com-

plete version of MusiCog. In this updated version of ManuScore the “online” continuation

approach shown in Figure 7.5 was used, however, it did not yet contain the mode/tonality

induction and pitch quantization functions. The completed work, factura, was performed in

May 2012, at Simon Fraser University in Vancouver. This work was intended as a more

thorough test of autonomous generation in ManuScore, and thus features extended sec-

tions of music generated primarily by MusiCog; in particular, the final movement factura

iii. The generated output was edited with regard to specific pitch content, dynamics, and

articulation, but the contour, interval size, and rhythm of factura iii was largely retained from

the autonomous generation. The complete score for the work is included as Appendix B.

The composer felt this work to be less successful than experiri, largely due to the greater

reliance on autonomous machine generation. Accordingly, he found the most interesting

parts of the work to be those that were more thoroughly human-composed. However, the

work was nevertheless a worthwhile test, as it revealed important limitations of the genera-

tive algorithms, leading to subsequent revision of the PM module. The PM implementation

in this build of MusiCog relied more heavily on WM contents, and thus had a tendency to

produce less motivic variety than the final version discussed in Section 5.4. This can be

202

seen in the score for factura iii (see Appendix B), where much of the material is derived

from three simple motives, shown in Figure 7.11. It is also likely that specific limitations im-

posed by the instrumentation for factura (solo percussion versus string quartet) influenced

Maxwell’s impression of the work’s quality, reporting that he found it more challenging to

maintain interest in an extended work for solo percussion than for string quartet. Ultimately,

however, Maxwell suggested that the greater reliance on autonomous machine composi-

tion was the most detrimental factor, suggesting that more of his time was spent on editing

than composition.

a b b'

Figure 7.11: Basic motives exploited by MusiCog’s autonomous generation process for
factura iii.

203

Chapter 8

Conclusion

8.1 Future Work

The implementation of MusiCog presented in Chapter 4 represents a first step. As such,

its greatest purpose has been to provide a foundation for future development. Consid-

eration of the problems and challenges encountered along the way has pointed toward

some essential improvements to the current model, as well as a number of paths for future

development.

8.1.1 Improvements and Extensions to the PE

Although the initial implementation of voice-separation (Section 4.2.1) presented here is

fairly sophisticated, we are interested in the possibility of implementing Cambouropoulos’

notion of perceptual streams in the PE. This approach is more deeply rooted in auditory

stream segregation since, under certain circumstances, it will allow multiple monophonic

voices to be joined in a single perceptual stream [32]; e.g., through the perceptual fusion of

octave doublings, passages of parallel 3rd or 6ths, and so on. However, as implemented,

Cambouropoulos’ model presents difficulties for online implementation, as it requires the

use of a look-ahead function to decide whether the musical texture is polyphonic or ho-

mophonic, which is not practical in an online system like MusiCog. On the other hand,

MusiCog’s use of association links in the CM does provide a method for representing these

kinds of parallel melodic structures, but in MusiCog these are LTM representations, which

is inconsistent with the perceptual/cognitive reality supported by Cambouropoulos’ model.

204

It would also be worthwhile to implement a more robust model of tonality induction and

tonal composition. Although the current model does provide an estimate of confidence in

the induced mode and tonality, it is a valid question whether or not a single tonality should

be enforced for an entire generation and, if not, how long a given tonality should last. A

more robust approach that models the perception of tonal strength could potentially obviate

the need for such a decision, since the choice could be made based on the strength of the

induced tonality. In cases where the tonal strength is weak, chromatic alterations of the key

could be permitted, or even encouraged. This could lead to a more idiomatic use of chro-

maticism, particularly in situations where chromatic alterations would serve to increase the

tonal strength; for example, during dominant passages in minor keys. On the other hand,

it is not clear how such an impulse toward tonal composition would be implemented, and it

is unlikely that it could simply be added to the purely stochastic generation model currently

in place. It is also worth considering whether a pitch interval Invariance representation is

best for tonal contexts, or whether this should be replaced with a scale-step interval repre-

sentation. For example, the system could use pitch intervals for non-tonal generation, and

dynamically switch to scale-step intervals when a tonal centre is desired.

8.1.2 Improvements and Extensions to the PM

Since MusiCog’s focus is on the use of an integrated cognitive architecture to model the

kind of musical intelligence necessary for composition, much of our attention for future

development will be directed toward the PM. Here we outline a number of areas for im-

provement and development.

Addressing Problems in Rhythmic Generation

We would first like to address problem areas in rhythmic generation discussed in Section

6.3.1. It may be possible to address some of these issues by a simple alteration of the

stochastic process used to generate rhythms. Currently, the model attempts to generate

rhythmic patterns to match the length of generated pitch patterns. This was done in order to

maximize the system’s potential for novelty, allowing it to combine pitch patterns and rhythm

patterns in novel ways. However, an alternative approach could involve greater exploita-

tion of association links between the pitch and rhythm models. Because both models are

trained on segments of events containing pitch and rhythm information, it follows that there

will be at least one corresponding rhythmic pattern for every pitch pattern learned. Thus,

205

during generation, a given sequence of pitch nodes (i.e., a pitch model path) will have a

corresponding path in the rhythm model. All that is required is to extract the corresponding

rhythm model path for the generated pitch model path. Of course, the disadvantage here

is that it will tend to promote quotation from the training corpus.

Another potential solution would be to integrate the CbCM’s original linking scheme

(outlined in Section 4.2.3 and illustrated in Figure 4.13) into the CM, so that L2 boundary

nodes connect to both the L1 depth k = 1 node, representing the note transition immedi-

ately following the boundary, and the terminal node, as is currently the case in the CM. This

would essentially create a first-order Markov model between the set of L2 nodes and the set

of L1 depth k = 1 nodes, more thoroughly modelling the structure of L1 segments. Although

this would add a considerable amount of linking data to the implementation, it would have

the benefit of allowing the PM to incorporate this first-order statistical information into the

selection of L1 paths. Further, such information could also be used for other compositional

purposes like constraining the total pitch range, or filtering out uncharacteristically large

pitch intervals during generation.

Such an approach would not, however, avoid problems associated with the recombi-

nation of different rhythmic subdivisions, as described in Section 6.3.1. It is worth noting

that this kind of error is also not generally supported by the music psychological research

into rhythmic expectancy, where such patterns would be highly unexpected—and thus un-

likely as compositional choices—even for a composer interested in exploring novel rhythmic

materials. Therefore, a more cognitively-grounded, motive-level model of rhythmic quanti-

zation, offering a similar function to the pitch quantization already implemented in the PE,

would likely be sufficient to solve many of these problems. Such a model could operate

by dividing the generated rhythmic pattern into beat-length segments, and using rhythmic

expectancy to evaluate the well-formedness of the within-beat rhythmic transitions. If a

particularly unexpected rhythmic transition was found within the beat, it could be adjusted

to conform to the expected rhythmic subdivision. Of course, such a system may be overly

aggressive, leading to less interesting and varied rhythmic output, but it would also likely

produce more convincing results (i.e., sacrificing novelty for quality and typicality). To re-

duce the aggressiveness of the system, the choice of whether to apply such quantization

could be determined by a beat salience estimation, allowing the mechanism to be shut off

in a cognitively-grounded manner when generating non-pulsed music. Such a mechanism

would be similar to the use of the “confidence” estimation used to disable pitch quantization,

as described in Section 4.2.1 (p. 89).

206

Closely related to this problem, and implicated in the above solution, is the idea of

implementing some form of beat induction in the PE. In practical terms, this would remove

the need to provide an external beat, allowing MusiCog to be more easily integrated into

live improvisation/composition systems. Further, an implicit sense of pulse would give

the system a richer rhythmic knowledge for exploitation during generation. For example,

feedback between the PM and PE could be used to control rhythmic tension and release

by regulating the PM’s tendency to confirm (or deny) the induced pulse.

Polyphonic Generation

It will also be important to move toward polyphonic generation. Given that MusiCog al-

ready performs stream/voice separation in the PE, retains multiple streams in WM, and

encodes their relationships in the CM, the next logical step is to generate multiple streams

in the PM. However, we do feel it is important to first establish a good approach to melodic

generation, so that polyphonic generation might benefit from the working melodic model.

True polyphonic generation from the CM is a complex problem, as the rhythmic indepen-

dence and varying segment structure of individual melodic lines in many musical textures

will cause independent generated melodies to traverse the CM structure at different rates.

Further, empirical investigation into the perception of polyphonic music is limited in the lit-

erature [21, 109] (in large part due to methodological difficulties), offering little guidance

from a cognitive modelling perspective. One possible approach would be to begin not

from the CM hierarchy itself, but rather from the CM’s associative memory. For example, a

polyphonic generation algorithm could begin by searching for an L2 node at depth k = 1,

and from this node could select n strongly associated pitch nodes. For each of the n se-

lected nodes a melodic line could be initiated. As transitions for each line were chosen, the

mutual pitch association strength of each candidate node could be tested, and included

in the stochastic selection process. Of course, in order to avoid limiting polyphonic gen-

eration to chorale-style “block voicings” (i.e., multiple voices with simultaneous onsets) a

certain percentage of onsets would have to be permitted to occur asynchronously. Since

the rhythmic independence of individual parts in polyphonic textures is an important factor

in maintaining the perceptual independence of voices [31, 105], feedback responses of the

PE’s voice-separation algorithm could, perhaps, be used to guide the selection of melodic

continuations in a manner that optimizes voice-separation; another benefit of the integrated

approach to generative system design.

207

High-Level Composition Modelling

Perhaps most importantly, it is essential to devise and implement a more composition-

ally grounded method for exploiting the considerable potential represented by MusiCog’s

learned structure and modular design. This suggests a shift in focus from an emphasis on

“data models” to the sort of “procedural models” proposed by Laske’s composition theory

[135] (see Section 2.1). Purely stochastic generation is not likely to rival human composed

music, as long as it lacks this sort of procedural model. Generally speaking, probabilistic

models have focused on exploiting the statistical information recorded in their data mod-

els, rather than on the compositional processes required to create acceptable music from

the given data. We suggest this is due, at least in part, to a general misrepresentation

of the compositional process underlying stochastic generation. We envision an approach

that divides the compositional process into stochastic and deterministic subprocesses, in

some ways related to the “pattern based sampling” described by Conklin [43], but also ac-

knowledging certain formal aspects of the topic-elaboration approach proposed by Hayes

(Section 2.2). First, stochastic selection will be used to generate an initial set of higher-level

plans and low-level motives. These compositional base materials will be fixed as concrete

musical concepts, after which the high-level plans will be used to organize the low-level mo-

tivic segments in time. Cognitively-grounded, rule-based procedures will adapt the motivic

materials to the specific local contexts arising through feedback perception of the devel-

oping composition. The WM will serve as a kind of blackboard for these processes and,

drawing on ideas from Schmidhuber’s theory, will also be used to gauge the subjective co-

hesiveness and interestingness of the developing composition from the perspective of the

agent. These subjective responses could be used to guide the system toward greater or

lesser novelty, both at higher levels (e.g., by forcing the generation forward in the formal

plan), and at lower levels (e.g., by influencing the rule-based transformation processes;

increasing/reducing chromaticism, changing mode/tonality, and so on).

Considered in terms of agent design, a significant limitation of MusiCog is that it lacks a

clear method for adapting to its own generative success and/or failure; i.e., it is not a partic-

ularly robust agent. Drawing inspiration from the ACT-R architecture, we propose to include

a “utility” value in the CM, allowing MusiCog to increase the utility of successful composi-

tional choices, and weaken the utility of unsuccessful choices. This could be implemented

using an actor-critic RL approach [120], with reward signals generated by the WM module,

in consideration of PE responses to feedback input, the state of the WM contents, and the

208

subjective responses of the agent, as discussed above. Positive reward signals would in-

crease the utility value of CM nodes used in the recent generation (i.e., material currently

held in WM as a result of PE feedback), while negative reward signals would lower the

utility values. In this way, MusiCog could learn to optimize its own compositional success,

without dramatically altering its learned representations, as would happen if reward signals

modified the CM edge weights directly.

Finally, because the limitations currently imposed by WM capacity prevent MusiCog

from building opus-level compositional structures (i.e., form at the level of complete musi-

cal works), and consequently from linking together temporally separated hierarchical sub-

structures in the CM, it would be useful to have a separate mechanism for learning this

level of form. We would like to explore a mechanism of cue abstraction, following ideas

from Deliège [59]. This system would use simple learning mechanisms to build long time-

scale representations of basic formal gestures, or “imprints” [59]. These representations

would be sequential, but fundamentally atemporal, so that the specific durations separating

imprints would remain unspecified. The imprint representation itself would include abstract

analytical information regarding attributes like event density, pitch and rhythmic roughness

(proportion of small/short and large/long intervals), chromaticism/modality, and so on. It

would also encode basic sequences of similar/contrasting material, by tracking the activa-

tion of terminal nodes in the CM during training. This mechanism would not record the

terminals themselves, but would rather record ordinal information about the sequences of

unique terminals encountered in each training work. This would allow the imprint learning

mechanism to encode basic formal patterns analogous to music theoretical notions like

“sonata,” “rondo,” and so on, in which different types of materials are assigned ordinal val-

ues, and the sequences of ordinals are used to describe the form; e.g., (A,B,A), (A,A,B,B),

etc. In this way, the imprint’s abstract analytical information could be used to guide stochas-

tic selection and rule-based transformation processes during the generation of motivic ma-

terials, while the ordinal information could be used to build an overall, opus-level formal

outline for the generated composition. The abstraction of materials using ordinal values

would help protect the selected motives from the sort of continuous variation symptomatic

of purely stochastic selection techniques, thus ensuring that the repetition structure and

formal organization would remain perceptible in the composed music.

209

8.1.3 Modelling Attention

MusiCog currently has no explicit model of attention. Although this is a rather serious short-

coming for a proposed cognitive model, it is also an extremely complex subject in the field of

music psychology, where only a handful of research projects have attempted to investigate

attention direction during polyphonic music listening in natural contexts [87, 94, 109, 203].

Further, due to the experimental challenges involved in identifying the effects of attention

in listening subjects, much of the research done has focused either on auditory stream

segregation (see Section 3.2), or on neuroimaging studies of the listening brain, which tells

us relatively little about the subjective state of the listener. Nevertheless, attention is an im-

portant phenomenon to model, since musical form is generally concerned with guiding the

listener’s attention through the various stages of musical development, and across the vari-

ous features of the musical surface. It could be argued that the use of cognitive salience for

the retention of items in WM, or the privileging of parallelism as a compositional strategy

in the PM, are forms of attention, but these two functions alone certainly do not consti-

tute a sufficient model. A dedicated mechanism for attention will be particularly useful for

polyphonic generation, where the system will have to prioritize certain musical parts over

others if it is to model the foreground/background relationships found in human music. This

is, of course, an area where the integrated approach could be particularly useful, since the

system’s own reported attention (i.e., via feedback) could be used to regulate the musical

focus of the developing work.

8.2 Final Statements

Although other cognitively-grounded generative models for music exist (see Section 3.6),

to the best of our knowledge, MusiCog is the first Integrated Cognitive Architecture for mu-

sic founded on ideas from the field of ICA design. In this dissertation we have presented

musical examples of MusiCog performing perceptual/cognitive tasks including polyphonic

voice-separation, melodic segmentation, chunking, hierarchical learning, and melodic gen-

eration when trained on corpora of contrasting musical styles. We have performed quantita-

tive evaluations of MusiCog’s proposed “musically naïve” approach to melodic composition,

and discussed MusiCog’s output from a music theoretical perspective, with a particular fo-

cus on motive/phrase structure. Although MusiCog’s output showed significant differences

(i.e., of means) to the training corpora in tests of expectancy-based complexity, entropy,

and melodic similarity, style imitation of the more rudimentary source materials (e.g., the

210

100-song folk corpus) showed great promise. We have shown that the musically naïve

approach to generation performs best for music that requires only fundamental percep-

tual/cognitive processes for comprehension—in particular, scale induction—and that as

more abstract music theoretical ideas are implicated in the musical structure of training

corpora, MusiCog’s performance decreases. Analysis of musical scores revealed weak-

nesses of melodic form, perhaps most significantly in the areas of symmetry, repetition

structure, and long-term formal development. The system also demonstrated a limited but

noteworthy capacity to generate tonal melodies, when trained on tonal material.

The techniques used in MusiCog have been included in the ManuScore CAC envi-

ronment, which we tested in the context of practical composition studies, the results of

which were performed for the general public. This work with ManuScore revealed impor-

tant strengths and weaknesses of MusiCog in a CAC context, and pointed the way for future

development. We have also attempted to show the benefits of an integrated approach to

cognitively-grounded music generation. The integrated approach presents intuitively clear

solutions to several problems, due in large part to the conceptual symbiosis of cognitive

modelling and intellectual reflection and analysis; e.g., if a weakness of the system is re-

vealed during generation, and that weakness is perceptible, then it is reasonable to suggest

that the system’s perceptual system might somehow be implicated in the solution. This no-

tion of investigating the relations between the musical behaviour of the system and the

states of its various modules—particularly in the context of feedback processing—has only

been touched upon. Further investigation is required to develop an in-depth understanding

of the potential of this methodological approach.

The relative success of MusiCog’s musically naïve generation process, despite its clear

limitations, likely derives from its capacity to model the statistical regularities of music at

multiple levels of formal structure; note transitions, motive boundary transitions, and in

some cases phrase boundary transitions. However, it is also increasingly apparent that

fundamentally stochastic generation, as implemented in MusiCog (and many generative

systems), is insufficient for modelling the kind of structure displayed by human-composed

music. Even though MusiCog does create detailed representations of such formal regu-

larities, it generally fails to reproduce them during composition, due to its dependence on

stochastic selection. It remains to be seen whether Deep Learning approaches will tackle

this particular problem. Of course, simply eliminating stochastic processes is not an option

for corpus-based systems since, without the influence of stochastic variability, the likelihood

of generating verbatim quotations from the corpus increases. This general issue, however,

211

reveals an interesting problem affecting the development of generative systems; that the

concern with achieving novelty generally eclipses the more pressing concern of ensuring

quality. Further, it seems that the problems related to lack of repetition structure and/or

formal organization observed in the current research, though demonstrated with regard to

a limited set of musical styles, are not necessarily exclusive to those styles. That is, these

various types of repetition structure and formal organization are not style-specific traits iso-

lated to this music, but are rather basic aspects of musical syntax, conditioned in no small

part by the basic perceptual and cognitive capacities of human composers and listeners.

On the other hand, a question that might be worth asking, when reflecting upon Musi-

Cog’s difficulties in style imitation, is precisely how many attempts it should take for a

“composer” to write a good melody? After all, MusiCog’s folk generation number 43 was,

in many ways, quite acceptable, and did replicate important formal attributes of human-

composed melodies. While it’s true that it was just one of a hundred attempts, it is also

true that it was “composed” in a fraction of a second. So how many attempts at melodic

composition should it take to compose a decent melody? How many did it take, for ex-

ample, to create any one of the songs in our folk corpus? In fact, when considered from

the perspective of MusiCog’s potential as a CAC tool, it would be reasonable to say that

MusiCog is remarkably successful, since, with the push of a button it was able to produce a

fairly well-formed, tonal melody that, with only a small amount of editing, could be perfectly

convincing. In this light, perhaps “significance” should be considered in a different way?

After all, apart from a general understanding that configurational entropy ought to provide

for a great number of options for generation from a training corpus, we actually have no

way of knowing whether the information contained in a corpus of 100 folk songs should

actually produce any more than 100 well-formed melodies. It is an assumption. Of course,

it seems reasonable to assume that such a corpus does provide the potential for more, but

there is no concrete evidence that this is the case.

From the preceding investigation we suggest that what is required for the future devel-

opment of music generation systems is an implementable theory of composition. Existing

theories—with the possible exception of Schmidhuber’s theory1 (see Section 2.5.2)—are

purely descriptive (e.g., Collins’ Synthesis Process Model [41]), and would require con-

siderable elaboration as prescriptive models to be implemented in computational systems.

1It is worth noting that MusiCog’s use of cognitive salience to regulate the degree of musical parallelism is
closely related to Schmidhuber’s ideas. However, this approach was shown to be insufficient, since it tends to
produce continuously developing patterns of repetition/parallelism and variation, without the tendency to return
back to previously exploited material, as is commonly observed in human-composed music.

212

Nevertheless, in order for high-level, formalizable generative models to move forward, some

effort must be made to redress the abandonment of musical knowledge that characterizes

many current methods—Pachet’s work with “Markov constraints” [181] is a compelling ex-

ception, in this regard. Of course, in order to avoid the pitfalls of the past—producing highly

competent systems like EMI, that depend upon inextricably embedded representations of

individual musical knowledge—we must be careful to integrate such compositional knowl-

edge in a principled way.

213

Bibliography

[1] Online etymology dictionary, URL http://www.etymonline.com.

[2] Abdallah, S. and Plumbley, M., Information dynamics: Patterns of expectation and
surprise in the perception of music, Connection Science, 21(2-3):89–117, 2009.

[3] Allan, M., Harmonising chorales in the style of Johann Sebastian Bach, Master’s
thesis, School of Informatics, University of Edinburgh, 2002.

[4] Allauzen, C., Crochemore, M., and Raffinot, M., Factor oracle: A new structure for
pattern matching, in SOFSEM’99: Theory and Practice of Informatics, pp. 295–310,
Springer, 1999.

[5] Amabile, T. M., Creativity in context: Update to "the social psychology of creativity.",
Westview press, 1996.

[6] Ames, C., The Markov process as a compositional model: a survey and tutorial,
Leonardo, 22(2):175–187, 1989, ISSN 0024-094X.

[7] Anderson, J., ACT: A simple theory of complex cognition, American Psychologist,
51:355–365, 1996, ISSN 0003-066X.

[8] Andrews, M. W. and Dowling, W. J., The development of perception of interleaved
melodies and control of auditory attention, Music Perception, pp. 349–368, 1991.

[9] Assayag, G., Bloch, G., Chemillier, M., Cont, A., and Dubnov, S., Omax brothers: a
dynamic topology of agents for improvization learning, in Proceedings of the 1st ACM
workshop on Audio and music computing multimedia, pp. 125–132, ACM, 2006.

[10] Assayag, G., Rueda, C., Laurson, M., Agon, C., and Delerue, O., Computer-assisted
composition at IRCAM: from Patchwork to OpenMusic, Computer Music Journal,
23(3):59–72, 1999.

[11] Aucouturier, J.-J. and Pachet, F., Music similarity measures: What’s the use, in Proc.
ISMIR, vol. 2, 2002.

[12] Baddeley, A., Working memory, Science, 255(5044):556–559, 1992.

[13] Baddeley, A., Working memory: Looking back and looking forward, Nature Reviews
Neuroscience, 4(10):829–839, 2003.

214

http://www.etymonline.com

[14] Baroni, M., Musical grammar and the study of cognitive processes of composition,
Musicæ Scientiæ, 3(1):3–21, 1999.

[15] Bel, B., Kippen, J. et al., Modelling music with grammars: formal language repre-
sentation in the Bol Processor, Computer Representations and Models in Music, pp.
207–238, 1992.

[16] Bengio, Y., Learning deep architectures for AI, Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009.

[17] Bengtsson, S. L., Ullén, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., Naito, E.,
Forssberg, H., and Sadato, N., Listening to rhythms activates motor and premotor
cortices, Cortex, 45(1):62–71, 2009.

[18] Bernstein, L., The unanswered question: Six talks at Harvard, Harvard University
Press, 1976.

[19] Berz, W. L., Working memory in music: A theoretical model, Music Perception, pp.
353–364, 1995.

[20] Bickerman, G., Bosley, S., Swire, P., and Keller, R., Learning to create jazz melodies
using Deep Belief Nets, in Proceedings Of The International Conference On Com-
putational Creativity, Lisbon, Portugal, 2010.

[21] Bigand, E., McAdams, S., and Forêt, S., Divided attention in music, International
Journal of Psychology, 35(6):270–278, 2000.

[22] Bizzell, P. and Herzberg, B., The rhetorical tradition, Bedford Books of St. Martin’s
Press Boston, 1990.

[23] Blair, R. C. and Karniski, W., An alternative method for significance testing of wave-
form difference potentials, Psychophysiology, 30(5):518–524, 1993.

[24] Boden, M. A., Creativity and artificial intelligence, Artificial Intelligence, 103(1):347–
356, 1998.

[25] Boltz, M., Some structural determinants of melody recall, Memory & Cognition,
19(3):239–251, 1991.

[26] Bourdin, B. and Fayol, M., Is written language production more difficult than oral
language production? a working memory approach, International Journal of Psy-
chology, 29(5):591–620, 1994.

[27] Brower, C., A cognitive theory of musical meaning, Journal of music theory,
44(2):323–379, 2000.

[28] Brown, A., How the computer assists composers: A survey of contemporary practise,
2001.

[29] Brown, A., Modes of compositional engagement, Mikropolyphony, 6, 2001.

215

[30] Brown, G. J. and Cooke, M., Perceptual grouping of musical sounds: A computational
model, Journal of New Music Research, 23(2):107–132, 1994.

[31] Cambouropoulos, E., Musical parallelism and melodic segmentation:: A computa-
tional approach, Music Perception, 23(3):249–268, 2006.

[32] Cambouropoulos, E., Voice and stream: Perceptual and computational modeling of
voice separation, Music Perception, 26(1):75–94, 2008.

[33] Carlsen, J. C., Divenyi, P. I., and Taylor, J. A., A preliminary study of perceptual
expectancy in melodic configurations, Bulletin of the Council for Research in Music
Education, pp. 4–12, 1970.

[34] Chadabe, J., Interactive composing: an overview, Computer Music Journal, 8(1):22–
27, 1984, ISSN 0148-9267.

[35] Chaffin, R. and Imreh, G., Practicing perfection: Piano performance as expert mem-
ory, Psychological Science, 13(4):342–349, 2002.

[36] Chew, E. and Wu, X., Separating voices in polyphonic music: A contig mapping
approach, in Computer Music Modeling and Retrieval, pp. 1–20, Springer, 2005.

[37] Chikhaoui, B., Pigot, H., Beaudoin, M., Pratte, G., Bellefeuille, P., and Laudares, F.,
Learning a song: an ACT-R model.

[38] Chomsky, N. and DiNozzi, R., Language and mind, Harcourt Brace Jovanovich New
York, 1972.

[39] Chong, H., Tan, A., and Ng, G., Integrated cognitive architectures: a survey, Artificial
Intelligence Review, 28(2):103–130, 2007, ISSN 0269-2821.

[40] Clementi and Company, The Melographicon: a New Musical Work, by which an
Interminable Number of Melodies May be Produced: And Young People who Have
a Taste for Poetry Enabled to Set Their Verses to Music for the Voice and Piano-
forte, Without the Necessity of a Scientific Knowledge of the Art ..., Clementi and
Company, 1805, URL http://books.google.ca/books?id=Y-AsAAAAYAAJ.

[41] Collins, D., A synthesis process model of creative thinking in music composition,
Psychology of Music, 33(2):193, 2005.

[42] Collins, T., Improved methods for pattern discovery in music, with applications in
automated stylistic composition, Ph.D. thesis, The Open University, 2011.

[43] Conklin, D., Music generation from statistical models, in Proceedings of the AISB
2003 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences,
pp. 30–35, Citeseer, 2003.

[44] Conklin, D. and Bergeron, M., Feature set patterns in music, Computer Music Jour-
nal, 32(1):60–70, 2008.

216

http://books.google.ca/books?id=Y-AsAAAAYAAJ

[45] Conklin, D. and Witten, I. H., Multiple viewpoint systems for music prediction, Journal
of New Music Research, 24(1):51–73, 1995.

[46] Cont, A., Dubnov, S., and Assayag, G., Anticipatory model of musical style imitation
using collaborative and competitive reinforcement learning, in Anticipatory behavior
in adaptive learning systems, pp. 285–306, Springer, 2007.

[47] Cope, D., An expert system for computer-assisted composition, Computer Music
Journal, 11(4):30–46, 1987.

[48] Cope, D., Recombinant music: using the computer to explore musical style, Com-
puter, 24(7):22–28, 1991.

[49] Cope, D., Computer modeling of musical intelligence in EMI, Computer Music Jour-
nal, 16(2):69–83, 1992.

[50] Cope, D., The Composer’s Underscoring Environment: CUE, Computer Music Jour-
nal, 21(3):20–37, 1997.

[51] Cope, D., Virtual Music: computer synthesis of musical style, MIT Press, Cambridge,
MA, USA, 2001.

[52] Cope, D., Computer Models of Musical Creativity, MIT Press, Cambridge, MA, USA,
2005.

[53] Cowan, N., The magical mystery four how is working memory capacity limited, and
why?, Current Directions in Psychological Science, 19(1):51–57, 2010.

[54] Cruz-Alcázar, P. P. and Vidal-Ruiz, E., Learning regular grammars to model musical
style: Comparing different coding schemes, in Grammatical Inference, pp. 211–222,
Springer, 1998.

[55] Csikszentmihalyi, M., Reflections on the field., 1998.

[56] De Cheveigne, A., Pitch perception models, in Pitch, pp. 169–233, Springer, 2005.

[57] Deliege, I., Mechanisms of cue extraction in memory for musical time, Contemporary
Music Review, 9(1-2):191–205, 1993.

[58] Deliege, I., Cue abstraction as a component of categorisation processes in music
listening, Psychology of Music, 24(2):131–156, 1996.

[59] Deliège, I., Prototype effects in music listening: An empirical approach to the notion
of imprint, Music Perception, 18(3):371–407, 2001.

[60] Desain, P., A (de)composable theory of rhythm perception, Music Perception,
9(4):439–454, 1992, ISSN 0730-7829.

[61] Desain, P., Honing, H. et al., The formation of rhythmic categories and metric priming,
PERCEPTION-LONDON-, 32(3):341–366, 2003.

217

[62] Deutsch, D., The psychology of music, Academic Pr, 1999, ISBN 0122135652.

[63] Deutsch, D., The psychology of music, Academic Press, 2012.

[64] Deutsch, D. and Feroe, J., The internal representation of pitch sequences in tonal
music., Psychological Review, 88(6):503, 1981, ISSN 1939-1471.

[65] Dictionary, O. E., Oxford english dictionary online, URL http://
www.oxforddictionaries.com.

[66] Dillmann, R. and Asfour, T., Deliverable title: State of the art in intelligent and cogni-
tive systems.

[67] DiScipio, A., Formalization and intuition in Analogique A et B, in Proceedings of the
international symposium iannis xenakis, pp. 95–108, 2005.

[68] Dowling, W., Scale and contour: Two components of a theory of memory for
melodies, Psychological Review, 85(4):341–354, 1978, ISSN 0033-295X.

[69] Dowling, W., Context effects on melody recognition: Scale-step versus interval rep-
resentations, Music Perception, 3(3):281–296, 1986, ISSN 0730-7829.

[70] Dowling, W., The development of music perception and cognition, Foundations of
Cognitive Psychology. Cambridge: MIT Press, 1999.

[71] Dowling, W. and Bartlett, J., The importance of interval information in longterm mem-
ory for melodies, Psychomusicology: Music, Mind and Brain, 1(1), 2008.

[72] Dowling, W. J. and Harwood, D. L., Music cognition, vol. 19986, Academic Press
New York, 1986.

[73] Dubnov, S. and Assayag, G., Universal prediction applied to stylistic music gener-
ation, in Mathematics and Music, A Diderot Mathematical Forum, Assayag, G.; Fe-
ichtinger, HG, pp. 147–160, 2002.

[74] Duch, W., Oentaryo, R., and Pasquier, M., Cognitive architectures: Where do we go
from here?, in Proceeding of the 2008 conference on Artificial General Intelligence
2008: Proceedings of the First AGI Conference, pp. 122–136, IOS Press, 2008.

[75] Duncker, K. and Lees, L. S., On problem-solving., Psychological monographs,
58(5):i, 1945.

[76] Edworthy, J., Interval and contour in melody processing, Music Perception, 2(3):375–
388, 1985, ISSN 0730-7829.

[77] Eerola, T. and North, A. C., Expectancy-based model of melodic complexity, in Pro-
ceedings of the Sixth International Conference on Music Perception and Cognition.
Keele, Staffordshire, UK: Department of Psychology. CD-ROM, 2000.

[78] Eerola, T. and Toiviainen, P., MIR in Matlab: The MIDI Toolbox., in ISMIR, 2004.

218

http://www.oxforddictionaries.com
http://www.oxforddictionaries.com

[79] Eigenfeldt, A., The evolution of evolutionary software: intelligent rhythm generation
in Kinetic Engine, in Applications of Evolutionary Computing, pp. 498–507, Springer,
2009.

[80] Eigenfeldt, A., Burnett, A., and Pasquier, P., Evaluating musical metacreation in a
live performance context, in Proceedings of the Third International Conference on
Computational Creativity, pp. 140–144, 2012.

[81] Eigenfeldt, A. and Pasquier, P., Considering vertical and horizontal context in corpus-
based generative electronic dance music, in Proceedings of the Fourth International
Conference on Computational Creativity, p. 72, 2013.

[82] Elsea, P., Fuzzy logic and musical decisions, University of California, Santa Cruz,
1995.

[83] Evers, T. and Musse, S., Building artificial memory to autonomous agents using dy-
namic and hierarchical finite state machine, in Computer Animation, 2002. Proceed-
ings of, pp. 164–169, IEEE, 2002, ISBN 0769515940.

[84] Feldman, J. A. and Ballard, D. H., Connectionist models and their properties, Cogni-
tive science, 6(3):205–254, 1982.

[85] Flower, L. and Hayes, J. R., A cognitive process theory of writing, College composi-
tion and communication, 32(4):365–387, 1981.

[86] Fuegi, J. and Francis, J., Lovelace & babbage and the creation of the 1843 ’notes’,
Annals of the History of Computing, IEEE, 25(4):16–26, 2003.

[87] Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., and Pantev, C., Automatic encoding
of polyphonic melodies in musicians and non-musicians, Journal of cognitive neuro-
science, 17(10):1578–1592, 2005.

[88] Fuller, F. D., Development of topic-comment algorithms and text structures in writ-
ten compositions of students in grades one through nine, Ph.D. thesis, University of
Washington, 1995.

[89] Gillick, J., Tang, K., and Keller, R. M., Machine learning of jazz grammars, Computer
Music Journal, 34(3):56–66, 2010.

[90] Ginsborg, J., Strategies for memorizing music, Musical excellence: strategies and
techniques to enhance performance, pp. 123–141, 2004.

[91] Godoy, R., Jensenius, A., and Nymoen, K., Chunking in music by coarticulation, Acta
Acustica united with Acustica, 96(4):690–700, 2010.

[92] Gonzalez Thomas, N., Pasquier, P., Eigenfeldt, A., and Maxwell, J. B., A methodol-
ogy for the comparison of melodic generation models using Meta-Melo., in Proceed-
ings of the 13th International Society for Music Information Retrieval Conference,
Curitiba, PR, Brazil, 2013.

219

[93] Gonzalez Thomas, N., Pasquier, P., Loughin, T., and Burnet, A., In publication.

[94] Gregory, A. H., Listening to polyphonic music, Psychology of Music, 18(2):163–170,
1990.

[95] Groppe, D., One sample/paired sample permutation t-test with cor-
rection for multiple comparisons, MATLAB Central File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/29782, Retrieved Jan 7,
2014.

[96] Gruber, H. E. and Barrett, P. H., Darwin on man: A psychological study of scientific
creativity., EP Dutton, 1974.

[97] Hawkins, J., On intelligence, Macmillan, 2004.

[98] Hawkins, J., George, D., and Niemasik, J., Sequence memory for prediction, infer-
ence and behaviour, Philosophical Transactions of the Royal Society B: Biological
Sciences, 364(1521):1203–1209, 2009.

[99] Hayes, J. R., Modeling and remodeling writing, Written Communication, 29(3):369–
388, 2012.

[100] Heider, F., Gestalt theory: Early history and reminiscences., Journal of the History of
the Behavioral Sciences, 1970.

[101] Heller-Roazen, D., The Fifth Hammer: Pythagoras and the Disharmony of the World,
Zone Books, 2011.

[102] Henson, R. N., Short-term memory for serial order: The start-end model, Cognitive
psychology, 36(2):73–137, 1998.

[103] Herholz, S. C., Halpern, A. R., and Zatorre, R. J., Neuronal correlates of percep-
tion, imagery, and memory for familiar tunes, Journal of cognitive neuroscience,
24(6):1382–1397, 2012.

[104] Horner, A. and Goldberg, D., Genetic algorithms and computer-assisted music com-
position, Urbana, 51(61801):14, 1991.

[105] Huron, D., Tone and voice: A derivation of the rules of voice-leading from perceptual
principles, Music Perception, 19(1):1–64, 2001.

[106] Huron, D. and Parncutt, R., An improved model of tonality perception incorporat-
ing pitch salience and echoic memory, Psychomusicology: Music, Mind & Brain,
12(2):154–171, 1993.

[107] Huron, D. and Royal, M., What is melodic accent? converging evidence from musical
practice, Music Perception, pp. 489–516, 1996.

220

[108] Huron, D. B., Sweet anticipation : music and the psychology of expectation, MIT
Press, Cambridge, Mass., 2006, 2005054013 GBA635835 David Huron. ill., music
; 24 cm. “A Bradford book.” Includes bibliographical references (p. [423]-448) and
index.

[109] Janata, P., Tillmann, B., and Bharucha, J. J., Listening to polyphonic music recruits
domain-general attention and working memory circuits, Cognitive, Affective, & Be-
havioral Neuroscience, 2(2):121–140, 2002.

[110] Johanson, B. and Poli, R., GP-music: An interactive genetic programming system for
music generation with automated fitness raters, Citeseer, 1998.

[111] Jordanous, A., Voice separation in polyphonic music: A data-driven approach, in
Proceedings of the International Computer Music Conference, 2008.

[112] Karim, S., Acquiring Plans Within Situated Resource-bounded Agents: A Hybrid
BDI-based Approach, Ph.D. thesis, University of Melbourne, Dept. of Information
Systems, 2009.

[113] Karydis, I., Nanopoulos, A., Papadopoulos, A., Cambouropoulos, E., and
Manolopoulos, Y., Horizontal and vertical integration/segregation in auditory stream-
ing: a voice separation algorithm for symbolic musical data, in Proceedings 4th
Sound and Music Computing Conference (SMC’2007), 2007.

[114] Keller, R. and Morrison, D. R., A grammatical approach to automatic improvisation,
in Proceedings, Fourth Sound and Music Conference, Lefkada, Greece, July.“Most
of the soloists at Birdland had to wait for Parker’s next record in order to find out what
to play next. What will they do now, 2007.

[115] Kidd, G., Boltz, M., and Jones, M. R., Some effects of rhythmic context on melody
recognition, The American journal of psychology, pp. 153–173, 1984.

[116] Kilian, J. and Hoos, H. H., Voice separation-a local optimization approach., in ISMIR,
2002.

[117] Koelsch, S., Toward a neural basis of music perception–a review and updated model,
Frontiers in psychology, 2, 2011.

[118] Koelsch, S., Schröger, E., and Tervaniemi, M., Superior pre-attentive auditory pro-
cessing in musicians, Neuroreport, 10(6):1309–1313, 1999.

[119] Kohonen, T., A self-learning musical grammar, or ’associative memory of the second
kind’, in Neural Networks, 1989. IJCNN., International Joint Conference on, pp. 1–5,
IEEE, 1989.

[120] Konda, V. R. and Tsitsiklis, J. N., Actor-critic algorithms., in NIPS, vol. 13, pp. 1008–
1014, Citeseer, 1999.

221

[121] Koniari, D., Predazzer, S., and Mélen, M., Categorization and schematization pro-
cesses used in music perception by 10-to 11-year-old children, Music Perception,
18(3):297–324, 2001.

[122] Kozbelt, A., Beghetto, R. A., and Runco, M. A., Theories of creativity, The Cambridge
handbook of creativity, pp. 20–47, 2010.

[123] Krumhansl, C. L., Effects of musical context on similarity and expectancy, Systema-
tische musikwissenschaft, 3(2):211–250, 1995.

[124] Krumhansl, C. L., Music psychology and music theory: Problems and prospects,
Music Theory Spectrum, pp. 53–80, 1995.

[125] Krumhansl, C. L. and Kessler, E. J., Tracing the dynamic changes in perceived
tonal organization in a spatial representation of musical keys., Psychological review,
89(4):334, 1982.

[126] Krumhansl, C. L. and Schmuckler, M. A., Key-finding in music: An algorithm based
on pattern matching to tonal hierarchies, in Mathematical Psychology Meeting, 1986.

[127] Lamont, A. and Dibben, N., Motivic structure and the perception of similarity, Music
Perception, 18(3):245–274, 2001, ISSN 0730-7829.

[128] Lang, P. H., The enlightenment and music, Eighteenth-Century Studies, 1(1):93–108,
1967.

[129] Langley, P. and Choi, D., A unified cognitive architecture for physical agents, in Pro-
ceedings of the National Conference on Artificial Intelligence, vol. 21, p. 1469, Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

[130] Langley, P., Laird, J., and Rogers, S., Cognitive architectures: Research issues and
challenges, Cognitive Systems Research, 10(2):141–160, 2009, ISSN 1389-0417.

[131] Lartillot, O., A musical pattern discovery system founded on a modeling of listening
strategies, Computer Music Journal, 28(3):53–67, 2004, ISSN 0148-9267.

[132] Lartillot, O. and Toiviainen, P., Motivic matching strategies for automated pattern
extraction, Musicae Scientiae, 11(1 suppl):281, 2007.

[133] Lashley, K. S., The problem of serial order in behavior, 1951, pp. 112–135, 1951.

[134] Laske, O., Composition theory in Koenig’s Project One and Project Two, Computer
Music Journal, 5(4):54–65, 1981, ISSN 0148-9267.

[135] Laske, O., Composition theory: An enrichment of music theory, Journal of New Music
Research, 18(1):45–59, 1989, ISSN 0929-8215.

[136] Laske, O., The computer as the artist’s alter ego, Leonardo, pp. 53–66, 1990.

[137] Laske, O., Toward an epistemology of composition, Journal of new music research,
20(3):235–269, 1991, ISSN 0929-8215.

222

[138] Laske, O., Mindware and software: Can they meet?: Observations on AI and the
arts, in IAKTA/LIST International Workshop on Knowledge Technology in the Arts,
1993.

[139] Laurson, M., Kuuskankare, M., and Norilo, V., An overview of PWGL, a visual pro-
gramming environment for music, Computer Music Journal, 33(1):19–31, 2009.

[140] Leach, J. and Fitch, J., Nature, music, and algorithmic composition, Computer Music
Journal, 19(2):23–33, 1995, ISSN 0148-9267.

[141] Lebiere, C. and Wallach, D., Sequence learning in the ACT-R cognitive architecture:
Empirical analysis of a hybrid model, Sequence learning, pp. 188–212, 2001.

[142] Lebiere, C., Wallach, D., and Taatgen, N., Implicit and explicit learning in ACT-R,
1998.

[143] Legendre, P. and Legendre, L., Numerical ecology, vol. 20, Elsevier, 2012.

[144] Lehman, J., Laird, J., and Rosenbloom, P., A gentle introduction to Soar, an architec-
ture for human cognition, Invitation to cognitive science, 4:212–249, 1996.

[145] Leman, M., Lesaffre, M., and Tanghe, K., Introduction to the IPEM toolbox for
perception-based music analysis, Mikropolyphonie-The Online Contemporary Music
Journal, 7, 2001.

[146] Lerdahl, F., Jackendoff, R., and Jackendoff, R., A generative theory of tonal music,
The MIT Press, 1996, ISBN 026262107X.

[147] Levelt, W. J. and Barnas, A., Formal grammars in linguistics and psycholinguistics,
John Benjamins Publishing Company, 1974.

[148] Levitin, D., Memory for musical attributes, Foundations of cognitive psychology: Core
readings, pp. 295–310, 2002.

[149] Logan, G., Toward an instance theory of automatization, Psychological review,
95(4):492–527, 1988, ISSN 0033-295X.

[150] Logie, R. H., Visuo-spatial working memory, Psychology Press, 1995.

[151] Loui, P., Wessel, D., and Kam, C., Acquiring new musical grammars: a statistical
learning approach, in 28th Annual Conference of the Cognitive Science Society, pp.
1711–1716.

[152] Loui, P., Wessel, D. L., and Kam, C. L. H., Humans rapidly learn grammatical struc-
ture in a new musical scale, Music perception, 27(5):377, 2010.

[153] Loula, A., Gudwin, R., and Queiroz, J., Artificial cognition systems, IGI Global, 2007,
ISBN 1599041111.

223

[154] MacDonald, R., Byrne, C., and Carlton, L., Creativity and flow in musical composi-
tion: an empirical investigation, Psychology of Music, 34(3):292, 2006, ISSN 0305-
7356.

[155] Mackintosh, N., Neurobiology, psychology and habituation, Behaviour Research and
Therapy, 25(2):81–97, 1987.

[156] Madsen, S. T. and Widmer, G., Separating voices in MIDI., in ISMIR, pp. 57–60,
2006.

[157] Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., and Romero, J., A
corpus-based hybrid approach to music analysis and composition, in Proceedings of
the National Conference on Artificial Intelligence, vol. 22, p. 839, Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[158] Margulis, E., A model of melodic expectation, Music Perception, 22(4):663–713,
2005, ISSN 0730-7829.

[159] Maxwell, J. and Eigenfeldt, A., The MusicDB: A music database query system for
recombinance-based composition in Max/MSP, in Proceedings of the 2008 Interna-
tional Computer Music Conference, 2008.

[160] Maxwell, J., Eigenfeldt, A., Pasquier, P., and Thomas, N., MusiCog: A cognitive
architecture for music learning and generation, in Proceedings of the 2012 Sound
and Music Computing Conference, 2012.

[161] Maxwell, J., Pasquier, P., and Eigenfeldt, A., Hierarchical Sequential Memory for
Music: A cognitive model., in ISMIR, pp. 429–434, 2009.

[162] Maxwell, J., Pasquier, P., and Eigenfeldt, A., The Closure-based Cueing Model:
Cognitively-inspired learning and generation of musical sequences, in Proceedings
of the 2011 Sound and Music Computing Conference, 2011.

[163] Maxwell, J. B., Eigenfeldt, A., and Pasquier, P., ManuScore: Music notation-based
computer-assisted composition, Proceedings of the 2012 International Computer
Music Conference, 2012.

[164] McAdams, S., Audition: Cognitive psychology of music, The Mind-Brain Continuum,
pp. 251–279, 1996.

[165] McCormack, J., McIlwain, P., Lane, A., and Dorin, A., Generative composition with
Nodal, in Workshop on Music and Artificial Life (part of ECAL 2007), Lisbon, Portu-
gal, Citeseer, 2007.

[166] McCutchen, D., A capacity theory of writing: Working memory in composition, Edu-
cational Psychology Review, 8(3):299–325, 1996.

[167] McCutchen, D., Knowledge, processing, and working memory: Implications for a
theory of writing, Educational Psychologist, 35(1):13–23, 2000.

224

[168] McCutchen, D., From novice to expert: Implications of language skills and writing-
relevant knowledge for memory during the development of writing skill, Journal of
Writing Research, 3(1):51–68, 2011.

[169] Mishra, J., Effects of structure and serial position on memory errors in musical per-
formance, Psychology of Music, 38(4):447–461, 2010.

[170] Mitchell, M., An introduction to genetic algorithms (complex adaptive systems), 1998.

[171] Morris, R., Tarassenko, L., and Kenward, M., Cognitive systems: information pro-
cessing meets brain science, Academic Press, 2006, ISBN 0120885662.

[172] Müllensiefen, D. and Frieler, K., Cognitive adequacy in the measurement of
melodic similarity: Algorithmic vs. human judgments, Computing in Musicology,
13(2003):147–176, 2004.

[173] Müllensiefen, D. and Frieler, K., The simile algorithms documentation 0.3, White
Paper, 2006.

[174] Narmour, E., The “genetic code” of melody: Cognitive structures generated by the
implication-realization model, Contemporary Music Review, 4(1):45–63, 1989.

[175] Narmour, E. and of Chicago, U., The analysis and cognition of basic melodic struc-
tures: The implication-realization model, University of Chicago Press, 1990, ISBN
0226568458.

[176] Newell, A., Simon, H. A. et al., Human problem solving, vol. 14, Prentice-Hall Engle-
wood Cliffs, NJ, 1972.

[177] Nierhaus, G., Algorithmic composition, Springer, 2009.

[178] Ockelford, A., On similarity, derivation and the cognition of musical structure, Psy-
chology of Music, 32(1):23–74, 2004.

[179] Ockelford, A., Another exceptional musical memory: evidence from a savant of how
atonal music is processed in cognition, Music and the Mind: Essays in Honour of
John Sloboda, p. 237, 2011.

[180] Pachet, F., The Continuator: Musical interaction with style, Journal of New Music
Research, 32(3):333–341, 2003.

[181] Pachet, F., Roy, P., and Barbieri, G., Finite-length Markov processes with con-
straints, in Proceedings of the Twenty-Second international joint conference on Arti-
ficial Intelligence-Volume Volume One, pp. 635–642, AAAI Press, 2011.

[182] Parncutt, R., Template-matching models of musical pitch and rhythm perception,
Journal of New Music Research, 23(2):145–167, 1994.

[183] Patel, A. D., Music, language, and the brain, Oxford University Press, USA, 2010.

225

[184] Pearce, M., Müllensiefen, D., and Wiggins, G., A comparison of statistical and rule-
based models of melodic segmentation, in Proceedings of the Ninth International
Conference on Music Information Retrieval, pp. 89–94, 2008.

[185] Pearce, M. T., Müllensiefen, D., and Wiggins, G. A., Melodic grouping in music infor-
mation retrieval: New methods and applications, in Advances in music information
retrieval, pp. 364–388, Springer, 2010.

[186] Pearce, M. T. and Wiggins, G. A., Expectation in melody: The influence of context
and learning, Music Perception: An Interdisciplinary Journal, 23(5):377–405, 2006.

[187] Peretz, I. and Babaı̄, M., The role of contour and intervals in the recognition of
melody parts: Evidence from cerebral asymmetries in musicians, Neuropsycholo-
gia, 30(3):277–292, 1992, ISSN 0028-3932.

[188] Peterson, E. M., Creativity in music listening, Arts Education Policy Review,
107(3):15–21, 2006.

[189] Potter, T., All my children: A portrait of Sir Andrzej panufnik based on conversations
with Tully Potter, The Musical Times, 132(1778):186–191, 1991.

[190] Powers, H. S., Language models and musical analysis, Ethnomusicology, 24(1):1–
60, 1980.

[191] Pressnitzer, D., Suied, C., and Shamma, S. A., Auditory scene analysis: the sweet
music of ambiguity, Frontiers in human neuroscience, 5, 2011.

[192] Purwins, H., Grachten, M., Herrera, P., Hazan, A., Marxer, R., and Serra, X., Com-
putational models of music perception and cognition II: Domain-specific music pro-
cessing, Physics of Life Reviews, 5(3):169–182, 2008.

[193] Purwins, H., Herrera, P., Grachten, M., Hazan, A., Marxer, R., and Serra, X., Com-
putational models of music perception and cognition I: The perceptual and cognitive
processing chain, Physics of Life Reviews, 5(3):151–168, 2008.

[194] Rabiner, L. and Juang, B., An introduction to hidden Markov models, ASSP Maga-
zine, IEEE, 3(1):4–16, 1986.

[195] Ralph, P. and Wand, Y., A proposal for a formal definition of the design concept, in
Design requirements engineering: A ten-year perspective, pp. 103–136, Springer,
2009.

[196] Rao, A. and Georgeff, M., BDI agents: From theory to practice, in Proceedings of the
first international conference on multi-agent systems (ICMAS-95), pp. 312–319, San
Francisco, 1995.

[197] Ritchie, G., Assessing creativity, Institute for Communicating and Collaborative Sys-
tems, 2001.

226

[198] Ritchie, G., Some empirical criteria for attributing creativity to a computer program,
Minds and Machines, 17(1):67–99, 2007.

[199] Rohrmeier, M., A generative grammar approach to diatonic harmonic structure, in
Proceedings of the 4th Sound and Music Computing Conference, pp. 97–100, 2007.

[200] Rohrmeier, M., Rebuschat, P., and Cross, I., Incidental and online learning of melodic
structure, Consciousness and cognition, 20(2):214–222, 2011.

[201] Rubin, D. C., A basic-systems approach to autobiographical memory, Current Direc-
tions in Psychological Science, 14(2):79–83, 2005.

[202] Saffran, J. R., Johnson, E. K., Aslin, R. N., and Newport, E. L., Statistical learning of
tone sequences by human infants and adults, Cognition, 70(1):27–52, 1999.

[203] Saupe, K., Koelsch, S., and Rübsamen, R., Spatial selective attention in a complex
auditory environment such as polyphonic music, The Journal of the Acoustical Soci-
ety of America, 127:472, 2010.

[204] Scaletti, C. and Johnson, R., An interactive environment for object-oriented music
composition and sound synthesis, ACM SIGPLAN Notices, 23(11):222–233, 1988.

[205] Scheirer, E. D., Music-listening systems, Ph.D. thesis, Massachusetts Institute of
Technology, 2000.

[206] Schellenberg, E. G., Simplifying the implication-realization model of melodic ex-
pectancy, Music Perception, pp. 295–318, 1997.

[207] Schillinger, J., The Schillinger system of musical composition, vol. 2, Da Capo Press,
1978.

[208] Schmidhuber, J., Driven by compression progress: A simple principle explains es-
sential aspects of subjective beauty, novelty, surprise, interestingness, attention,
curiosity, creativity, art, science, music, jokes, in Anticipatory Behavior in Adaptive
Learning Systems, pp. 48–76, Springer, 2009.

[209] Schmidhuber, J., Formal theory of creativity, fun, and intrinsic motivation (1990–
2010), Autonomous Mental Development, IEEE Transactions on, 2(3):230–247,
2010.

[210] Schmuckler, M. A., Expectation in music: Investigation of melodic and harmonic
processes, Music Perception, pp. 109–149, 1989.

[211] Schulkind, M. D., POSNER, R. J., and Rubin, D. C., Musical features that facilitate
melody identification: How do you know it’s “your” song when they finally play it?,
Music Perception, 21(2):217–249, 2003.

[212] Shannon, C. E. and Weaver, W., A mathematical theory of communication, 1948.

227

[213] Simon, H. A. and Newell, A., Human problem solving: The state of the theory in
1970., American Psychologist, 26(2):145, 1971.

[214] Simonton, D. K., Thematic fame, melodic originality, and musical zeitgeist: A bi-
ographical and transhistorical content analysis., Journal of Personality and Social
Psychology, 38(6):972, 1980.

[215] Smith, B. D. and Garnett, G. E., Improvising musical structure with hierarchical neural
nets, in Eighth Artificial Intelligence and Interactive Digital Entertainment Conference,
2012.

[216] Snyder, B., Music and memory: an introduction, The MIT Press, 2000, ISBN
0262692376.

[217] Sober, E., The principle of parsimony, The British Journal for the Philosophy of Sci-
ence, 32(2):145–156, 1981.

[218] Stevens, C., Cross-cultural studies of musical pitch and time, Acoustical science and
technology, 25(6):433–438, 2004.

[219] Stevens, C. J., Music perception and cognition: A review of recent cross-cultural
research, Topics in cognitive science, 4(4):653–667, 2012.

[220] Stravinsky, I., Poetics of music: In the form of six lessons, vol. 66, Harvard University
Press, 1970.

[221] Stravinsky, I., Palmer, T., Elliott, N., and Bragg, M., Once, at a border ...: Aspects of
Stravinsky., Kultur International Films, 1980.

[222] Sun, R., Accounting for the computational basis of consciousness: A connectionist
approach* 1, Consciousness and Cognition, 8(4):529–565, 1999, ISSN 1053-8100.

[223] Swanson, H. and Berninger, V., Working memory as a source of individual differ-
ences in children’s writing, Children’s writing: Towards a process theory of develop-
ment of skilled writing, pp. 31–56, 1994.

[224] Taube, H., Common Music: A music composition language in Common Lisp and
CLOS, Computer Music Journal, 15(2):21–32, 1991.

[225] Temperley, D., The cognition of basic musical structures, MIT press, 2004.

[226] Temperley, D., Music and probability, MIT Press Cambridge, 2007.

[227] Tenney, L., J. Polansky, Temporal gestalt perception in music, Journal of Music The-
ory, 24(2), 1980.

[228] Thom, B., Spevak, C., and Höthker, K., Melodic segmentation: Evaluating the perfor-
mance of algorithms and musical experts, in Proceedings of the International Com-
puter Music Conference, pp. 65–72, Citeseer, 2002.

228

[229] Trehub, S. E., Schellenberg, E. G., and Kamenetsky, S. B., Infants’ and adults’ per-
ception of scale structure., Journal of experimental psychology: Human perception
and performance, 25(4):965, 1999.

[230] Truax, B., The PODX system: interactive compositional software for the DMX-1000,
Computer Music Journal, pp. 29–38, 1985.

[231] Vaggione, H., Some ontological remarks about music composition processes, Com-
puter Music Journal, 25(1):54–61, 2001.

[232] van Gigch, J. P., Explaining creativity through metacreation and paradigm displace-
ment, in Proceedings of the 30th Annual Meeting—Society for General Systems Re-
search, 1986.

[233] Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., and Blythe, J., Integrating
planning and learning: The PRODIGY architecture, Journal of Experimental and
Theoretical Artificial Intelligence, 7:81–81, 1995, ISSN 0952-813X.

[234] Ventrella, J., Evolving structure in Liquid Music, The Art of Artificial Evolution, pp.
269–288, 2008.

[235] Vernon, D., Metta, G., and Sandini, G., A survey of artificial cognitive systems: Im-
plications for the autonomous development of mental capabilities in computational
agents, Evolutionary Computation, IEEE Transactions on, 11(2):151–180, 2007,
ISSN 1089-778X.

[236] Wallas, G., The art of thought., 1926.

[237] Walsh, D., Occam’s Razor: A principle of intellectual elegance, American Philosoph-
ical Quarterly, 16(3):241–244, 1979.

[238] Wang, G., Cook, P. et al., ChucK: A concurrent, on-the-fly audio programming lan-
guage, in Proceedings of International Computer Music Conference, pp. 219–226,
2003.

[239] Waschka, I., R.(2007).“composing with genetic algorithms: GenDash.”, Evolutionary
Computer Music, pp. 117–136.

[240] Webster, M., Merriam-webster online dictionary, 2006, URL http://www.merriam-
webster.com.

[241] Wertheimer, M., Gestalt theory, Hayes Barton Press, 1938.

[242] Wiggins, G. A., Pearce, M. T., and Müllensiefen, D., Computational modelling of
music cognition and musical creativity, Oxford handbook of computer music, pp. 383–
420, 2009.

[243] Wiggins, J., Compositional process in music, International handbook of research in
arts education, pp. 453–476, 2007.

229

http://www.merriam-webster.com
http://www.merriam-webster.com

[244] Williamson, V. J., McDonald, C., Deutsch, D., Griffiths, T. D., and Stewart, L., Faster
decline of pitch memory over time in congenital amusia, Advances in Cognitive Psy-
chology, 6(1):15–22, 2010.

[245] Winkler, I., Cowan, N., Csépe, V., Czigler, I., and Näätänen, R., Interactions between
transient and long-term auditory memory as reflected by the mismatch negativity,
Journal of Cognitive Neuroscience, 8(5):403–415, 1996.

[246] Woods, W., Transition network grammars for natural language analysis, Communi-
cations of the ACM, 13(10):591–606, 1970.

[247] Wray, R. and Jones, R., An introduction to Soar as an agent architecture, Cognition
and multi-agent interaction: From cognitive modeling to social simulation, pp. 53–78,
2005.

[248] Wright, J. K. and Bregman, A. S., Auditory stream segregation and the control of
dissonance in polyphonic music, Contemporary Music Review, 2(1):63–92, 1987.

[249] Xenakis, I. and Brown, R., Concerning time, Perspectives of New Music, pp. 84–92,
1989.

[250] Young, R. and Lewis, R., The Soar cognitive architecture and human working mem-
ory, Models of working memory: Mechanisms of active maintenance and executive
control, p. 224, 1999.

[251] Zatorre, R. J. and Halpern, A. R., Mental concerts: musical imagery and auditory
cortex, Neuron, 47(1):9–12, 2005.

[252] Zbikowski, L. M., Musical coherence, motive, and categorization, Music Perception,
pp. 5–42, 1999.

[253] Zicarelli, D., M and Jam Factory, Computer Music Journal, 11(4):13–29, 1987.

230

Appendix A

Score Example 1: experiri

The following score for string quartet, experiri, was composed in ManuScore, during a di-

rected composition study with composer/Professor Owen Underhill, as discussed in Chap-

ter 7 (Section 7.3). Because ManuScore does not produce printable music notation as

output, the transcription used for concert performance is presented here. The version of

ManuScore used for this work did not include the complete MusiCog architecture, but rather

employed a simple melodic segmentation algorithm as a preprocessor for the Closure-

based Cueing Model (CbCM) learning algorithm and data structure (which, in a later revi-

sion, became the LTM for MusiCog). This score demonstrates a broad conception of CAC,

and should generally be considered a human-composed work, with a degree of influence

from the various functions offered in ManuScore, including the generative capabilities of

the CbCM (as discussed in Chapter 7).

231

°

¢

°

¢

°

¢
Copyright © James B. Maxwell 2011

Violin I

Violin II

Viola

Violoncello

mp pp mp pp p

q = 84

pp

mp pp p pp

p

Vln. I

Vln. II

Vla.

Vc.

mp pp mp pp f fp pp

3

ppp pp

p ff fp

p

Vln. I

Vln. II

Vla.

Vc.

p mp ff f mp ff

q = 766

p mf f

pp p mf ff

pp f ff

64

64

64

64

54 44

54 44

54 44

54 44

24 44

24 44
24 44

24 44

& U Pizz.U
3

experiri
for string quartet

James Beckwith Maxwell 2011

& U U

B U U3

? U Pizz. ∑

&
arco >

&
molto vib.
sul tasto

ord.

B >
3

? ∑ arco

& U ∑
3 3

Ÿ~~~~~~~~~~~

& U ∑ . . .3

3

B oU ∑ ∑ 3

3

. . .3

3 3 3 3

? U ∑
. . .

3

3 3 3

œ œb œ œb œ œ œ ˙
Ó œ œb œ œb œ œ œ œ Œ ‰ œn j Œ

∑ Ȯ Ó Œ Ȯ ™™
Œ ‰ œ œ œ œ ™ œ œ ™ ‰ ‰ fiœj

œbJ œ ™ œ œ œ
œ œœ œn ™

‰ Œ

∑ Œ ‰ œJ

œ œb œ œb œ œ œb ˙ Ó œ œb œ œb œn œb œ ˙ Œ œ œb œn œn ˙ ‰ œ# œn œ œ#

Ó™ ‰ œObb j Ȯ Ó Œ ‰ œb j œ Ó Œ
œO

Œ ‰ œJ œb œ œ œœ œn œ# œ# ™ ‰ œJ œb œœ œœn œœ ™ œb r≈ Œ ‰ œ œb œ œn œ ˙

Ó Œ ‰ œb ‰ w~

œ#J ‰ Œ Ó œœœ œb œœ œb œ ™ œb œ œR ≈‰ ‰ œJ œb
œb œn œn œœœ œ æææœ œ œœb

w~ Ó Œ ‰ œ œ œ œb œœœ œ œb œJ œ œ œ œ œ ™ œœœ

wb ‰ œ œ œj œ# œ œn œ œ œ#J œ œn j œnJ œ œ œœœœ

w~ Œ Œ œJ œb œœ œ œb œ œj ‰ Œ Ó Œ
œ œ œ œ œJ æææœ ™

239

°

¢

°

¢

°

¢

Vln. I

Vln. II

Vla.

Vc.

fff p pp mp

q = 16411

fff mp pp mp pp

fff p pp p

fp ff fff p pp mp

Vln. I

Vln. II

Vla.

Vc.

mf p mf mp f fff

rall.
q = 8219

mf p f mp f fff mf

mp
mf

p mf mp f fff mp

mf p mf mp f fff

Vln. I

Vln. II

Vla.

Vc.

mf f

28

f

mf f

mf ff

34 24 34

34 24 34

34 24 34

34 24 34

24 44

24 44

24 44

24 44

54 44

54 44

54 44

54 44

&
Ÿ< >~>

∑ ∑ . .
3

&
. . . .>

. . ∑ . .3

B> ∑ ∑
3

?
. . . .>

∑ ∑ . .
3

&
. . >≥ >≥ >≥

∑œ œ œ

& ∑ ∑ . .
>≥ >≥ >≥

3

B . . >≥ >≥ >≥ 3œ œ œb

? . .
>≥ >≥ >≥

∑œ œ œ

&
3

&
3 3

3

B 33

3

3

?
.> .> .>

&
3

œ
J æææœ ™ œ œ œ œ

≈ Œ œ œ œb œ œ œ# ˙# ™ æææœ ˙ ˙ œ œ œ œ œb œb

˙ œ œ œ œ≈ Œ œ œ œ œb œb œb
˙ ™ ˙ ™ œ# œ œ# œ œn œ ˙b ˙ ™

˙ œ œ œ œ≈ Œ œ œ œb œb œ ˙ ™ æææœ# ˙ ˙b œ œ œ œ œ

œ ™ æææœJ œ œ œ œ≈ Œ œ œ œ œ œ œ# ˙ ™ æææœ ˙ ˙ ˙ œ œ

œ œ ˙ œb œ œ ˙ œ# œ# œ œ œ œb œb œ ˙ œ œ œ
Œ

œb œ œ œb œ œ œ ˙ œb œ œb œ œ œ# œn œn ˙ œ œ œ Œ Ó œœœ œb œ œ œ#

œ œ ˙ œb œ œ ˙ œb œ œb œ œ œb œ œ ˙ œ œ œ Œ Ó Œ œ œb œ

œ œb ˙ œ œ œ ˙ œb œ œb œ œ œ# œ œn ˙ œœ œœ œœ Œ

‰ œb œbJ œ œ œ œ œ œb œ ™ œn ˙ œ œ# ™ œn œ œb œn œ

œ œb œ œ œ œ œ œb œ œb œ œ œn œb œ œnJ œ œJ œ# œn œb j œn

œ œ# œb œb ˙
œ œn œb œb œ œ œb œn œ œb j œn œ# j œn œ œj œ œ œ œ æææœj

œ œ œ œb œ œ œ# œ œb œJ ‰ Œ Ó Œ œœ œœ œœ ™™ œœ œœ œœ œœ
j ‰

240

°

¢

°

¢

°

¢

Vln. I

Vln. II

Vla.

Vc.

ff fff

poco rall. q = 168

31

ff
fff

ff

Vln. I

Vln. II

Vla.

Vc.

f fp

36

f fp

Vln. I

Vln. II

Vla.

Vc.

f fp f

44

f fp f

34

34

34

34

&
> > >≥

3

&
3

> > > > >≥
3 3

B >3

& ?
sul G>

3 3 3

&
>≥ >≥

∑ ∑ ∑
4

>

& >≥ >≥ ∑ ∑ ∑
4 >

B

?

& ∑
3

3

& ∑
3

3

B

?

œ œb œn œb œn œ œb œb ˙b ™ ˙b ™ ˙b œ ˙ œb

œb œb œ œ œn œn œ œœœœ œJ œb œ
œb œn ˙ œ ˙ œ ˙ œ ˙ œ

æææœ œb œ œ œ œJ œ ˙b œ
Œ

œ
Œ
œœ œ œ œœ œ œ œ̇ œ œ ˙ ™œ œ œ œ œ

œ œ œ œ œb œb œ œn œb œb ˙
œnŒ œŒ œ̇ œ œ œ œœ œ̇ ˙ ™œ œ œ œ œ œ œ

œb œ
Œ Œ œ œ œ# œ ˙ ˙# œ ˙ Œ

œ œ Œ Œ œ œ œ# œ ˙ ˙# œ ˙ Œ

œ̇ œ œ œœ œ ˙ ™œ œ ˙ ˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ ˙ ™œ œ ˙ œ̇ œ œ œ œ œœ œ œ œ̇ œ œ œ œœ œ̇ œ œ œ

˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ œ̇ œ œ œœ œ œœ œ̇ œ ˙œ œ ˙ œœ œ œœ œ̇ œ ˙ ™œ œ œ œ ˙ ˙ ™œ œ œ œ œ

Œ œ œ œ# œ œ œ œ œ œ ‰ œ# œ ˙ œ œ ˙ ™ ˙ ™ ˙ œ

Œ œ œ œ# œ œ œ œ œ œ ‰ œ# œ ˙ œ œ ˙ ™ ˙ ™ ˙
œ

˙̇ œœ œ ˙ ™œ œ ˙ ˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ ˙ ™œ œ ˙ œ̇ œ œ œ œ œœ œ œ œ̇ œ œ œ œœ œ̇ œ œ œ

˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ œ̇ œ œ œœ œ œœ œ̇ œ ˙œ œ ˙ œœ œ œœ œ̇ œ ˙ ™œ œ œ œ ˙

241

°

¢

°

¢

°

¢

Vln. I

Vln. II

Vla.

Vc.

p f

52

p f

Vln. I

Vln. II

Vla.

Vc.

fp f

60

fp f

Vln. I

Vln. II

Vla.

Vc.

mf

68

mf

p f p

p f

& ∑
4

& ∑ 4

B

?

&
3 4 4

&
3

4 4

B

?

& ∑ ∑ ∑

& ∑ ∑ ∑

B
.

?

˙ œ ˙ œb ˙ ™ ˙ ™ ˙ ™ ˙ Œ œ œ œ# œ

˙ œ ˙ œb ˙ ™ ˙b ™ ˙ ™ ˙ Œ œ œ œ# œ

˙̇ œœ œ œœ œ ˙̇ ˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ ˙ ™œ œ ˙ œ̇ œ œ œ œ œœ œ œ œ̇ œ œ œ œœ œ̇ œ œ œ

˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ œ̇ œ œ œœ œ œœ œ̇ œ ˙œ œ ˙ œœ œ œœ œ̇ œ œ œ

œ ˙# œ œ ˙ ™ œ ˙ ™ œ œ œ ˙ ™ ˙b ™ Œ œ œ œ# œ œ œ#

œ ˙# œ œ ˙ ™ œ ˙ ™ œ œ œ ˙ ™ ˙b ™ Œ œ œ œ# œ œ œ#

˙̇ œœ œ ˙ ™œ œ ˙ œ̇ œ œ œ œ œœ œ œ œ̇ œ œ œ œœ œ̇ œ ˙œ œ ˙ œœ œ ˙ ™œ œ ˙ ˙ ™œ œ œ œ œ

˙ ™œ œ ˙ ˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ ˙ ™œ œ œ œ œ œ̇ œ œ œœ œ œœ œ̇ œ ˙œ œ ˙ œœ œ

˙ œ œ ˙b œ ˙b ™ ˙ ™

˙ œ œ ˙b ™ ˙b ™ ˙ ™

œ̇ œ œœœœ œ ™œ ™ œœj œœœœ œœœœœœœœœœœœ œœœœœ ™ œb œ œb ™ ≈œr œ œ ˙ œœ œœ œœ œœ œœ œœ

œ̇ ™ œœ ˙ ™œ œ œ œ˙ œ ™ œ ™ œ ™ œœj œœœœ œœœœœœœœ œœ œœ œœœœœœ œœ œœ ˙ œ œœ

242

°

¢

°

¢

°

¢

Vln. I

Vln. II

Vla.

Vc.

f f

75

f

f p

p f

Vln. I

Vln. II

Vla.

Vc.

fp fff

82

ff fff

f ff fff

fp mp f ff fff

Vln. I

Vln. II

Vla.

Vc.

mp

89

mp

mp

mp

&
Pizz. arco

&
Pizz. ∑ ∑

B .

?

&
Ÿ~~~~~~~~~~> .>

& ∑ arco

. .
Ÿ~~~~~~~~~~~~~~~~~~~~~~

.> .>

B .> .>

?
. .> .>

& .>>>

&
.>>>

B ∑ ∑ ∑ &
.o .o .o .o .o .o .>o .o .o .o .o .o .o .o .>o .o .o .o .o .o .o .o .>o .o .o .o .o .o .o .o

? ∑ ∑ &>>>

Œ œ œ Œ œ œb Œ Œ œ œ Œ œ œ Ó œ œ# Œ œ œ Œ œ œ œ# œ ≈œ œn ˙

œ œ Œ œb œ Ó œ œb Œ œ œb Œ Œ œ œ Œ œ œ Œ Œ

œœ œœ œœ œœ œœb œœ œœb œœ œœ œœ œœ œœ œœb œœ œb ™ œœ œ ™ ≈œr œ ˙ œ œ ™ œJ œ œ œ œ œœ œœ œœ œœ

œ ™ ≈œr œb œ ™ œJ œ œ œœ œœ œœ œœ œœ œœ œœ œœ œœœ œ œœ œœ œœ œœ œœ œœ œœ œœJ œb ™ ≈œ œ ˙

œœœ ˙ œ# ™ œb j œ œ œb œ ˙n œ œ œ œ œ œ œb œb œ œ œ œ œb œ œ œ œ œ

œ œ ˙ œb œ œ# œ œ œ æææ̇# œ œ œb œ œ œ œ œ œ œ œ œ œ œ

œ œ œœ œœ œœ œœ œœ œœ œœ œœ œ œ œb œ œ œ œ# œ œœ# œœ œœ œœ œœ# œœ œœ œœ œœ œœ œœ# œœ œœ œœ œœ œœ

œœœ ˙ ˙# œœn œœ œœ# œœ œœ œœ œœœœ œœœœœ œ œœ œœ œœ œœ œœ œœ œœ# œœ œœ# œœ œœ œœ œœ œœ œœ# œœ œœ œœ œœ œœ

œ œ œ œ œb œ œ œ œ# œ œ œ œ œ œ œ œn œ

œ œ œ œ œ œ œb œ œ œ œ# œ

œ œ

Ó œO

243

°

¢

°

¢

°

¢

Vln. I

Vln. II

Vla.

Vc.

fp

97

fp

fp

fp

Vln. I

Vln. II

Vla.

Vc.

mf fp (pp) ppp

q. = q = 112
106

p fp (pp) ppp

p fp (pp) ppp

p fp (pp) ppp mf fp ppp mf p ppp

Vln. I

Vln. II

Vla.

Vc.

mf fp ppp
ppp

119

fp ppp
ppp

fp ppp ppp

fp ppp mf fp mp

24 44 24

24 44 24

24 44 24

24 44 24

24 44 24 52

24 44 24 52

24 44 24 52

24 44 24 52

&
.>>>>

∑ ∑
>

&
.>>>>

∑
>

&
.>o .o .o .o .o .o .o .o .>o .o .o .o .o .o .o .o .>o .o .o .o .o .o .o .o .>o .o .o .o .o .o .o .o ∑ B >

& .>
. . .>>> ∑ ?

>

& . . >
senza vib. senza vib.

&
>

senza vib. senza vib.

B
>

senza vib. senza vib.

?
>

senza vib.. . > ∑
senza vib.

&
ord.

. .
3

>
senza vib.

&
ord.

>
senza vib.

B >
senza vib.

? > senza vib.

. .
3

. .
3

œ œ
Œ Œ ˙b ™

œ œ
Œ Œ Ó œ ˙ ™

œ Œ Œ Œ ˙# ˙ ™

œO œO œO œO œO œO
Oœ Œ Œ ˙ ™ ˙ ™

˙ ™ œ œ œ ˙ ™ ˙ ™ œ œb ˙ ˙b œ œn Ȯ## Ȯ Ȯ œOj ‰ Œ Ó wb

˙ ™ œ ˙ ˙b ™ ˙ ™ œ Œ ˙ ˙ œ œ# Ȯ## Ȯ Ȯ œOj ‰ Œ Œ œn w

˙<#> ™ œ ˙b ˙b ™ ˙ ™ œ Œ Œ œ ˙ œ œ# Ȯ# Ȯn# Ȯn# œOn# j ‰ Œ ˙ w

˙ ™ œ ˙ ˙ ™ ˙ ™ œ Œ Ó ˙b œ œ# œ# ˙n œ Œ œœœ œb ˙ œ w

œ œb œ ˙ ™ œ œ œ ˙ w œ Œ w~# w~ œO Œ

œj ‰ Œ ˙b ˙ ˙ ˙n w œ Œ w~ w~ œO Œ

œj ‰ Œ ˙b ™ œ ˙ œ œb w œ Œ w~ w~ œO Œ

œJ ‰ Œ w w wb œ œ œ œn œJ ‰ ∑ Ó Œ œb œb

244

°

¢

°

¢

°

¢

Vln. I

Vln. II

Vla.

Vc.

mp

125

mp

pp

fp ppp fp pp fp mp pp

Vln. I

Vln. II

Vla.

Vc.

pp

q = 60128

pp pp

pp

pp

Vln. I

Vln. II

Vla.

Vc.

pppp p ppp mp

137

34 24 44 34 24 44

34 24 44 34 24 44

34 24 44 34 24 44

34 24 44 34 24 44

44 34 24 44 34 24 44

44 34 24 44 34 24 44

44 34 24 44 34 24 44

44 34 24 44 34 24 44

&
Pizz.
3

& Pizz.

B o o Pizz.
3

? sul pont. Pizz.

3

& 3 ∑U ∑ ∑ ∑ ∑ ∑ ∑ ∑

& 3 ∑U arco

B ∑U
arco
sul tasto

?
3

∑U
arco
sul tasto

&
arco molto espr.

3

3

3 3

&

B

?

~wbb ~w Ȯ ~wbb ~w Ȯ ~w Ȯ Oœ Œ Œ ‰ œb œ

w~## w~ Ȯ w~bb w~ Ȯ w~b Ȯ œO Œ Œ œb œ
~wbb ~w Ȯ wwbb ww ˙̇ w~# Ȯ œO Œ œb œ œ
˙n Ó ∑ æææ̇ w ∑ æææ̇b wb Ó œb œ œ œ œ

œb œ œ œ œ ‰ œj Œ œ ∑

œb œ œ œ ™ œj ˙ w Ȯ ™™ Ȯ ™™ Ȯ w~ Ȯ ™™ Ȯbb ™™ Ȯb

œb œ œ ™ œj œ ™ œj œ Œ œ Œ ˙b œ ˙# ™ ˙̇nb ˙̇ ™™ œœ
j ‰ ˙b œ ˙# ™ ˙̇nb

˙b ˙ ˙ ˙ ˙ ™ œ ˙̇ œœ ˙̇# ™™ ˙̇b ˙̇ ™™ œœ
j ‰ ˙̇ œœ ˙̇# ™™ ˙̇b

Œ œ ˙ œ ™ œb j œ œ
j œœ# ˙ ‰ œ ™ œ ˙ œj ‰ œœœ œ ˙ œ œ ™ œbJ œb œ œ œ œ

w~b Ȯ ™™ Ȯ ™™ Ȯ w~ œO Ȯ Oœ Ȯbb Ȯbb

˙̇ ™™ œœ
j ‰ ˙b œ ˙# ™ ˙̇nb ˙̇ ™™ œœ

j ‰ ˙b œ ˙# ™ ˙̇nb

˙̇ ™™ œœ
j ‰ ˙̇ œœ ˙̇# ™™ ˙̇b ˙̇ ™™ œœ

j ‰ ˙̇ œœ ˙̇# ™™ ˙̇b

245

°

¢

°

¢

°

¢

Vln. I

Vln. II

Vla.

Vc.

mf

f ff

145

Vln. I

Vln. II

Vla.

Vc.

150

ff

Vln. I

Vln. II

Vla.

Vc.

fp fp

153

44 34 24 44 34

44 34 24 44 34

44 34 24 44 34

44 34 24 44 34

34 24 44

34 24 44
34 24 44
34 24 44

44 34

44 34

44 34

44 34

&
3

. . >3

3 3

5

&
Ÿ~~~~~~~~~~~~~~~ Ÿ~~~~~~~~~~~~~~~~~~~~~~~~ Ÿ~~~~~~~~~~~~~~~~~~ Ÿ~~~~~~~~~~~~~~~~~~~

B ord.

? ord.

&
.>>>>>>>

66 6 6 6 6 6 6

&
Pizz. arco

. . . .
3 3 3 3 3 3 3 3

B
?

& .>>> . .> .
> >6 6 6 6

3

3 3

& .>>> . . .
6 .> . . .

6

.> . .> . .> . .> . . .
6

6 6 6

6

B

?

œ
œ œ œ

œ# œ ™ œ œ œ ˙ œ œ œ œ ˙b œb œ œ œ œ œ ˙ œ œ# œn œ œ œ

~w ˙ ™ œ ˙ ™ œb ˙n œ ˙ ™ œ œ
J ‰

˙̇ ™™ œœ
j ‰ ˙b œ ˙# ™ ˙̇nb ˙̇ ™™ œœ

j ‰

˙̇ ™™ œœ
j ‰ ˙̇ œœ ˙̇# ™™ ˙̇b ˙̇ ™™ œœ

j ‰

œœb œœ œœn œœ œœbn œœ œœ œœ œœ œœ œœb œœ œœn œœ œœ œœ œœb œœ œœ œœ œœbn œœ œœb œœ œœn œœ œ
œ
œ
œ
œœ œœ œ

œ
œ
œ
œ
œ
œ
œ
œ
œ
œ
œ

œœb œœ œ
œ
œ
œ
œ
œb
œ
œ
œ
œ
œ
œ
œ
œ
œ
œ ‰

œb œ œb œ œ œb œn œ œb œ œb œb œn œ œ œ œ œn œb œ œb œ œœœœœœœœ

˙b œ ˙# ™ ˙̇nb
˙̇ œœ ˙̇# ™™ ˙̇b

œœb œœ œœœœœœ œœ ‰ œœ# œœ œœœœœœn œœœœ œœ œœ œœ ‰ œœœœœœœœ ‰ œ œb œb œn œ# œœœœ œn œb œb œn œ# œ# œ# œœ œ#

œœ# œœ‰ œœœœ œœn œœ œœn œœ œœ# œœ‰ œœœœœœœœ œœn œœœœœœ‰ œœ# œœœœ œœ ‰ œœ œœ œœ# œœ œœ œœ œœ œœœœ œœ ‰

˙̇ ™™ œœ
j ‰ ˙b œ

˙̇ ™™ œœ
j ‰ ˙̇ œœ

246

°

¢

°

¢

°

¢

Vln. I

Vln. II

Vla.

Vc.

fp fp

155

ff

Vln. I

Vln. II

Vla.

Vc.

f p

157

Vln. I

Vln. II

Vla.

Vc.

mp pp ppp

rall.
162

pp ppp

24 44

24 44

24 44

24 44

44 34 24 44 34

44 34 24 44 34

44 34 24 44 34

44 34 24 44 34

34 24 44 34

34 24 44 34
34 24 44 34
34 24 44 34

&
> > . . .> . .>

3
3 3

6 6

& .>>> . .>> .>

*as tight as
possible

*Pizz.
3

6 6 6 6

B

?

& .> . . . Ÿ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .> .
3

6
3 3

&
3

∑ ∑ ∑ ∑

B

?

&
3

sul pont.

3

&
arco sul pont.

3

B
?

œ<#> œ œ# œn œ œn œn œb œb œn œ# œ# œ œ# œn œ œn œb œb œn œ œ# œn œ# œn œœn œœ œœn œœ œœ œœ œœ œœ œœ œœ

œœ œœ œœ œœ œœ# œœ œœn œœ œœ œœ œœn œœ œœ œœ œœn œœ œœ# œœ œœ# œœ œœ œœ œœ œœ ‰
œœœ
œ
n

˙# ™ ˙̇nb

˙̇# ™™ ˙̇b

œœœœœœœœœ ˙ œ œ ˙ œ ˙ ™ œ œb œ œb œ œ œ œ œ œ œ œ ˙ œb

‰
œœœ
œ Œ Ó

˙̇ ™™ œœ
j ‰ ˙b œ ˙# ™ ˙̇nb ˙̇ ™™ œœ

j ‰

˙̇ ™™ œœ
j ‰ ˙̇ œœ ˙̇# ™™ ˙̇b ˙̇ ™™ œœ

j ‰

œJ œ ™ œ œ œ œ fiœjœJ œ œ æææœ ˙ w

œ œb œ œb œ œ œJ ˙ œ ˙ w

˙b œ ˙# ™ ˙̇nb ˙̇ ™™ œœ
j ‰

˙̇ œœ ˙̇# ™™ ˙̇b ˙̇ ™™ œœ
j ‰

247

°

¢

Vln. I

Vln. II

Vla.

Vc.

pppp

166

pppp

ppp

34 44

34 44
34 44

34 44

&
U sul tasto U

& U sul tasto U

B U ∑ U

? U ∑ Pizz.

∏∏∏∏ ∏∏∏∏ ∑U

˙ ™ ˙ ™ w œ ˙ ™ ˙ ™ œ œ ˙ ™

˙ ™ ˙b ™ wb wb ˙ ™ œ w

˙b œ ˙# ™ wwnb Œ Ȯ ™™ w~
˙̇ œœ ˙̇# ™™ wwb Œ œœœ Œ œœœ

248

Appendix B

Score Example 2: factura

The score for factura, for percussion solo, was composed in 2012, using the current ver-

sion of ManuScore. This version included the first build of the complete MusiCog architec-

ture, and this work therefore features more extensive use of autonomous generation from

MusiCog, particularly in factura iii. The material generated by MusiCog was edited quite

extensively during the interactive composition process, primarily to fine-tune the specific

pitch content, but the contour generally remains faithful to MusiCog’s output.

242

{
Copyright © James B. Maxwell 2012

Marimba

ff p ff p f p pp

q = 90 Rubato

Mar.

f mp pp mf p fp mf p ff p f p f p

6

Mar.

pp ff p mf p f

11

Mar.

mp ff mp ff mp ff p ff mp fp ff

15

Mar.

p ff mp ff p fp ff p f p

20

Mar.

f p f p f fp f p f p f p

24

Mar.

f p f p f p f p f p f

27

Mar. p

31

pp

44 34 44? 4 Two-tone mallets

3

& >
3 3

5
6

James B. Maxwell 2012

factura i

& 3 3 33

&
3 U ?

3 3

>
6 3

?
3 3 3 3

>
3

> 3

3 3 3

?
3 3

> U

(sub)

63 6 6

? &
6

6

6 6 6

6

6

6

& > ? >>>
U6 6 6 6 6 6

3

&
?

Œ œ# œœœ æææœ#
æææ̇ œn œœ œb œœ æææ̇# œ œ œ æææ̇ æææœJ ‰ œœœ ™ œ œ œ œ æææ̇ æææ̇

æææœ œ œ œ œ Œ fiœj œj œœœœ æææœ fiœjæææœ œ ™ œ œ œ œ æææ̇# æææœ œ# œ œ œ œ# œJ œb œ œ œn œœœœ

‰ æææœ æææ̇ ™ æææœJ ‰ Œ œ# œ œn œ œ œ œb ™ œ œJ æææœb æææœJ œ œ œ æææœ æææœ#J æææ̇ œ# œæææœ ™ fiœjæææœn ™ œ

œ<#> œ# œ œJæææœ æææœJ œ œ œ æææ̇ œ# œ œ œ œ#J œ ™ œ œ œ œ œbJ æææ̇b œ œn æææœn ™ fiœjœ# ™ œ œ œb œ œJæææœ
fiœjæææ̇ œ

œb œ œ œ æææœ æææœJ œ œ œ# œ æææœJ æææ̇ fiœn j æææw# ‰™ œ œ# œ œ œ# æææœ# œ œb œn æææœn

æææœ œb œn œ œn æææœb æææœ ™ œb œæææœ æææœ ™ œn œ# œ# œn æææœ æææœ ™ œ œæææœ æææœ ™ œ# œ# æææœb æææœ ™ œ œ œ œ
æææœ

æææœ ™ œb œb æææœ æææœ ™ œn œn æææœ# æææœ ™ œn œ æææœ æææœ ™ œ# œ# æææœ# æææœ ™ œ# œ# æææœ æææœ ™ œn œ Œ Œ œ# œ œ ‰ Ó

Œ ‰ œœJ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœœœœœœœ œœœœœœœœœœœœœœœœ

æææwwb æææww æææww æææwwn

250

{Mar.

35

pp

Mar.

f p f p

39

Mar.

pp ppp

42 44

& ∑ ∑
?

? U > >
6

5

? &

œœœœœœœœœœœœœœœœ œœœœ œœ œœÓ

æææww æææ̇̇
œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ

œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ œœ Œ œ œb œ œ æææœb æææœ œb œn æææœ æææœ

æææœ ‰ æææœbJ æææœ æææœb æææ̇ ™ æææœJ ‰ ‰ æææœbJ æææ̇ ™ æææw

251

{
{
{
{

Vibraphone f mp f

q = 72

ff

Vib. pp f pp f

49

Vib.
p

52

Vib. pp pp f p ff

55

°

Vib.

ffø p pp f°

58

Vib.

ø ø
62

44
44

/
4 Two-tone mallets> > >

James B. Maxwell 2012
factura ii

&

/ > > > >
3

3 3

3
3

&

/ > > > >
3 3

3

3

&

/ > > > > > >

&

&
U

& >

Œ œœœ œ ‰ œj œ ™™ œ œ œ œœœ ™ œ œœœ œœœœœ œœœ ®œ œ œ Œ

www### www ˙̇̇ ™™™ ≈
œœ
œb
nn ™™™
j

‰ æææœ ™ æææœœ ®œœ ™œœ œœ≈œœœœœJ ®œœ≈œœœ Œ fiœj fiœj fiœj fiœjœ œ œ fiœj fiœj fiœjœ œ œ œJ ≈œœœœœœœœœ

ww
w

˙̇
˙ ™™™ ≈ œœœbb ™™™J www

œ œœœœœœœœ≈ œœœ ™ œœœ ™™ œ œ ™™ œœ œ œ œ ‰ œ œ ‰ ‰ œj œ ‰ œ œ Œ

www ˙̇̇ œœœJ ≈ œœœbb
r
œœœ www

‰ œj œ Ó œ ™œœ ™ œœ ™œœœœœœœœœœ®œœœœœœœ ≈ ™œœœœæææœ ™ œœœ‰ œœœ
˙̇̇ œœœ

r≈œ œn œb œ œœœœ wwww wwww

œœœœ œ œ œ
œ# œ œb œœœœœœ ™™™™

™™ ˙̇̇̇
˙̇ wwwwbbbn œœœœr ≈ œœ

œbb
j
˙̇
˙ ™™™ ‰™ œœœ ™œœ œn œb œ œb

œ œœœ œœ

œ œb œ œb œb œ œ œ œ
œ œ

œœ œn œb œ œb œ ™ œb œn œb ™ œ
œ
n
n

œ œb œ œb œn œ œ œ
œ œ œ œb œ

252

{
{
{

Vib. ø ø
64

Vib.

ø ø ø ø
66

Vib.

ø ø ø
68

Vib.

ø ø ø ø
70

Vib.

ø ø ø
72

Vib. pp f p pp f p pp

75

ff p

Vib.

81

Vib. pp mf p pp

85 54
54

& > >

&
> > >

&
> >

> >

& > > >

& > >

/ ∑ 3

& >
∑ ∑

/
3 3

3

3

3

3

&

/ ∑ ∑ ?

&
l.v.

/

œ œn œ œn œb œ œ# œ œ œ œb œn
œb œ œœb ™™ œœ œn œ œn œ œœ œn œb œ œb œb ™ œb œ œ

œb

œb œn œ œn œ œ œ
œ
n
n

œ œb œ œb œ ™ œn œ œ
œ
n
n

œ# œ œ œ
œ œ œœn œ œ œ œ

œn œ
œ œ# œ œ

œ
œ œn œ œn œ

œœbb œ œn œ œn œb œ
œœb œn œn œb œb œn ™ œb œ œ

œb
œ# œn œ œn œn œ œ

œ
#
n

œ# œ œ œ
œ ™ œ
œ#
œ
œ
œœn œn œn œ œn œn œ œ œb œb œ œœ#n œ# œ œ œn

œn ™ œ
œ
œ
œ
œœ## œb œ œ œ

œb ™ œ
œ#
n

œ
œ<#> œœnn œn œn œ œn œ œ œœ œn œn œœœ œ œœ ™™ œœ œ

œ œ œ œœ ™™ œœ œœ
œ œ œœ œ œ œœœ## ™™™ œœœ œœ

œ ≈ œœ
œ ™™™j

Œ æææ̇ ™ æææ̇ æææœ œœœ Œ æææ̇™ æææ̇™ æææœ œ œ œ œ œ œ Œ

œœ
œ<#> ˙̇

˙nn ≈ œœœ
œn r ‰

www
w

www
w

˙̇̇
˙ ™™™™ œœœ

œr ≈
œœœbb
j

Œ œœ œœœœœœœ œœœœœœœœœ Œ Œ ‰ œJ ≈œœ ≈œœ ≈œœ ≈œœ ≈œœ ≈œœ

www www wwww##n# wwww

≈ œ œ ≈ œr ‰ Œ ‰ æææœJ æææ̇ ™ æææœ æææ̇ æææœ œ œ ™ œ

˙̇̇̇<#><#><#> œœœœ œœœ
œn
##n œœœ

œ
www
w

www
w

œœœ
œ

˙̇̇nbb ™™™ www

253

{
{
{
{
{
{

Ankle Bells ff fp mf ff mf p

q = 106

mf

A. B. ff mf` ff fp mf ff fp mp ff mf

93

A. B. mp f ff mf p ff fp mp ff p ff fp

96

A. B. mp ff mp f fp mp ff mf p

99

A. B. ff ff mp ff ff mp ff mf p ff

102

A. B. fp p ff mf ff mp ff mp

105

54
54

? 2 Two-tone mallets∑

factura iii

James B. Maxwell 2012

/
Stomp with heel

Shape the dynamic with
the Marimba part

?

/

? > > >
&

/

&
/

& >
>

>
>

/

& >
> >

?

/

œ œ œb œb æææœn ™ œb œæææœ ™ œn œ œ œ œb ‰ œ œæææœ ™ œ œ œn

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

œb œ œb œb œn œn œ œb œn æææœb œ œb œn œn æææœn ™ œb œ œ œn œ œb œb æææœn æææœ œb œæææœ ™ œn œ œ œ œb ‰ œ œ

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

æææœ# ™ œ# œ œ œ œ ‰ œ œb æææœn æææœ œœ œb œ œœ ‰ œ œb æææœ ™ œn œ œ# œ œ ‰ œ œ œ# œ œn œn œ æææœb
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

æææœ œn œ æææœn ™ œ œ œ œb œb œb œn œ œn œ œ œ æææœ# ™ œ œ æææœ æææœ œ œ œb œ œn ‰ œ œæææœ ™ œ œ
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

æææœ œœ œb œb œ œb
‰ œ œn œ# œ œn œ‰ œ œ# œ# œ‰ œb œæææœn ™ œœ œ# œœ ‰ œ œ# æææœn ™ œ# œœœ œb œ œn œœ

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

æææœn ™ œb œ æææœb ™ œn œ œn œ œ ‰ œ œ æææœ# ™ œ œ œ# œ œ ‰ œn œ æææœ ™ œ# œ œ œ œn œb œn œ œn æææœb
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

254

{
{
{
{
{
{
{

A. B. ff mp ff p f mp ff

108

A. B. mp ff mp ff mp ff fp

111

A. B. ff ff fp ff p ff mp ff mp

114

A. B. p f fp f ff mf ff
fp

ff
fp

f fp

117

A. B. f fp ff mp ff ff mp ff mp

120

A. B. ff fp ff fp ff fp ff
fp

ff mf

accel. 123

A. B.
ff fp ff fp mf p ff fp ff fp

126

? > >
& > >

/

& >
/

& > >
?
>

& > >
> >

/

& > > >
>

>
/

& >
> >>

?

/

? > > > > >

/

? > > > >

/

æææœ œb œ æææœb ™ œœ œn œ œn ‰ œn œ æææœ ™ œ œ œ œ# œ ‰ œn œ æææœ æææœ œ# œ œ# œ œ ‰ œ œ
æææœ# ™ œ œ

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

œn œ œb ‰ œ œ æææœn ™ œ œ œ œ œb ‰ œœæææœ ™ œ# œ œn œ œb ‰ œn œ æææœ ™ œb œ œ œ œb ‰ œ œn æææœn
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

æææœ œ œ œ# œœ ‰
œœ æææœ# ™ œœ œn œ œb œ‰ œœ æææœ ™ œœœœœœ ‰ œ œ œb œ œb ‰ œb œœœœ ‰ œ# œ

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

œ# œ œn ‰ œ# œ æææœ<#> ™ œb œ œn œ œn ‰ œb œ œn œœœ‰ œ œ œ æææœ ™ æææœ œ# œ œœ œb ‰ œb œ œb æææœn ™ æææœ œn œ œ# æææœn ™
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

æææœ œb œœ æææœb ™ æææœ œœ œn œœ ‰ œœ æææœb ™ œn œœœœœ‰ œ# œ œ# œn œ ‰ œ# œ œ# æææœ ™æææœ œn œ œ# œ œn ‰ œn œ

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

œ# œ œb ‰ œ œ œ# æææœn ™æææœ œ œ œn œ œ# ‰ œ# œ œ# æææœ ™æææ
œ
œn œ œn æææœb ™ æææœ œ# œ æææœ ™ œb œ œn œ œ ‰ œ œæææœ

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿
æææœ œ œ œ œ æææœb æææœ œ# œ œ# æææœ ™ æææœ œ œ œ# œ æææœb æææœ œ œ œ æææœn ™

æææ
œ

œn œ œ æææœb ™
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

255

{
{
{
{
{

A. B.
ff fp mp ff fp mf ff fp

= 120128

A. B. ff fp ff fp ff fp mp ff fp

130

A. B.
mp ff mf fp f ffp f ffp ff fp

132

A. B. ff mf ffp ff ffp ff fff

134

A. B.
fff

136

? > > > >

/

? > > >
& >

/

& > > > >
/

& > > > > >

/

& > >
> > >

/

æææœ œn œ œ# æææœ ™ æææœ œn œ œ# œ æææœ æææœ œn œ œ æææœb ™ æææœ œ œ œ æææœb ™ æææœ œ œ œ# æææœn ™
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

æææœ œ# œ œb æææœ ™ æææœ œn œ œb œ æææœn æææœ œ œ œ æææœ ™ æææœ œ œ œb œ æææœ#
æææœ

œn œ œ# æææœn ™
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

æææœ œ œ œb œ æææœn æææœ œ œb œn æææœn ™ æææœ œ œ œb œ æææœ# æææœ œ œ œn æææœ ™ æææœ œ œ œb œ æææœn
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

æææœ œ œ œ æææœb ™ æææœ œ œ œn œ æææœ# æææœ œ œ œn æææœn ™ æææœ œ# œ œ œ œb œ œ œ œ œ œ œ œ œ
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

œb œ œ œ Œ Œ Ó Ó Œ œb œ œ Œ
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ Œ

256

	Partial Copyright License
	Abstract
	Dedication
	Quotation
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Preface
	Introduction
	Reformulating the Problem: A Holistic Approach

	Composers and Authors Compose Compositions
	Laske's Composition Theory
	Composition Theory in Literature
	Collins' Synthesis Process Model
	Composition Theory and Generative Models
	Composition by Prediction: The Markov Property
	An Innate Faculty for Music: Generative Grammars
	Iteration Toward Musical ``Fitness:'' Evolutionary Models
	David Cope's ``Music Recombinance''

	If Composers are Creative, What Does That Mean?
	Boden's Creative Magnitudes and Types
	Schmidhuber's Theory of ``Compressor Improvement''
	Graeme Ritchie: Quantifying Computational Creativity

	Music Perception and Cognition
	Echoic Memory
	Auditory Stream Segregation
	Short-Term Memory or ``Working Memory''
	Memory Optimization and ``Chunking''
	Cognitive Modelling
	Cognitively-Grounded Music Generation Systems
	The IDyOM Model
	The Anticipatory Model of Cont et al.
	A Deep Learning Approach

	Integrated Cognitive Architectures

	MusiCog: An Integrated Architecture
	Music Descriptors
	Processing Modules
	Perception Module (PE)
	Working Memory (WM)
	Long-Term Memory (LTM)
	The Production Module (PM)
	Handling Rhythmic Information

	Implementation Details

	MusiCog in Practice
	The Perception Module
	PE Stream/Voice-Separation
	PE Low-level Boundary Detection
	PE Induction of Mode and Tonal Centre

	The Working Memory Module
	WM Cognitive Salience and WM Retention
	WM Chunking and Higher-level Segmentation

	Long-Term Memory: Learning in the CM
	Generation in the PM
	Testing on the Folk Corpus
	Imitation of more developed styles

	Discussion: Autonomous Composition in MusiCog
	Discussion of Test Results
	Strengths of an Integrated Approach
	Questions and Challenges
	Stylistically inconsistent rhythmic complexity and syncopation.
	Inability to reliably produce tonal melodies, when trained on tonal materials.
	Lack of formal repetition structure and symmetry.

	Creativity in MusiCog

	ManuScore: Cognitively-Grounded Computer-Assisted Composition
	Design Motivations Behind ManuScore
	ManuScore Design & Features
	An Open Musical Space
	Note Entry in ManuScore.
	Orchestration in ManuScore.
	Sharing Staff Data with ``Links''

	A Composition Study Using ManuScore
	A Listener Study
	Study Results
	ManuScore as a CAC Tool
	Composition in ManuScore with MusiCog

	Conclusion
	Future Work
	Improvements and Extensions to the PE
	Improvements and Extensions to the PM
	Modelling Attention

	Final Statements

	Bibliography
	Appendix Score Example 1: experiri
	Appendix Score Example 2: factura

