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Abs t r ac t .  A Gagn6-style learning hierarchy often permits a large number of  alternate linear 
arrangements (sequences) of instructional objectives. An alternative is described here to tradi- 
tional methods of choosing between sequences. Its premise is that, for every sequence, a value 
termed the memory load can be calculated which is theoretically related to the probability that 
students will fail to recall prerequisite objectives. A graph theoretic approach is taken in 
presenting an algorithm which generates a minimal memory load sequence from a learning 
tree, a restricted but frequently encountered type of learning hierarchy. In order to assess the 
effectiveness of the algorithm in generating low memory load sequences when given hierarch- 
ies which are not trees, it was applied to several published examples of learning hierarchies. 
The results indicated that the algorithm is effective as an heuristic, especially when combined 
with a hill-descending procedure which attempts to incrementally improve the generated 
sequence. 

Learning hierarchies 

Since its emergence in the early 1960's, Gagn6's learning hierarchy (Gagn6, 1962, 
1968; Gagn6 and Paradise, 1961) has been one of the most widely accepted and in- 
fluential concepts in the field of instructional science. A learning hierarchy 
consists of a set of instructional objectives (or tasks, or skills) and a set of prereq- 
uisite relationships connecting the objectives. Gagn6 and Briggs (1974, p. 110) 
noted that "a prerequisite skill is integrally related to the skill which is superordi- 
nate to it, in the sense that the latter skill cannot be done if the prerequisite skill 
is not available to the learner". In practice, because each objective is associated 
with a unit of instructional treamaent, the learning hierarchy specifies a partial 
order for presenting units to a student. 

Learning hierarchies are normally generated by a subjective process in which 
the instructional designer starts with goal objectives and recursively breaks them 
down into prerequisite sub-objectives. This process terminates at sub-objectives 
assumed to be already mastered by the student population at which the instruction 
is aimed. 

Subject matter experts do not always agree on the partial ordering of a given set 
of objectives, so several methods, reviewed by Reckase and McKinley (1982), 
have been proposed for using test data to empirically validate learning hierarchies. 
Most of these methods (e.g., Dayton and Macready, 1976; Airasian and Bart, 
1975; Gagn6 and Paradise, 1961) are based on the principle that a response pattern 
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in which an objective is passed and the prerequisite of the objective is failed con- 
tributes contradictory evidence. Procedures for automatically generating learning 
hierarchies from test data (Macready, 1975; Bart and Krus, 1973) are based on the 
same principle. 

Once a valid learning hierarchy has been obtained, it is used to derive a se- 
quence of objectives to be followed by the student. Even when a learner control 
philosophy prevails, the instructional system should be able to recommend a se- 
quence. Tennyson (1981) found that the achievement of learners allowed to control 
the amount of instruction was significantly lower than that of learners in a 
program controlled Ireatment, unless they were advised on when to terminate in- 
struction on each objective in the lesson. When the objectives are hierarchically 
related, advice on the best sequence of objectives may have similar value. 

The main purpose of this paper is to propose a criterion for selecting a 
sequence of objectives from the many sequences which are often permitted by a 
learning hierarchy. Before describing this criterion and a sequence generation algo- 
rithm which exploits it, a brief excursion is taken through some simple graph 
theory definitions as they apply to learning hierarchies. To provide a practical or- 
ientation for this discussion, the sequence generation algorithm, together with cer- 
tain graph algorithms noted in the following section, can be viewed as forming 
the first rudimentary facilities for an hypothetical computer assisted instructional 
design toolkit. 

Learning hierarchies as acyclic digraphs 

As other authors (Heines and O'Shea, 1985; Stelzer and Kingsley, 1975) have ob- 
served, a learning hierarchy can be formally represented as a directed graph 
(digraph). A digraph consists of a set of nodes and a set of ordered pairs (u,v), 
called arcs, where u and v are distinct members of the set of nodes. When a di- 
graph is used to model a learning hierarchy, the nodes represent instructional 
objectives and the arcs show the prerequisite relationships between the objectives. 

Fig. 1. A simple digraph 
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Figure 1 shows a simple digraph with three nodes: A, B, and C. In interpreting 
the arcs, which are represented by arrows, we say that A is the parent of B and C, 
and that B and C am the children of A. If this digraph were representing a learning 
hierarchy, it would tell us that both B and C are prerequisites of A. In other 
words, the learning hierarchy can be used to partition the set of 3! linear arrange- 
ments or sequences of the three objectives into two mutually exclusive subsets: 
the set of instructionally valid sequences 03CA, CBA) and the set of instructional- 
ly invalid sequences (ABC, ACB, BAC, CAB). An instructionally valid sequence 
is an ordered list in which all objectives in the hierarchy appear exactly once, and 
in which every objective occurs at some position after all its prerequisites. Valid 
sequences are said to be "permitted" by the learning hierarchy. 

With learning hierarchies, the arrowhead can be dropped if we adopt the conven- 
tion that prerequisites always appear lower on the page than their parents. Figure 
2 shows a learning hierarchy cited by Case and Bereiter (1984). In digraphs of this 
form the number of arcs exiting downward from a node is the outdegree of the 
node. The number of arcs entering the node from above is the indegree of the 
node. For example, node A in Figure 2 has indegree zero and outdegree three. In 
learning hierarchies, nodes with indegree zero represent goal objectives and those 
with outdegree zero represent entry objectives. 

Level 

3 

2 

entry 
objectives 

Fig. 2. A learning hierarchy 
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A path (not to be confused with a sequence) is a list of one or more nodes, 
starting with any node in the digraph, such that each succeeding member of the 
list is a child of its predecessor in the list. The length of a path is n-l,  where n is 
the number of nodes in the path. A trivial path is a fist containing only one node, 
and therefore having a length of zero. 

A digraph is cyclic if and only if it has one or more non-trivial paths which be- 
gin and end with the same node. Implicit in discussions by Gagn6 and others, is 
the tenet that learning hierarchies are acyclic. Incidentally, the absence of cycles 
ensures that there will be at least one entry objective and at least one goal objec- 
tive. So perhaps a graph algorithm capable of checking whether a learning hier- 
archy entered by a course designer is free of cycles, should be the first to go into a 
toolkit for computer assisted instructional design. A simple algorithm which tests 
for the acyclic property is described by Robinson and Foulds (1980, p. 73-75). 

Level numbers 

Sometimes it is useful to assign a positive integer to each instructional objective 
indicating its level in the hierarchy: a frequently encountered application being the 
numbering of university courses (e.g., the high order digit in "Psych 100"). In 
graph-theoretic terms the level number of a node in an acyclic digraph may be 
defined as the length of the longest path of which it is the first node. Entry objec- 
fives are the last node of every path to which they belong, so every path begin- 
ning with an entry objective is trivial and has a length of zero. Therefore entry 
objectives are always assigned to level zero by the given definition. It may be 
preferable to increment all level numbers by one so that the lowest level is one 
rather than zero. Figure 2 illustrates level assignment by this method. 

Inreach and outreach 

If u and v are nodes in a digraph, and there exists a path fxom u to v, then we say 
that v is reachable from u. The inreach of a node v is the set of all nodes from 
which v is reachable, including v itself. The outreach of a node u is the set of all 
nodes reachable from u, including u itself. So the outreach of an objective u in a 
learning hierarchy is file set of all objectives in the hierarchy which must be taken 
before u, plus u itself. 

Interpretation and treatment of inessential arcs 

If (u,v) is an arc in an acyclic digraph, then (u,v) is inessential if there is a path 
from u to v which does not traverse (u,v), and essential if there is no such path. 
Figure 3 contains an example of an inessential arc. A prerequisite relationship rep- 
resented by an inessential arc has no effect on the set of sequences permitted by 
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the learning hierarchy. Therefore, if the only purpose of the hierarchy is to define 
this set, an algorithm which simplified the hierarchy by detecting and deleting in- 
essential arcs (Robinson and Foulds, p. 85) would be a useful addition to the tool- 
kit. 

Prerequisite relationships are also used to implicate sub-objectives as causes of 
failure when a student is unable to master an objective. If we assume, as Gagn6 
and Briggs seem to, that mastery of an objective implies mastery of all objectives 
within its oulreach, then inessential arcs are indeed redundant. However, if prereq- 
uisites are allowed in the hierarchy which are necessary for learning the new objec- 
five, but which are not incorporated and practiced as part of it, then "inessential" 
arcs may represent information valuable to the diagnostic process. One solution is 
to enable the author to specify both types of relationships (let us call them inte- 
gral and non-integral relationships), and to only allow an inessential arc when it 
does not short-cut a path connected by arcs of the integral kind. 

Augmented learning hierarchies 

As Gagn6 (1968) observed, a standard learning hierarchy cannot represent alterna- 
five ways of achieving an inslructional goal. One hypothesis accounting for the 
contradictory fail-pass response pattern (in which a prerequisite is failed but its 
parent is passed) which can thwart the validation of a learning hierarchy, is that a 
known prerequisite is sufficient but not necessary and that students producing this 
pattern had mastery of another sufficient prerequisite not represented in the model. 
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This limitation can be overcome by a representation, used both in the task models 
of Heines and O'Shea (1985) and in Pask's entailment structures (Pask, KaUikour- 
dis and Scott, 1975), which would indicate that any one of a specified set of sub- 
objectives can serve as a prerequisite. In other words, hierarchies augmented by 
such a representation are AND/OR graphs, allowing for both conjunction and dis- 
junction of prerequisites where standard Gagn6 hierarchies allow only conjunction. 
The work reported here deals only with standard conjunctive hierarchies. 

Memory load 

The set of sequences of instructional objectives permitted by a learning hierarchy 
can be surprisingly large. For example, the learning hierarchy in Figure 2 is a par- 
tial ordering of only 14 objectives, yet it allows about 1.6 million different 
sequences. In fact, the number of permitted sequences is often so large that com- 
puter programs attempting to count them by exhaustive search will not terminate 
Within a reasonable period of time. Are there criteria available for selecting the 
most instructionally effective sequence from this large set? 

Posner and Strike (1976) reviewed and categorized many of the principles for 
sequencing instructional content which have been proposed in the last eighty 
years. Although the learning hierarchy principle has dominated in recent years, 
other principles worthy of consideration include the ordering of objectives from 
most familiar to least familiar, from least difficult to most difficult, from most 
interesting to least interesting, and so on. If the learning hierarchy is given top 
priority, the other principles can still be invoked within the constraints it 
imposes. Gagn6 and Briggs (1974) suggest that resource availability determine 
sequencing after the constraints of the learning hierarchy have been satisfied. This 
paper proposes a new sequencing principle which may be viewed as an extension 
of the learning hierarchy principle. 

Although all permitted sequences ensure that when the student begins to learn a 
new objective the prerequisites will have been mastered at some previous time, it 
is possible that some or all of the prerequisites will have been forgotten. The 
probability of forgetting is known to increase with time as a result of interference 
from other learning. Therefore, one approach to finding a "best" sequence is to 
minimize the instructional time elapsing between when an objective is learned and 
when it is needed for further learning. 

Memory load is an attempt to provide, for the practical purposes of the instruc- 
tional designer, a relative estimate of the retroactive inhibition effects contributing 
to the forgetting of prerequisites in a sequence with an underlying hierarchical 
structure. The term memory load was chosen because sequences subject to greater 
interference presumably place a greater burden on the memory ability of the 
learner. 
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Suppose an estimated learning time t is associated with each objective. A 
memory load value can be obtained by any permitted sequence of objectives: 

m qi 

memory load = ~ ~ tij 
i=] j=] 

where m is the number of arcs in the hierarchy, ql is the number of objectives 
intervening between the parent and child of the ith arc, and t.. is the estimated 
learning time of thejth objective intervening between the paren'Jt and child of the 
ith arc. 

The following sequence is permitted by the hierarchy in Figure 2: 

N M K L J I G C F E B H D A  

Assuming that all objectives have a learning time of 1.0, the memory load for 
this sequence is 16.0, which happens to be the minimum memory load for the 
hierarchy. The arc from A to C is stretched by five intervening objectives, so it 
contributes 5.0 to the memory load. The arc from D to H has no intervening ob- 
jectives, so it contributes 0.0 to the memory load. 

Deficiencies of  memory load as a model of  forgetting 

The utility of minimizing memory load in the instructional design process depends 
on the accuracy of memory load as a predictor of forgetting. Four potential sources 
of error are apparent: 

1. Time spent in activities external to the learning hierarchy is a cause of forget- 
ting, but is not captured by the memory load model. So one expects that the 
accuracy of memory load as a predictor of forgetting will vary with the degree of 
intrusion of external activities at course delivery time. 

2. Some objectives are simply more memorable than others, but the memory load 
model fails to differentiate between them. Many psychological factors will come 
into play to vary the likelihood that a specific objective will be remembered by a 
specific individual. For example, objectives which the student finds interesting are 
likely to be remembered longer than those which are boring. If an objective is 
known to be relatively resistant to forgetting, one can afford to allow it greater 
separation from the objectives having it as a prerequisite in order to shorten the 
time spanned by more sensitive prerequisite relationships. 

3. The probability of forgetting usually increases as a non-linear function of time, 
but the memory load model assumes linearity. One expects intervening objectives 
to vary in the strength with which they interfere with memory for the prerequisite. 
It is conceivable that some intervening objectives may help the student to recall 
the prerequisite (negative interference). Therefore, one cannot even be sure that the 
probability of forgetting will be a monotonically increasing function of instruc- 
tional time. 
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4. No consideration is given here to the distribution of memory load over the se- 
quence, but this may turn out to be an important factor. For example, it may be 
that objectives arranged in a sequence with a uniform distribution of memory load 
are learned more easily than the same objectives arranged with an equal memory 
load having a peaked distribution. 

These deficiencies suggest that a more accurate model could be constructed 
which would include as parameters some of the factors ignored by the current 
model. Unfortunately though, the additional information required by such a model 
is.usually unavailable to the instructional designer. However, there is reason to 
expect that when the instruction is delivered by computer, the frequency with 
which each prerequisite is forgotten could be recorded and fed back into the se- 
quence planning process. 

A sequencing algorithm which minimizes memory load 

Consider the problem of finding any sequence permitted by a given learning hier- 
archy such that the sequence has the minimum memory load. The huge number of 
sequences permitted by many learning hierarchies severely limits the usefulness of 
methods relying on an exhaustive search of the sequence space. A preliminary 
study which applied A* search 1 using an heuristic based on the minimum possible 
memory load associated with an objective not yet included in the sequence, found 
that even this approach is frequently defeated by combinatorial explosion. 

The ideal solution would be a more direct one which would avoid searching the 
sequence space altogether. Unfortunately, no algorithm of this type has been 
found which succeeds with learning hierarchies in general 2. However, a simple and 
efficient algorithm is presented here which is conjectured to generate a minimum 
memory load sequence for a subclass of learning hierarchies called learning trees. 

A tree is an acyclic digraph containing only nodes having indegrees less than or 
equal to one, and exactly one node having indegree zero. Any learning hierarchy 
satisfying these restrictions is a learning tree. It turns out that learning trees are a 
fairly frequent form of learning hierarchy. An informal survey of 49 learning hier- 
archies cited in 14 documents (Briggs, 1972; Briggs and Wager, 1981; Case and 
Bereiter, 1984; Dick and Carey, 1978; Edney, 1972; Gagnt, 1962, 1965, 1968; 
Gagn6 and Briggs, 1974; Gagn6 and Paradise, 1961; Heines and O'Shea, 1985; 
Riban, 1969; Walter, 1965; Wollmer and Bond, 1975) found that 31% were 
learning trees, 59% were non-trees having only one goal objective, and 10% had 
multiple goal objectives. 

GENERATOR, an algorithm which finds a minimum memory load sequence 
permitted by a learning tree, is given below. When applied to learning trees, the 
effect of the algorithm is to find a permitted sequence of objectives with a) the 
objectives belonging to the same outreach positioned contiguously, and b) the 
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prerequisites of any objective ordered such that a prerequisite having an outreach 
with a greater total learning time will precede one having a lesser total learning 
time. The time complexity of GENERATOR is O(n), where n is the number of 
nodes in the tree. 

The GENERATOR Algorithm 

1) To each node (objective) in the learning tree assign the value T, the sum of the 
estimated learning times (t) of all nodes in its outreach. 

2) Initialize the sequence to be a null string of nodes. 
3) Invoke the following recursive procedure SUB_GENERATOR passing it the 

goal node of the learning tree. 

procedure SUB_GENERATOR (a : node); 
var 13 : node; 
begin 
while a has any unmarked child do 

begin 
I] <- unmarked child of a with greatest T; 
SUB_GENERATOR (IB); 
end; 

append a to sequence; 
mark a 
end; 

Generalizing the algorithm to deal with non-trees 

When no procedure is known for obtaining an optimal solution to a problem, one 
is often forced to rely on methods that obtain solutions which are at least better 
than those resulting from an unguided search. In the hope of obtaining such a 
method, a version of GENERATOR was developed which differs from the version 
given previously in only one respect: the node [3 passed in the recursive call to 
SUB_GENERATOR is the unmarked child of a having the greatest value TjP~, 
where node k is any unmarked child of a, Tk is the sum of the estimated learning 
times of all nodes in the outreach of node k, and Pk is the number of unmarked 
nodes not in the outreach ofk  which are parents of nodes that are in the outreach 
of k. It should be clear that Pk > 1 because the parents of any node k cannot be in 
the outreach of k, and cannot be marked if k is not marked. In the case of trees, Pk 
= 1 for all k, so the algorithm reduces to its original form. 

Consider the application of the modified version of GENERATOR to the ex- 
ample in Figure 4. The nodes are labeled with their T values and initial P values. 
The sequence generated by the algorithm is: E D C B A. Note, unlike the original 
version of GENERATOR, the modified version is constrained to choosing E 
rather than D as the initial node because Tz/Pv. > TD/PD. 



146 

T = 5  

�9 T = 3  

T=I 
P=I 

Fig. 4. A hierarchy with nodes labeled by GENERATOR 

Tests were conducted with several published examples of learning hierarchies 
which are not trees to see whether the modified version of GENERATOR holds 
promise as an heuristic method. The results of the tests are summarized in Table 
1. Because it is only hierarchies permitting a large number of sequences which 
pose a problem, the hierarchies with the largest number of objectives of those 
hierarchies surveyed were chosen for testing. With the exception of hierarchy 15 
(I-I15), which had one of its two goal objectives deleted, only hierarchies having 
exactly one goal objective were used. Estimated learning times are not usually 
given with published examples of hierarchies, so objectives were simply assigned 
a learning time of one (except for those in H3 and H19 which were assigned 
random learning times). 

All programs were written in Pascal and ran on a Digital Equipment Corpora- 
tion VAX 11/780 minicomputer. On this machine, GENERATOR consumed less 
than 100 milliseconds of CPU time per hierarchy. 

Entries in the "no. of sequences", "max ML", "ave ML", and "min ML" col- 
umns were obtained by a depth-first exhaustive search program which counted 
sequences and kept track of the maximum, average, and minimum memory loads 
encountered. An arbitrary upper limit of 12 hours was set on the CPU time re- 
quired by the depth-first search. In cases where this search was not completed in 
the allotted time, the accumulated count is presented as a lower bound on the 
number of permitted sequences, and a random search program was run for another 
12 hours to get more accurate memory load estimates. 
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Table 1. Tests of GENERATOR with some published learning hierarchies 

Source no. of no. of max ave min G ~ -  
nodes sequences ML ML ML TOR ML 

1. Gagn6 & Bdggs 15 90090 29 22.0 9 9 
(1974, p. 117) 

2. Edaey 29 ~1790000 ~270 241.1 ~122 67 
(1972, p. 103) 

3. Edney 29 ~1790000 ~17752 12403.4 ~6883 2733 
(1972, p. 103) 

4. Gagn6 10 756 22 17.0 9 9 
(1962, p. 359) 

5. Gagn6&Bfiggs 9 480 24 18.2 I0 I0 
(1974, p. 118) 

6. Gagn~&Bfiggs 11 480 24 19.8 15 15 
(1974, p. 114) 

7. Riban 11 16800 35 26.4 12 12 
(1969, p.119) 

8. Gagnr 12 44 15 13.3 11 11 
(1974, p. 116) 

9. Case & Bere~er 14 1570140 57 43.5 16 16 
(1984, p. 145) 

10. Dick&Carey 9 52 12 10.8 9 10 
(1978, p. 29) 

l l .  Walter 16 16200 40 31.6 20 21 
(1965, p. 52) 

12. Wollmer&Bond 16 6336 53 45.5 39 41 
(1975, p. 8) 

13. Gagn~ 18 33880 83 72.8 60 64 
(1965, p. 181) 

14. Dick & Carey 18 ~3990000 _>71 52.7 ~23 23 
(1978, p.46) 

15. Gagn~ & Paradise 23 ?_2700000 ~149 112.3 ~64 46 
(1961, p. 6) 

16. Bnggs 23 ~2680000 2104 74.8 $44 44 
(1972, p. 121) 

17. Walier 20 ~3440000 ~134 106.0 ~82 96 
(1965, p. 49) 

18. Gagn6 20 ~3550000 ~147 129.2 ~98 124 
(1965, p. 150) 

19. Dick&Carey 18 23990000 ~3906 2743.9 ~1176 1171 
(1978, p. 46) 
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A second phase for the sequencing algorithm was developed, called SHIFTER, 
which incrementally improves a sequence produced by GENERATOR. SHIFTER 
steps through the sequence, and at each node tests whether the node can be moved 
to any/aew position such that memory load is decreased. SHIFI~R only termi- 
nates when no single node can be moved to improve the memory load. Like other 
hill-descending methods, SHIFTER gets snagged on local minima. 

H1 through H3 are the only learning trees in the sample. They were included to 
demonstrate the effectiveness of GENERATOR when applied to hierarchies of this 
type. The search program was able to complete an exhaustive search of the se- 
quence space of HI, and a comparison of columns reveals that GENERATOR did 
produce a minimum sequence. In the case of H2, GENERATOR produced a se- 
quence having a memory load considerable lower than that of the best sequence 
found by the random search program. H3 is the same hierarchy as H1 with ran- 
domly assigned learning times (integers between 1 and 100). 

H4 through H9 are hierarchies that could be thoroughly searched and for which 
GENERATOR produced minimum sequences. H10 through H13 are those that 
could be thoroughly searched but for which GENERATOR did not produce a best 
sequence. However, in these four cases SHIFTER was able to improve the gener- 
ated sequences to obtain minimum sequences. 

H14 through I-I19 are hierarchies whose sequence space could not be thoroughly 
searched within the allotted time. H19 is the same hierarchy as H14 except that, 
like H3, it was assigned random learning times. H15 and H18 are particularly 
noteworthy: the former because its result was considerable better than that of the 
search, and the latter because its result was considerable worse. 

To summarize the results in Table 1, for 9 of the 15 distinct non-tree hierarch- 
ies GENERATOR produced a sequence as good as the best found by a depth-first 
or random search of the sequence space running for up to 12 hours of CPU time. 
For 5 of the remaining 6 hierarchies, SHIFTER was able to improve the sequence 
produced by GENERATOR to obtain a sequence as good as that found by the 
search programs. The sequence produced by GENERATOR was under the estimat- 
ed average memory load for the hierarchy in all cases. 

C o n c l u s i o n  

The evidence seems to support the hypothesis that the generalized version of 
GENERATOR is useful for finding sequences with low memory loads when giv- 
en learning hierarchies with a single goal objective. With what is presently 
known, perhaps the best strategy for sequencing objectives when one has allotted 
a fixed amount of CPU time for the task is to first obtain a sequence from GEN- 
ERATOR, improve it with SHIFTER, then spend the remaining time randomly 
searching the sequence space. Whenever a better sequence is found an attempt 
should be made to improve it with SHIFTER. Although it is slower and cannot 
examine as many sequences, random search is preferable to an ordered depth-first 
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traversal because it is not localized to one region of the sequence space, and the 
sequences it sees will have a wider range of memory loads. 

There are several problems which might be included on an agenda of future 
research in the area. One essential but arduous enterprise will be empirically vali- 
dating the utility of memory load as a criterion for sequencing instructional objec- 
tives. Several studies, involving instructional treatments covering various subject 
domains, will be required before a convincing conclusion emerges. 

When memory load is viewed as a model of forgetting in the instructional pro- 
cess, inherent sources of error become evident. By including relevant information 
that can be known or estimated at course design time, it is possible that a better 
model could be developed which is still usable as a tool for instructional plan- 
ning. Throughout this paper, the relation between instructional objectives, and the 
surface manifestations of these objectives which are presented to the learner, has 
been assumed as one-to-one. However, there is no essential incompatibility be- 
tween the approach followed here and systems which are concerned with deciding 
the appropriate number of objectives to be covered by the next instructional frame 
or problem (e.g., Smallwood, 1962; Westcourt, Beard and Gould, 1977). 

There is room for more work on algorithms for finding minimum memory load 
sequences. A major disadvantage of GENERATOR is that it cannot plan the re- 
mainder of a partially completed sequence. An algorithm capable of finding a low 
memory load completion of a partial sequence could be used at course delivery 
time to fit the instructional plan to the current slate of the student model. 

Notes 

1. See Barr and Feiganbaum (1981, p. 64) for an introduction to A*. 

2. Even and Shiloah (1975) proved that this problem, the optimal arrangement of nodes in an 
acyclic digraph, is NP-Complete. NP-Complete problems are those that have no known al- 
gorithm which will always provide a solution in polynomial time, and are equivalent to 
other N'P-Complete problems in the sense that if an efficient algorithm is ever found for 
just one NP-Complete problem, efficient algorithms for all the others could be immediately 
derived (Garey & Johnson, 1979). 
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