
Instructional Science 16:137-150 (1987) 137
�9 Martinus Nijhoff Publishers (Kluwer), Dordrecht - Printed in the Netherlands

A m e t h o d for s e q u e n c i n g ins truc t iona l objec t ives w h i c h
m i n i m i z e s m e m o r y load

JOHN C. NESBIT & STEVE HUNKA
Faculty of Education, University of Alberta, Edmonton, CANADA T6G 2G5

Abs t r ac t . A Gagn6-style learning hierarchy often permits a large number of alternate linear
arrangements (sequences) of instructional objectives. An alternative is described here to tradi-
tional methods of choosing between sequences. Its premise is that, for every sequence, a value
termed the memory load can be calculated which is theoretically related to the probability that
students will fail to recall prerequisite objectives. A graph theoretic approach is taken in
presenting an algorithm which generates a minimal memory load sequence from a learning
tree, a restricted but frequently encountered type of learning hierarchy. In order to assess the
effectiveness of the algorithm in generating low memory load sequences when given hierarch-
ies which are not trees, it was applied to several published examples of learning hierarchies.
The results indicated that the algorithm is effective as an heuristic, especially when combined
with a hill-descending procedure which attempts to incrementally improve the generated
sequence.

Learning hierarchies

Since its emergence in the early 1960's, Gagn6's learning hierarchy (Gagn6, 1962,
1968; Gagn6 and Paradise, 1961) has been one of the most widely accepted and in-
fluential concepts in the field of instructional science. A learning hierarchy
consists of a set of instructional objectives (or tasks, or skills) and a set of prereq-
uisite relationships connecting the objectives. Gagn6 and Briggs (1974, p. 110)
noted that "a prerequisite skill is integrally related to the skill which is superordi-
nate to it, in the sense that the latter skill cannot be done if the prerequisite skill
is not available to the learner". In practice, because each objective is associated
with a unit of instructional treamaent, the learning hierarchy specifies a partial
order for presenting units to a student.

Learning hierarchies are normally generated by a subjective process in which
the instructional designer starts with goal objectives and recursively breaks them
down into prerequisite sub-objectives. This process terminates at sub-objectives
assumed to be already mastered by the student population at which the instruction
is aimed.

Subject matter experts do not always agree on the partial ordering of a given set
of objectives, so several methods, reviewed by Reckase and McKinley (1982),
have been proposed for using test data to empirically validate learning hierarchies.
Most of these methods (e.g., Dayton and Macready, 1976; Airasian and Bart,
1975; Gagn6 and Paradise, 1961) are based on the principle that a response pattern

138

in which an objective is passed and the prerequisite of the objective is failed con-
tributes contradictory evidence. Procedures for automatically generating learning
hierarchies from test data (Macready, 1975; Bart and Krus, 1973) are based on the
same principle.

Once a valid learning hierarchy has been obtained, it is used to derive a se-
quence of objectives to be followed by the student. Even when a learner control
philosophy prevails, the instructional system should be able to recommend a se-
quence. Tennyson (1981) found that the achievement of learners allowed to control
the amount of instruction was significantly lower than that of learners in a
program controlled Ireatment, unless they were advised on when to terminate in-
struction on each objective in the lesson. When the objectives are hierarchically
related, advice on the best sequence of objectives may have similar value.

The main purpose of this paper is to propose a criterion for selecting a
sequence of objectives from the many sequences which are often permitted by a
learning hierarchy. Before describing this criterion and a sequence generation algo-
rithm which exploits it, a brief excursion is taken through some simple graph
theory definitions as they apply to learning hierarchies. To provide a practical or-
ientation for this discussion, the sequence generation algorithm, together with cer-
tain graph algorithms noted in the following section, can be viewed as forming
the first rudimentary facilities for an hypothetical computer assisted instructional
design toolkit.

Learning hierarchies as acyclic digraphs

As other authors (Heines and O'Shea, 1985; Stelzer and Kingsley, 1975) have ob-
served, a learning hierarchy can be formally represented as a directed graph
(digraph). A digraph consists of a set of nodes and a set of ordered pairs (u,v),
called arcs, where u and v are distinct members of the set of nodes. When a di-
graph is used to model a learning hierarchy, the nodes represent instructional
objectives and the arcs show the prerequisite relationships between the objectives.

Fig. 1. A simple digraph

139

Figure 1 shows a simple digraph with three nodes: A, B, and C. In interpreting
the arcs, which are represented by arrows, we say that A is the parent of B and C,
and that B and C am the children of A. If this digraph were representing a learning
hierarchy, it would tell us that both B and C are prerequisites of A. In other
words, the learning hierarchy can be used to partition the set of 3! linear arrange-
ments or sequences of the three objectives into two mutually exclusive subsets:
the set of instructionally valid sequences 03CA, CBA) and the set of instructional-
ly invalid sequences (ABC, ACB, BAC, CAB). An instructionally valid sequence
is an ordered list in which all objectives in the hierarchy appear exactly once, and
in which every objective occurs at some position after all its prerequisites. Valid
sequences are said to be "permitted" by the learning hierarchy.

With learning hierarchies, the arrowhead can be dropped if we adopt the conven-
tion that prerequisites always appear lower on the page than their parents. Figure
2 shows a learning hierarchy cited by Case and Bereiter (1984). In digraphs of this
form the number of arcs exiting downward from a node is the outdegree of the
node. The number of arcs entering the node from above is the indegree of the
node. For example, node A in Figure 2 has indegree zero and outdegree three. In
learning hierarchies, nodes with indegree zero represent goal objectives and those
with outdegree zero represent entry objectives.

Level

3

2

entry
objectives

Fig. 2. A learning hierarchy

140

A path (not to be confused with a sequence) is a list of one or more nodes,
starting with any node in the digraph, such that each succeeding member of the
list is a child of its predecessor in the list. The length of a path is n-l, where n is
the number of nodes in the path. A trivial path is a fist containing only one node,
and therefore having a length of zero.

A digraph is cyclic if and only if it has one or more non-trivial paths which be-
gin and end with the same node. Implicit in discussions by Gagn6 and others, is
the tenet that learning hierarchies are acyclic. Incidentally, the absence of cycles
ensures that there will be at least one entry objective and at least one goal objec-
tive. So perhaps a graph algorithm capable of checking whether a learning hier-
archy entered by a course designer is free of cycles, should be the first to go into a
toolkit for computer assisted instructional design. A simple algorithm which tests
for the acyclic property is described by Robinson and Foulds (1980, p. 73-75).

Level numbers

Sometimes it is useful to assign a positive integer to each instructional objective
indicating its level in the hierarchy: a frequently encountered application being the
numbering of university courses (e.g., the high order digit in "Psych 100"). In
graph-theoretic terms the level number of a node in an acyclic digraph may be
defined as the length of the longest path of which it is the first node. Entry objec-
fives are the last node of every path to which they belong, so every path begin-
ning with an entry objective is trivial and has a length of zero. Therefore entry
objectives are always assigned to level zero by the given definition. It may be
preferable to increment all level numbers by one so that the lowest level is one
rather than zero. Figure 2 illustrates level assignment by this method.

Inreach and outreach

If u and v are nodes in a digraph, and there exists a path fxom u to v, then we say
that v is reachable from u. The inreach of a node v is the set of all nodes from
which v is reachable, including v itself. The outreach of a node u is the set of all
nodes reachable from u, including u itself. So the outreach of an objective u in a
learning hierarchy is file set of all objectives in the hierarchy which must be taken
before u, plus u itself.

Interpretation and treatment of inessential arcs

If (u,v) is an arc in an acyclic digraph, then (u,v) is inessential if there is a path
from u to v which does not traverse (u,v), and essential if there is no such path.
Figure 3 contains an example of an inessential arc. A prerequisite relationship rep-
resented by an inessential arc has no effect on the set of sequences permitted by

Fig. 3. The arc from A to C is Inessential

)
141

the learning hierarchy. Therefore, if the only purpose of the hierarchy is to define
this set, an algorithm which simplified the hierarchy by detecting and deleting in-
essential arcs (Robinson and Foulds, p. 85) would be a useful addition to the tool-
kit.

Prerequisite relationships are also used to implicate sub-objectives as causes of
failure when a student is unable to master an objective. If we assume, as Gagn6
and Briggs seem to, that mastery of an objective implies mastery of all objectives
within its oulreach, then inessential arcs are indeed redundant. However, if prereq-
uisites are allowed in the hierarchy which are necessary for learning the new objec-
five, but which are not incorporated and practiced as part of it, then "inessential"
arcs may represent information valuable to the diagnostic process. One solution is
to enable the author to specify both types of relationships (let us call them inte-
gral and non-integral relationships), and to only allow an inessential arc when it
does not short-cut a path connected by arcs of the integral kind.

Augmented learning hierarchies

As Gagn6 (1968) observed, a standard learning hierarchy cannot represent alterna-
five ways of achieving an inslructional goal. One hypothesis accounting for the
contradictory fail-pass response pattern (in which a prerequisite is failed but its
parent is passed) which can thwart the validation of a learning hierarchy, is that a
known prerequisite is sufficient but not necessary and that students producing this
pattern had mastery of another sufficient prerequisite not represented in the model.

142

This limitation can be overcome by a representation, used both in the task models
of Heines and O'Shea (1985) and in Pask's entailment structures (Pask, KaUikour-
dis and Scott, 1975), which would indicate that any one of a specified set of sub-
objectives can serve as a prerequisite. In other words, hierarchies augmented by
such a representation are AND/OR graphs, allowing for both conjunction and dis-
junction of prerequisites where standard Gagn6 hierarchies allow only conjunction.
The work reported here deals only with standard conjunctive hierarchies.

Memory load

The set of sequences of instructional objectives permitted by a learning hierarchy
can be surprisingly large. For example, the learning hierarchy in Figure 2 is a par-
tial ordering of only 14 objectives, yet it allows about 1.6 million different
sequences. In fact, the number of permitted sequences is often so large that com-
puter programs attempting to count them by exhaustive search will not terminate
Within a reasonable period of time. Are there criteria available for selecting the
most instructionally effective sequence from this large set?

Posner and Strike (1976) reviewed and categorized many of the principles for
sequencing instructional content which have been proposed in the last eighty
years. Although the learning hierarchy principle has dominated in recent years,
other principles worthy of consideration include the ordering of objectives from
most familiar to least familiar, from least difficult to most difficult, from most
interesting to least interesting, and so on. If the learning hierarchy is given top
priority, the other principles can still be invoked within the constraints it
imposes. Gagn6 and Briggs (1974) suggest that resource availability determine
sequencing after the constraints of the learning hierarchy have been satisfied. This
paper proposes a new sequencing principle which may be viewed as an extension
of the learning hierarchy principle.

Although all permitted sequences ensure that when the student begins to learn a
new objective the prerequisites will have been mastered at some previous time, it
is possible that some or all of the prerequisites will have been forgotten. The
probability of forgetting is known to increase with time as a result of interference
from other learning. Therefore, one approach to finding a "best" sequence is to
minimize the instructional time elapsing between when an objective is learned and
when it is needed for further learning.

Memory load is an attempt to provide, for the practical purposes of the instruc-
tional designer, a relative estimate of the retroactive inhibition effects contributing
to the forgetting of prerequisites in a sequence with an underlying hierarchical
structure. The term memory load was chosen because sequences subject to greater
interference presumably place a greater burden on the memory ability of the
learner.

143

Suppose an estimated learning time t is associated with each objective. A
memory load value can be obtained by any permitted sequence of objectives:

m qi

memory load = ~ ~ tij
i=] j=]

where m is the number of arcs in the hierarchy, ql is the number of objectives
intervening between the parent and child of the ith arc, and t.. is the estimated
learning time of thejth objective intervening between the paren'Jt and child of the
ith arc.

The following sequence is permitted by the hierarchy in Figure 2:

N M K L J I G C F E B H D A

Assuming that all objectives have a learning time of 1.0, the memory load for
this sequence is 16.0, which happens to be the minimum memory load for the
hierarchy. The arc from A to C is stretched by five intervening objectives, so it
contributes 5.0 to the memory load. The arc from D to H has no intervening ob-
jectives, so it contributes 0.0 to the memory load.

Deficiencies of memory load as a model of forgetting

The utility of minimizing memory load in the instructional design process depends
on the accuracy of memory load as a predictor of forgetting. Four potential sources
of error are apparent:

1. Time spent in activities external to the learning hierarchy is a cause of forget-
ting, but is not captured by the memory load model. So one expects that the
accuracy of memory load as a predictor of forgetting will vary with the degree of
intrusion of external activities at course delivery time.

2. Some objectives are simply more memorable than others, but the memory load
model fails to differentiate between them. Many psychological factors will come
into play to vary the likelihood that a specific objective will be remembered by a
specific individual. For example, objectives which the student finds interesting are
likely to be remembered longer than those which are boring. If an objective is
known to be relatively resistant to forgetting, one can afford to allow it greater
separation from the objectives having it as a prerequisite in order to shorten the
time spanned by more sensitive prerequisite relationships.

3. The probability of forgetting usually increases as a non-linear function of time,
but the memory load model assumes linearity. One expects intervening objectives
to vary in the strength with which they interfere with memory for the prerequisite.
It is conceivable that some intervening objectives may help the student to recall
the prerequisite (negative interference). Therefore, one cannot even be sure that the
probability of forgetting will be a monotonically increasing function of instruc-
tional time.

144

4. No consideration is given here to the distribution of memory load over the se-
quence, but this may turn out to be an important factor. For example, it may be
that objectives arranged in a sequence with a uniform distribution of memory load
are learned more easily than the same objectives arranged with an equal memory
load having a peaked distribution.

These deficiencies suggest that a more accurate model could be constructed
which would include as parameters some of the factors ignored by the current
model. Unfortunately though, the additional information required by such a model
is.usually unavailable to the instructional designer. However, there is reason to
expect that when the instruction is delivered by computer, the frequency with
which each prerequisite is forgotten could be recorded and fed back into the se-
quence planning process.

A sequencing algorithm which minimizes memory load

Consider the problem of finding any sequence permitted by a given learning hier-
archy such that the sequence has the minimum memory load. The huge number of
sequences permitted by many learning hierarchies severely limits the usefulness of
methods relying on an exhaustive search of the sequence space. A preliminary
study which applied A* search 1 using an heuristic based on the minimum possible
memory load associated with an objective not yet included in the sequence, found
that even this approach is frequently defeated by combinatorial explosion.

The ideal solution would be a more direct one which would avoid searching the
sequence space altogether. Unfortunately, no algorithm of this type has been
found which succeeds with learning hierarchies in general 2. However, a simple and
efficient algorithm is presented here which is conjectured to generate a minimum
memory load sequence for a subclass of learning hierarchies called learning trees.

A tree is an acyclic digraph containing only nodes having indegrees less than or
equal to one, and exactly one node having indegree zero. Any learning hierarchy
satisfying these restrictions is a learning tree. It turns out that learning trees are a
fairly frequent form of learning hierarchy. An informal survey of 49 learning hier-
archies cited in 14 documents (Briggs, 1972; Briggs and Wager, 1981; Case and
Bereiter, 1984; Dick and Carey, 1978; Edney, 1972; Gagnt, 1962, 1965, 1968;
Gagn6 and Briggs, 1974; Gagn6 and Paradise, 1961; Heines and O'Shea, 1985;
Riban, 1969; Walter, 1965; Wollmer and Bond, 1975) found that 31% were
learning trees, 59% were non-trees having only one goal objective, and 10% had
multiple goal objectives.

GENERATOR, an algorithm which finds a minimum memory load sequence
permitted by a learning tree, is given below. When applied to learning trees, the
effect of the algorithm is to find a permitted sequence of objectives with a) the
objectives belonging to the same outreach positioned contiguously, and b) the

145

prerequisites of any objective ordered such that a prerequisite having an outreach
with a greater total learning time will precede one having a lesser total learning
time. The time complexity of GENERATOR is O(n), where n is the number of
nodes in the tree.

The GENERATOR Algorithm

1) To each node (objective) in the learning tree assign the value T, the sum of the
estimated learning times (t) of all nodes in its outreach.

2) Initialize the sequence to be a null string of nodes.
3) Invoke the following recursive procedure SUB_GENERATOR passing it the

goal node of the learning tree.

procedure SUB_GENERATOR (a : node);
var 13 : node;
begin
while a has any unmarked child do

begin
I] <- unmarked child of a with greatest T;
SUB_GENERATOR (IB);
end;

append a to sequence;
mark a
end;

Generalizing the algorithm to deal with non-trees

When no procedure is known for obtaining an optimal solution to a problem, one
is often forced to rely on methods that obtain solutions which are at least better
than those resulting from an unguided search. In the hope of obtaining such a
method, a version of GENERATOR was developed which differs from the version
given previously in only one respect: the node [3 passed in the recursive call to
SUB_GENERATOR is the unmarked child of a having the greatest value TjP~,
where node k is any unmarked child of a, Tk is the sum of the estimated learning
times of all nodes in the outreach of node k, and Pk is the number of unmarked
nodes not in the outreach ofk which are parents of nodes that are in the outreach
of k. It should be clear that Pk > 1 because the parents of any node k cannot be in
the outreach of k, and cannot be marked if k is not marked. In the case of trees, Pk
= 1 for all k, so the algorithm reduces to its original form.

Consider the application of the modified version of GENERATOR to the ex-
ample in Figure 4. The nodes are labeled with their T values and initial P values.
The sequence generated by the algorithm is: E D C B A. Note, unlike the original
version of GENERATOR, the modified version is constrained to choosing E
rather than D as the initial node because Tz/Pv. > TD/PD.

146

T = 5

�9 T = 3

T=I
P=I

Fig. 4. A hierarchy with nodes labeled by GENERATOR

Tests were conducted with several published examples of learning hierarchies
which are not trees to see whether the modified version of GENERATOR holds
promise as an heuristic method. The results of the tests are summarized in Table
1. Because it is only hierarchies permitting a large number of sequences which
pose a problem, the hierarchies with the largest number of objectives of those
hierarchies surveyed were chosen for testing. With the exception of hierarchy 15
(I-I15), which had one of its two goal objectives deleted, only hierarchies having
exactly one goal objective were used. Estimated learning times are not usually
given with published examples of hierarchies, so objectives were simply assigned
a learning time of one (except for those in H3 and H19 which were assigned
random learning times).

All programs were written in Pascal and ran on a Digital Equipment Corpora-
tion VAX 11/780 minicomputer. On this machine, GENERATOR consumed less
than 100 milliseconds of CPU time per hierarchy.

Entries in the "no. of sequences", "max ML", "ave ML", and "min ML" col-
umns were obtained by a depth-first exhaustive search program which counted
sequences and kept track of the maximum, average, and minimum memory loads
encountered. An arbitrary upper limit of 12 hours was set on the CPU time re-
quired by the depth-first search. In cases where this search was not completed in
the allotted time, the accumulated count is presented as a lower bound on the
number of permitted sequences, and a random search program was run for another
12 hours to get more accurate memory load estimates.

147

Table 1. Tests of GENERATOR with some published learning hierarchies

Source no. of no. of max ave min G ~ -
nodes sequences ML ML ML TOR ML

1. Gagn6 & Bdggs 15 90090 29 22.0 9 9
(1974, p. 117)

2. Edaey 29 ~1790000 ~270 241.1 ~122 67
(1972, p. 103)

3. Edney 29 ~1790000 ~17752 12403.4 ~6883 2733
(1972, p. 103)

4. Gagn6 10 756 22 17.0 9 9
(1962, p. 359)

5. Gagn6&Bfiggs 9 480 24 18.2 I0 I0
(1974, p. 118)

6. Gagn~&Bfiggs 11 480 24 19.8 15 15
(1974, p. 114)

7. Riban 11 16800 35 26.4 12 12
(1969, p.119)

8. Gagnr 12 44 15 13.3 11 11
(1974, p. 116)

9. Case & Bere~er 14 1570140 57 43.5 16 16
(1984, p. 145)

10. Dick&Carey 9 52 12 10.8 9 10
(1978, p. 29)

l l . Walter 16 16200 40 31.6 20 21
(1965, p. 52)

12. Wollmer&Bond 16 6336 53 45.5 39 41
(1975, p. 8)

13. Gagn~ 18 33880 83 72.8 60 64
(1965, p. 181)

14. Dick & Carey 18 ~3990000 _>71 52.7 ~23 23
(1978, p.46)

15. Gagn~ & Paradise 23 ?_2700000 ~149 112.3 ~64 46
(1961, p. 6)

16. Bnggs 23 ~2680000 2104 74.8 $44 44
(1972, p. 121)

17. Walier 20 ~3440000 ~134 106.0 ~82 96
(1965, p. 49)

18. Gagn6 20 ~3550000 ~147 129.2 ~98 124
(1965, p. 150)

19. Dick&Carey 18 23990000 ~3906 2743.9 ~1176 1171
(1978, p. 46)

SHIFT-
ERML

9

67

2733

9

I0

15

12

11

16

9

20

39

60

23

46

44

82

105

1171

148

A second phase for the sequencing algorithm was developed, called SHIFTER,
which incrementally improves a sequence produced by GENERATOR. SHIFTER
steps through the sequence, and at each node tests whether the node can be moved
to any/aew position such that memory load is decreased. SHIFI~R only termi-
nates when no single node can be moved to improve the memory load. Like other
hill-descending methods, SHIFTER gets snagged on local minima.

H1 through H3 are the only learning trees in the sample. They were included to
demonstrate the effectiveness of GENERATOR when applied to hierarchies of this
type. The search program was able to complete an exhaustive search of the se-
quence space of HI, and a comparison of columns reveals that GENERATOR did
produce a minimum sequence. In the case of H2, GENERATOR produced a se-
quence having a memory load considerable lower than that of the best sequence
found by the random search program. H3 is the same hierarchy as H1 with ran-
domly assigned learning times (integers between 1 and 100).

H4 through H9 are hierarchies that could be thoroughly searched and for which
GENERATOR produced minimum sequences. H10 through H13 are those that
could be thoroughly searched but for which GENERATOR did not produce a best
sequence. However, in these four cases SHIFTER was able to improve the gener-
ated sequences to obtain minimum sequences.

H14 through I-I19 are hierarchies whose sequence space could not be thoroughly
searched within the allotted time. H19 is the same hierarchy as H14 except that,
like H3, it was assigned random learning times. H15 and H18 are particularly
noteworthy: the former because its result was considerable better than that of the
search, and the latter because its result was considerable worse.

To summarize the results in Table 1, for 9 of the 15 distinct non-tree hierarch-
ies GENERATOR produced a sequence as good as the best found by a depth-first
or random search of the sequence space running for up to 12 hours of CPU time.
For 5 of the remaining 6 hierarchies, SHIFTER was able to improve the sequence
produced by GENERATOR to obtain a sequence as good as that found by the
search programs. The sequence produced by GENERATOR was under the estimat-
ed average memory load for the hierarchy in all cases.

C o n c l u s i o n

The evidence seems to support the hypothesis that the generalized version of
GENERATOR is useful for finding sequences with low memory loads when giv-
en learning hierarchies with a single goal objective. With what is presently
known, perhaps the best strategy for sequencing objectives when one has allotted
a fixed amount of CPU time for the task is to first obtain a sequence from GEN-
ERATOR, improve it with SHIFTER, then spend the remaining time randomly
searching the sequence space. Whenever a better sequence is found an attempt
should be made to improve it with SHIFTER. Although it is slower and cannot
examine as many sequences, random search is preferable to an ordered depth-first

149

traversal because it is not localized to one region of the sequence space, and the
sequences it sees will have a wider range of memory loads.

There are several problems which might be included on an agenda of future
research in the area. One essential but arduous enterprise will be empirically vali-
dating the utility of memory load as a criterion for sequencing instructional objec-
tives. Several studies, involving instructional treatments covering various subject
domains, will be required before a convincing conclusion emerges.

When memory load is viewed as a model of forgetting in the instructional pro-
cess, inherent sources of error become evident. By including relevant information
that can be known or estimated at course design time, it is possible that a better
model could be developed which is still usable as a tool for instructional plan-
ning. Throughout this paper, the relation between instructional objectives, and the
surface manifestations of these objectives which are presented to the learner, has
been assumed as one-to-one. However, there is no essential incompatibility be-
tween the approach followed here and systems which are concerned with deciding
the appropriate number of objectives to be covered by the next instructional frame
or problem (e.g., Smallwood, 1962; Westcourt, Beard and Gould, 1977).

There is room for more work on algorithms for finding minimum memory load
sequences. A major disadvantage of GENERATOR is that it cannot plan the re-
mainder of a partially completed sequence. An algorithm capable of finding a low
memory load completion of a partial sequence could be used at course delivery
time to fit the instructional plan to the current slate of the student model.

Notes

1. See Barr and Feiganbaum (1981, p. 64) for an introduction to A*.

2. Even and Shiloah (1975) proved that this problem, the optimal arrangement of nodes in an
acyclic digraph, is NP-Complete. NP-Complete problems are those that have no known al-
gorithm which will always provide a solution in polynomial time, and are equivalent to
other N'P-Complete problems in the sense that if an efficient algorithm is ever found for
just one NP-Complete problem, efficient algorithms for all the others could be immediately
derived (Garey & Johnson, 1979).

References

Airasian, P. and Bart, W. (1975). Validating a priori instructional hierarchies. Journal of
Educational Measurement, 12, 163-173.

Barr, A. and Fcigcnbanm, E. (1981). The Handbook of Artificial Intelligence (Vol. 1). Los
Altos, CA: Kaufmann.

Bart, W. and Krus, D. (1973). An ordering theoretic method to determine hierarchies among
items. Educational and Psychological Measurement, 33, 291-300.

Briggs, L. (1972). Student's Guide to Handbook of Procedures for the Design of Instruction.
American Institutes for Research.

150

Briggs, L. and Wager, W. (1981). Handbook of Procedures for the Design of Instruction. Engle-
wood Cliffs, N.J.: Educational Technology Publications.

Case, R. and Bereiter, C. (1984). From behaviorism to cognitive behaviorism to cognitive
development: steps in the evolution of instructional design. Instructional Science, 13, 141-
158.

Dayton, C. and Macready, G. (1976). A probabilistic model for validation of behavior hier-
archies. Psychometrica, 41, 189-204.

Dick, W. and Carey, L. (1978). The Systematic Design of Instruction. Glenview, IL.: Scott,
Foresman & Company.

Edney, P. (1972). A Systems Analysis of Training. London: Pitman.
Even, S. and Shiloah, Y. (1975). NP-Completeness of Several Arrangement Problems..

(Department of Computer Science, Technical Report #43). Haifa, Israel: Technion Institute.
Gagn~, R. (1962). The acquisition of knowledge. Psychological Review, 69(4), 355-365.
Gagn6, R. (1965). The Conditions of Learning. New York: Holt, Rinehart, & Winston.
Gagn6, R. (1968). Learning Hierarchies. Educational Psychologist, 6(1), 1-9.
Gagn~, R. and Briggs, L. (1974). Principles of Instructional Design. New York: Holt, Rine-

hart, & Winston.
Gagn6, R. and Paradise, N. (1961). Abilities and Learning Sets in Knowledge Acquisition.

Psychological Monographs, 75(14), (Whole No. 518).
Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness. San Francisco: Freeman.
Heines, J. and O'Shea, T. (1985). The design of a rule-based CAI tutorial. International Journal

of Man-Machine Studies, 23, 1-25.
Macready, G. (1975). The structure of domain hierarchies found within a domain referenced

testing system. Educational and Psychological Measurement, 35, 583-598.
Pask, G., Kallikonrdis, D. and Scott, B. (1975). The representation of knowables. International

Journal of Man-Machine Studies, 7, 15 t34.
Posner, J. and Strike, K. (1976). A categorization scheme for principles of sequencing con-

tent. Review of Educational Research, 46(4), 665 689.
Reckase, M. and McKinley, R, (1982). The Validation of Learning Hierarchies (Research

Report ONR 82-2). Iowa City: The American College Testing Program.
Riban, D. (1969). An investigation of the relationship of Gagnd' s hierarchical sequence model

in mathematics to the learning of high school physics. Doctoral dissertation, Purdue Uni-
versity (University Microfilms No. 70-8957).

Robinson, D. and Foulds, L. (1980). Digraphs: Theory and Techniques. London: Gordon &
Breach.

Smallwood, R~ (1962). A Decision Structure for Teaching Machines. Cambridge, MA: MIT
Press.

Stelzer, L and Kingsley, E. (1975). Axiomatics as a paradigm for structuring subject matter.
Instructional Science, 3, 383-450.

Tennyson, R. (1981). Use of adaptive information for advisement in learning concepts and
rules using computer-assisted instruction. American Educational Research Journal, 18(4),
425-438.

Walter, K. (1965). Authoring individualized learning modules: A teacher training manual (Tide
IH, E.S.E.A). Kensington, MD: Project Reflect.

Westconrt. K., Beard, M. and Gould, L. (1977). Knowledge-based adaptive curriculum sequen-
cing for CAI: Application of a network representation. Proceedings of the Annual Confer-
ence of the Association for Computing Machinery, Seattle, WA, October, 234 240.

WoUmer, R. and Bond, N. (1975). Evaluation of a Markov-deeision model for instructional
sequence optimization (ARPA Order No. 2284). Los Angeles: University of Southern Cali-
fornia.

