** Disclaimer**: because of copyright considerations, any version posted
here might differ significantly from the final published version.

[J65] J. Jedwab and T. Pender, “Two constructions of quaternary Legendre pairs of even length,” submitted 2024.

[J64] F. Firoozi, J. Jedwab and A. Rattan, “Combinatorial enumeration of lattice paths by flaws with respect to a linear boundary of rational slope,” submitted 2024.

[J63] S. Huczynska, J. Jedwab and L. Johnson, “Additive triples in groups of odd prime order,” submitted 2024.

[J62]
J. Jedwab,
“The mean and variance of the reciprocal merit factor of four classes of binary sequences,”
*IEEE T. Inform. Theory*, accepted 2024.

[E2]
T. Helleseth and J. Jedwab, eds.,
Sequences and their Applications, special issue of
*Cryptogr. Commun.* vol. 6(1), 2014.

[E1]
T. Helleseth and J. Jedwab, eds.,
Lecture Notes in Computer Science vol. 7280,
* Sequences and their Applications — SETA 2012*,
Springer-Verlag, 2012.

[B1]
J. Jedwab and K.-U. Schmidt, “Finite Fields in Engineering,” Chapter 17.3,
in G.L. Mullen and D. Panario, eds., *Handbook of Finite Fields*,
CRC Press, 2013, pp. 841–849.

[J61]
C.J. Colbourn, C. Ingalls, J. Jedwab, M. Saaltink, K.W. Smith and B. Stevens,
“Sets of mutually orthogoval projective and affine planes,”
* Combinatorial Theory*, vol. 4, #8, 2024.

[J60]
J. Na, J. Jedwab and S. Li,
“A group-based structure for perfect sequence covering arrays,”
* Des. Codes Cryptogr.*, vol. 91, pp. 951–970, 2023.

[J59]
T. Applebaum, J. Clikeman, J.A. Davis, J.F. Dillon, J. Jedwab, T. Rabbani, K. Smith and W. Yolland,
“Constructions of difference sets in nonabelian 2-groups,”
*Algebra Number Theory*, vol. 17, pp. 359–396, 2023.

[J58]
J. Jedwab, S. Li and S. Simon,
“Constructions and restrictions for balanced splittable Hadamard matrices,”
* Electron. J. Combin.*, vol. 30(1) #P1.37, 2023.

[J57]
J. Jedwab and S. Li,
“Packings of partial difference sets,”
*Combinatorial Theory*, vol. 1, #18, 2021.

[J56]
A.A. Avis and J. Jedwab,
“Three-phase Golay sequence and array triads,”
* J. Comb. Theory A*, vol. 180, 105422, 2021.

[J55]
J. Jedwab and T. Popatia,
“A new representation of mutually orthogonal frequency squares,”
*J. Combin. Math. Combin. Comput.*, vol. 116, pp. 287–301, 2020.

[J54]
J. Jedwab, T. Petrie and S. Simon,
“An infinite class of unsaturated rooted trees corresponding to designable RNA secondary structures,”
*Theoret. Comput. Sci.* vol. 833 pp. 147–163, 2020.

[J53]
M. DeVos, A. Dyck, J. Jedwab and S. Simon,
“Which graphs occur as γ-graphs?,”
*Graphs Combin.* vol. 36 pp. 1219–1246, 2020.

[J52]
J. Jedwab and S. Li,
“Construction
and nonexistence of strong external difference families,”
* J. Algebr. Comb.* vol. 49 pp. 21–48, 2019.

[J51]
J. Jedwab, S. Li and S. Simon,
“Linking systems of difference sets,”
* J. Comb. Des.* vol. 27 pp. 161–187, 2019.

[J50]
J. Jedwab and L. Yen,
“Costas
cubes,” * IEEE T. Inform. Theory* vol. 64 pp. 3144–3149, 2018.

[J49]
J.H.C. Chan and J. Jedwab,
“Constructions
and nonexistence results for suitable sets of permutations,”
* J. Comb. Theory A* vol. 148 pp. 183–196, 2017.

[J48]
J. Jedwab and A. Wiebe,
“Constructions
of complex equiangular lines from mutually unbiased bases,”
* Des. Codes Cryptogr.* vol. 80 pp. 73–89, 2016.

[J47]
J. Jedwab and A. Wiebe,
“Large sets of
complex and real equiangular lines,”
* J. Comb. Theory A* vol. 134 pp. 98–102, 2015.

[J46]
J.P. Bell, J. Jedwab, M. Khatirinejad and K.-U. Schmidt,
“Three-phase
Barker arrays,” * J. Comb. Des.* vol. 23 pp. 45–59, 2015.

[J45]
J. Jedwab and J. Wodlinger,
“The deficiency of
Costas arrays,” * IEEE T. Inform. Theory* vol. 60 pp. 7947–7954, 2014.

[J44]
J. Jedwab and J. Wodlinger,
“Structural
properties of Costas arrays,”
* Adv. Math. Commun.* vol. 8 pp. 241–256, 2014.

[J43]
J. Jedwab, D.J. Katz and K.-U. Schmidt,
“Littlewood
polynomials with small *L*^{4} norm,”
* Adv. Math.* vol. 241 pp. 127–136, 2013.

[J42]
J. Jedwab and M. Strange,
“Wavelength isolation
sequence design,”
* IEEE T. Inform. Theory* vol. 59 pp. 3210–3214, 2013.

[J41]
J. Jedwab, D.J. Katz and K.-U. Schmidt,
“Advances
in the merit factor problem for binary sequences,”
* J. Comb. Theory A* vol. 120 pp. 882–906, 2013.

[J40]
J. Jedwab and K.-U. Schmidt,
“The
*L*_{4} norm of Littlewood polynomials derived from the Jacobi symbol,”
* Pac. J. Math.* vol. 257 pp. 395–418, 2012.

[J39]
J.H.C. Chan and J. Jedwab,
“The
*n*-card problem, stochastic matrices, and the Extreme Principle,”
* Electron. J. Combin.* vol. 19(2) #P53, 2012.

[J38]
R.G. Gibson and J. Jedwab,
“Quaternary
Golay sequence pairs II: odd length,”
* Des. Codes Cryptogr.* vol. 59 pp. 147–157, 2011.

[J37]
R.G. Gibson and J. Jedwab,
“Quaternary
Golay sequence pairs I: even length,”
* Des. Codes Cryptogr.* vol. 59 pp. 131–146, 2011.

[J36]
A.C.S. Chan, J.A. Davis and J. Jedwab,
“On
the non-existence of a projective (75,4,12,5) set in PG(3,7),”
* J. Geom.* vol. 97 pp. 29–44, 2010.

[J35]
F. Fiedler, J. Jedwab and A. Wiebe,
“A
new source of seed pairs for Golay sequences of length
2^{m},”
* J. Comb. Theory A* vol. 117 pp. 589–597, 2010.

[J34]
J. Jedwab and M.G. Parker,
“A
construction of binary Golay sequence pairs from odd-length Barker
sequences,”
* J. Comb. Des.* vol. 17 pp. 478–491, 2009.

[J33]
K.-U. Schmidt, J. Jedwab and M.G. Parker,
“Two
binary sequence families with large merit factor,”
* Adv. Math. Commun.* vol. 3 pp. 135–156, 2009.

[J32]
F. Fiedler, J. Jedwab and M.G. Parker,
“A
framework for the construction of Golay sequences,”
* IEEE T. Inform. Theory* vol. 54 pp. 3114–3129, 2008.

[J31]
F. Fiedler, J. Jedwab and M.G. Parker,
“A
multi-dimensional approach to the construction and enumeration of
Golay complementary sequences,”
* J. Comb. Theory A* vol. 115 pp. 753–776, 2008.

[J30]
D. Dmitriev and J. Jedwab,
“Bounds
on the growth rate of the peak sidelobe level of binary sequences,”
* Adv. Math. Commun.* vol. 1 pp. 461–475,
2007.

[J29]
S.E.C. Crouch, J.A. Davis and J. Jedwab,
“The
design of the IEEE 802.12 coding scheme,”
* IEEE T. Commun.* vol. 55 pp. 1907–1917, 2007.

[J28]
J. Jedwab and M.G. Parker,
“Golay complementary array pairs,”
* Des. Codes Cryptogr.* vol. 44 pp. 209–216, 2007.

[J27]
J. Jedwab and M.G. Parker,
“There
are no Barker arrays having more than two dimensions,”
* Des. Codes Cryptogr.* vol. 43 pp.79–84, 2007.

[J26]
J.A. Davis, J. Jedwab and K.W. Smith,
“Proof of the Barker array conjecture,”
* P. Am. Math. Soc.* vol. 135 pp. 2011–2018, 2007.

[J25]
F. Fiedler and J. Jedwab,
“How
do more Golay sequences arise?,”
* IEEE T. Inform. Theory* vol. 52 pp. 4261–4266, 2006.

[J24]
J. Jedwab and K. Yoshida,
“The
peak sidelobe level of families of binary sequences,”
* IEEE T. Inform. Theory* vol. 52 pp. 2247–2254, 2006.

[J23]
P. Borwein, K.-K.S. Choi and J. Jedwab,
“Binary
sequences with merit factor greater than 6.34,”
* IEEE T. Inform. Theory* vol. 50 pp. 3234–3249, 2004.

[J22]
J.A. Davis and J. Jedwab,
“Peak-to-mean
power control in OFDM, Golay complementary sequences, and Reed-Muller
codes,”
* IEEE T. Inform. Theory* vol. 45 pp. 2397–2417, 1999.

[J21]
J.A. Davis and J. Jedwab,
“A new family of relative difference sets in 2-groups,”
* Des. Codes Cryptogr.* vol. 17 pp. 305–312, 1999.

[J20]
J.A. Davis, J. Jedwab and M. Mowbray,
“New
families of semi-regular relative difference sets,”
* Des. Codes Cryptogr.* vol. 13 pp. 131–146, 1998.

[J19]
J.A. Davis and J. Jedwab,
“A unifying
construction for difference sets,”
* J. Comb. Theory A* vol. 80 pp. 13–78, 1997.

[J18]
J.A. Davis and J. Jedwab,
“Nested Hadamard difference sets,”
* J. Stat. Plan. Infer.* vol. 62 pp. 13–20, 1997.

[J17]
J. Jedwab,
‘Comment on “M-sequences for OFDM peak-to-average power ratio
reduction and error correction”,’
* Electron. Lett.* vol. 33 pp. 1293–1294, 1997.

[J16]
J.A. Davis and J. Jedwab,
“Peak-to-mean power control and error correction for OFDM transmission
using Golay sequences and Reed-Muller codes,”
* Electron. Lett.* vol. 33 pp. 267–268, 1997.

[J15]
K.T. Arasu, J.A. Davis and J. Jedwab,
“A nonexistence result for abelian Menon difference sets using perfect
binary arrays,”
* Combinatorica* vol. 15 pp. 311–317, 1995.

[J14]
J. Jedwab, C. Mitchell, F. Piper and P. Wild,
“Perfect binary arrays and difference sets,”
* Discrete Math.* vol. 125 pp. 241–254, 1994.

[J13]
K.T. Arasu, J.A. Davis, J. Jedwab and S.K. Sehgal,
“New constructions of Menon difference sets,”
* J. Comb. Theory A* vol. 64 pp. 329–336, 1993.

[J12]
J.A. Davis and J. Jedwab,
“A note on new semi-regular divisible difference sets,”
* Des. Codes Cryptogr.* vol. 3 pp. 379–381, 1993.

[J11]
J. Jedwab, S. Lloyd and M. Mowbray,
“Barker
arrays II: Odd number of elements,”
* SIAM J. Discrete Math.* vol. 6 pp. 309–328, 1993.

[J10]
J. Jedwab,
“Barker
arrays I: Even number of elements,”
* SIAM J. Discrete Math.* vol. 6 pp. 294–308, 1993.

[J9]
J. Jedwab and J.A. Davis,
Reply to ‘Comment on “Nonexistence of certain perfect
binary arrays” and “Nonexistence of perfect binary
arrays,” ’
* Electron. Lett.* vol. 29 p. 1002, 1993.

[J8]
J. Jedwab and J.A. Davis,
“Nonexistence of certain perfect binary arrays,”
* Electron. Lett.* vol. 29 pp. 99–100, 1993.

[J7]
J. Jedwab and S. Lloyd,
“A note on the nonexistence of Barker sequences,”
* Des. Codes Cryptogr.* vol. 2 pp. 93–97, 1992.

[J6]
J. Jedwab,
“Generalized perfect arrays and Menon difference sets,”
* Des. Codes Cryptogr.* vol. 2 pp. 19–68, 1992.

[J5]
J. Jedwab, “Nonexistence of perfect binary arrays,”
* Electron. Lett.* vol. 27 pp. 1252–1254, 1991.

[J4]
J. Jedwab and C.J. Mitchell,
“Infinite families of quasiperfect and doubly quasiperfect
binary arrays,”
* Electron. Lett.* vol. 26 pp. 294–295, 1990.

[J3]
J. Jedwab and C.J. Mitchell,
“Minimum weight modified signed-digit representations and fast
exponentiation,”
* Electron. Lett.* vol. 25 pp. 1171–1172, 1989.

[J2]
J. Gillis, J. Jedwab and D. Zeilberger,
“A combinatorial
interpretation of the integral of the product of Legendre polynomials,”
* SIAM J. Math. Anal.* vol. 19, pp. 1455–1461, 1988.

[J1]
J. Jedwab and C. Mitchell, “Constructing new perfect binary
arrays,”
* Electron. Lett.* vol. 24 pp. 650–652, 1988.

[C16]
J. Jedwab and S. Li,
“Group rings and character sums: tricks of the trade,”
in C.J. Colbourn and J.H. Dinitz, eds., *New Advances in Designs, Codes and Cryptography*, Fields Institute Communications 86, Springer, 2024, pp. 241–266.

[C15]
I. Lau and J. Jedwab,
“Construction of binary matrices for near-optimal compressed sensing,” *2021 IEEE International Symposium on Information Theory (ISIT)*. DOI: 10.1109/ISIT45174.2021.9518096.

[C14]
K. van Greevenbroek and J. Jedwab,
“A new structure for difference matrices over abelian *p*-groups,” in K.-U. Schmidt and A. Winterhof, eds., Radon Series on Computational and Applied Mathematics vol. 23, *Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications*, de Gruyter, 2019, pp. 79–108.

[C13]
J. Jedwab and A. Wiebe,
“A simple
construction of complex equiangular lines,” in C.J. Colbourn, ed.,
Springer Proceedings in Mathematics and Statistics vol. 133, *Algebraic Design Theory and
Hadamard Matrices*, 2015, pp. 159–169.

[C12]
J. Jedwab and J. Wodlinger,
“Wavelength isolation
sequence pairs,”
in T. Helleseth and J. Jedwab, eds., Lecture Notes in Computer Science vol. 7280,
* Sequences and their Applications — SETA 2012*,
Springer-Verlag, 2012, pp. 126–135.

[C11]
J. Jedwab and K.-U. Schmidt,
“Appended
*m*-sequences with merit factor greater than 3.34,”
in C. Carlet and A. Pott, eds., Lecture Notes in Computer Science vol. 6338,
* Sequences and their Applications — SETA 2010*,
Springer-Verlag, 2010, pp. 204–216.

[C10]
J. Jedwab and K.-U. Schmidt,
“The
merit factor of binary sequence families constructed from
*m*-sequences,”
* Contemp. Math.* vol. 518 pp. 265–278, 2010.

[C9]
J. Jedwab,
“What
can be used instead of a Barker sequence?,”
* Contemp. Math.* vol. 461 pp. 153–178, 2008.

[C8]
J. Jedwab,
“A survey
of the merit factor problem for binary sequences,”
in T. Helleseth et al., eds., Lecture Notes in Computer Science vol. 3486,
* Sequences and their Applications — SETA 2004*,
Springer-Verlag, 2005, pp. 30–55.

[C7]
J.A. Davis and J. Jedwab,
“A unified
approach to difference sets with gcd(*v*,*n*) > 1,”
in A. Pott et al., eds., NATO Science Series C vol. 542,
* Difference Sets, Sequences and their Correlation Properties*,
Kluwer Academic Publishers, Dordrecht, 1999, pp. 113–132.

[C6]
J.A. Davis, J. Jedwab and K.G. Paterson,
“Codes, correlations and power control in OFDM,”
in A. Pott et al., eds., NATO Science Series C vol. 542,
* Difference Sets, Sequences and their Correlation Properties*,
Kluwer Academic Publishers, Dordrecht, 1999, pp.85–112.

[C5]
J.A. Davis and J. Jedwab,
“Some recent developments in difference sets,”
in F.C. Holroyd et al., eds., Chapman & Hall/CRC Press Research Notes
in Mathematics,
* Combinatorial Designs and their Applications*,
CRC Press LLC, Boca Raton, 1999, pp. 83–102.

[C4]
J.A. Davis and J. Jedwab,
“A survey
of Hadamard difference sets,”
in K.T. Arasu et al., eds.,
* Groups, Difference Sets and the Monster*,
de Gruyter, Berlin-New York, 1996, pp. 145–156.

[C3]
K.T. Arasu, J.A. Davis, J. Jedwab, S.L. Ma and R.L. McFarland,
“Exponent bounds for a family of abelian difference sets,”
in K.T. Arasu et al., eds.,
* Groups, Difference Sets and the Monster*,
de Gruyter, Berlin-New York, 1996, pp. 129–144.

[C2]
J.A. Davis and J. Jedwab,
“A summary of Menon difference sets,”
* Congr. Numer.* vol. 93 pp. 203–207, 1993.

[C1]
J. Jedwab,
“Nonexistence results for Barker arrays,”
in C. Mitchell, ed.,
The Institute of Mathematics and its Applications Conference Series
(New Series) No. 33, *Cryptography and Coding II*,
Clarendon Press, Oxford, 1992, pp. 121–126.

[N4]
J. Jedwab,
“Sol Golomb and a twice-in-a-lifetime celestial event,”
in B.A. Golomb et al., eds., *The Wisdom of Solomon: The Genius and Legacy of Solomon Golomb*, World Scientific, New Jersey, 2023, pp. 237–240.

[N3]
J. Jedwab,
“A simple model for distributing meal payments to conference attendees,”
*CMS Notes* vol. 53, Feb 2021.

[N2] R. Craigen and J. Jedwab, ‘Comment on revised version of “The Hadamard circulant conjecture”,’ arXiv:1111.3437v2 [math.CO].

[N1] R. Craigen and J. Jedwab, ‘Comment on “The Hadamard circulant conjecture”,’ arXiv:1111.3437v1 [math.CO].