Mathematical Preliminaries

Ling324
Reading: Meaning and Grammar, pg. 529-540

Outline

- Set theory
- Ordered pairs and cartesian products
- Relations
- Functions

What is a Set?

- A SET is a collection of objects. It can be finite or infinite.

$$
\begin{aligned}
& A=\{a, b, c\} \\
& N=\{1,2,3, \ldots\}
\end{aligned}
$$

- An object is an element of a set A if that object is a member of the collection A.

Notation: " \in " reads as "is an element of", "is a member of", or "belongs to".
$a \in A$
$2 \in N$
A set can have another set as a member.
Let $B=\{a, b, c,\{d, e\}\}$, then $\{d, e\} \in B$

- A set with only one member is called a SINGLETON.
- A set with no members is called the EMPTY SET or NULL SET.

Notation: Ø or \{ \}

Specification of Sets

- List notation

A set consists of the objects named, not of the names themselves.
$B=\{$ The Amazon River, George Washington, 3\}
$C=\{$ The Amazon River, 'George Washington', 3\}
A set is unordered.
Writing the name of a member more than once does not change its membership status. For a given object, either it is a member of a given set or it is not.
$\{a, b, c, e, e, e\}$
$\{a, b, c, e\}$

Specification of Sets (cont.)

- Predicate notation

A better way to describe an infinite set is to indicate a property the members of the set share.
$\{x \mid x$ is an even number greater than 3$\}$ is read as "the set of all x such that x is an even number greater than 3 ."
' x ' is a variable.

- Recursive rules

A rule for generating elements 'recursively' from a finite basis.
a) $4 \in E$
b) if $x \in E$, then $x+2 \in E$
c) Nothing else belongs to E.

QUESTION: Give a list notation for the above recursive rules.

Set-theoretic Identity and Cardinality

- Two sets are IDENTICAL if and only if they have exactly the same members.
$\{1,2,3,4\}=\{x \mid x$ is a positive integer less than 5$\}$
$\{x \mid x$ is a member of the Japanese male olympic gymnastics team in 2004\} $=\{x \mid x$ is a member of the team that won the gold medal in the 2004 olympics for the male all-around gymnastics competition\}
- The number of members in a set A is called the cardinality of A.

Notation: $|A|$
Let $A=\{1,3,5, a, b\}$.
$|A|=$

Subsets

- A set A is a subset of a set B if all the elements of A are also in B. Notation: $A \subseteq B$
- PROPER SUBSET

Notation: $A \subset B$

- $A \nsubseteq B$ means that A is not a subset of B.
- A set A is a subset of itself. $A \subseteq A$.
- If $A \subseteq B$, and $B \subseteq C$, then $A \subseteq C$.

Subsets (cont.)

QUESTION: Fill in the blank with either \subseteq or $\not \subset$.

a)	$\{a, b, c\}$	$\{s, b, a, e, g, i, c\}$
b)	$\{a, b, j\}$	$\{s, b, a, e, g, i, c\}$
c) \emptyset	$\{a\}$	
d)	$\{a,\{a\}\}$	$\{a, b,\{a\}\}$
e)	$\{\{a\}\}$	$\{a\}$
f)	$\{a\}$	$\{\{a\}\}$
g)	$\{\emptyset\}$	$\{a\}$
h)	A	A

QUESTION: Are the following statements true or false?
Let $A=\{b,\{c\}\}$.
a) $c \in A$
b) $\{c\} \in A$
c) $\{b\} \subseteq A$
d) $\{c\} \subseteq A$
e) $\{\{c\}\} \subseteq A$
f) $\{b\} \notin A$
g) $\{b,\{c\}\} \subset A$
h) $\{\{b,\{c\}\}\} \subseteq A$

Power Sets

- The POWER SET of $A, \wp(A)$, is the set whose members are all the subsets of A.

The set A itself and the nulll set are always members of $\wp(A)$.
Let $A=\{a, b\}$.
$\wp(A)=\{\{a\},\{b\},\{a, b\}, \emptyset\}$

- $|\wp(A)|=2^{n}$
- From the definition of power set, it follows that $A \subseteq B$ iff $A \in \wp(B)$.

QUESTION: Let $B=\{a, b, c\}$. What is $\wp(B)$?

Set-theoretic Operations

- $A \cap B$: The intersection of two sets A and B is the set containing all and only the objects that are elements of both A and B.
$A \cap B \cap C=\cap\{A, B, C\}$
- $A \cup B$: The union of two sets A and B is the set containing all and only the objects that are elements of A, of B, or of both A and B.
$A \cup B \cup C=\cup\{A, B, C\}$
- $A-B$: The difference between two sets A and B subtracts from A all objects which are in B.
- A^{\prime} : The complement of a set A is the set of all the individuals in the universe of discourse except for the elements of A (i.e., $U-A$).

Set-theoretic Operations (cont.)

QUESTION: Let $K=\{a, b\}, L=\{c, d\}$, and $M=\{b, d\}$.
a) $K \cup L=\{a, b, c, d\}$
b) $K \cup M=$
c) $(K \cup L) \cup M=$
d) $L \cup \emptyset=$
e) $K \cap L=\emptyset$
f) $L \cap M=$
g) $K \cap K=$
h) $K \cap \emptyset=$
i) $K \cap(L \cap M)=$
j) $K \cap(L \cup M)=$
k) $K-M=\{a\}$
m) $L-M=$
n) $M-L=$
o) $K-\emptyset=$
p) $\emptyset-K=$

Set-theoretic Equalities

- Some fundamental set-theoretic equalities

1. Commutative Laws

$$
X \cup Y=Y \cup X
$$

$$
X \cap Y=Y \cap X
$$

2. Associative Laws
$(X \cup Y) \cup Z=X \cup(Y \cup Z) \quad(X \cap Y) \cap Z=X \cap(Y \cap Z)$
3. Distributive Laws
$X \cup(Y \cap Z)=(X \cup Y) \cap(X \cup Z)$
$X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)$
4. Identity Laws
$X \cup \emptyset=X \quad X \cup U=U \quad X \cap \emptyset=\emptyset \quad X \cap U=X$
5. Complement Laws
$X \cup X^{\prime}=U \quad\left(X^{\prime}\right)^{\prime}=X \quad X \cap X^{\prime}=\emptyset \quad X-Y=X \cap Y^{\prime}$
6. DeMorgan's Laws
$(X \cup Y)^{\prime}=X^{\prime} \cap Y^{\prime}$
$(X \cap Y)^{\prime}=X^{\prime} \cup Y^{\prime}$

Set-theoretic Equalities (cont.)

- Set-theoretic equalities can be used to simplify a complex set-theoretic expression, or to prove the truth of other statements about sets.

Simplify the expression $(A \cup B) \cup(B \cap C)^{\prime}$.

1. $(A \cup B) \cup(B \cap C)^{\prime}$
2. $(A \cup B) \cup\left(B^{\prime} \cup C^{\prime}\right) \quad$ DeMorgan
3. $A \cup\left(B \cup\left(B^{\prime} \cup C^{\prime}\right)\right) \quad$ Associative
4. $A \cup\left(\left(B \cup B^{\prime}\right) \cup C^{\prime}\right)$ Associative
5. $A \cup\left(U \cup C^{\prime}\right) \quad$ Complement
6. $A \cup\left(C^{\prime} \cup U\right) \quad$ Commutative
7. $A \cup U$
8. U Identity Identity

QUESTION: Show that $(A \cap B) \cap(A \cap C)^{\prime}=A \cap(B-C)$.

Ordered Pairs and Cartesian Products

- A SEQUENCE of objects is a list of these objects in some order. (cf., Recall that a set is unordered.)
$\langle a, b, c\rangle,\langle 7,21,57\rangle,\langle 1,2,3, \ldots\rangle$
- Finite sequences are called tuples. A sequence with k elements is a k-TUPLE.

A 2-tuple is also called an (ordered) PAIR.
$<a, b>$

- If A and B are two sets, the cartesian product of A and B, written as $A \times B$, is the set containing all pairs wherein the first element is a member of A and the second element is a member of B.
- Although each member of a Cartesian product is an ordered pair, the Cartesian product itself is an unordered set of them.

Ordered Pairs and Cartesian Products (cont.)

QUESTION: Let $K=\{a, b, c\}$ and $L=\{1,2\}$.
$K \times L=\{\langle a, 1\rangle,\langle a, 2\rangle,\langle b, 1\rangle,\langle b, 2\rangle,\langle c, 1\rangle,\langle c, 2\rangle\}$
$L \times K=$
$L \times L=$

QUESTION: Let $A \times B=\{\langle a, 1\rangle,\langle a, 2\rangle,\langle a, 3\rangle\}$. What is $\wp(A \times B)$?

Relations

- A relation is a set of ordered n-tuples.

Binary relation: e.g., mother of, kiss, subset
Ternary relation: e.g., give
Unary relation: a set of individuals. e.g., being a ling324 student, being a Canadian

- A relation from A to B is a subset of the Cartesian product $A \times B$.
$R a b$, or $a R b$: The relation R holds between objects a and b.
$R \subseteq A \times B$: A relation between objects from two sets A and B. A relation from A to B.
$R \subseteq A \times A$: A relation holding of objects from a single set A is called a relation in A.

Relations (cont.)

- Domain $(R)=\{a \mid$ there is some b such that $\langle a, b\rangle \in R\}$ Range $(R)=\{b \mid$ there is some a such that $\langle a, b\rangle \in R\}$

Let $A=\{a, b\}$ and $B=\{c, d, e\} . R=\{\langle a, d\rangle,\langle a, e\rangle,\langle b, e\rangle\}$. Domain $(R)=\{a, b\} ; \operatorname{Range}(R)=\{d, e\}$

Note: A relation may relate one object in its domain to more than one object in its range.

- The complement of a relation $R \subseteq A \times B$, written R^{\prime}, contains all ordered pairs of the Cartesian product which are not members of the relation R.

The INVERSE of a relation, written as R^{-1}, has as its members all the ordered pairs in R, with their first and second elements reversed.
$\left(R^{\prime}\right)^{\prime}=R ;\left(R^{-1}\right)^{-1}=R$
If $R \subseteq A \times B$, then $R^{-1} \subseteq B \times A$, but $R^{\prime} \subseteq A \times B$.
QUESTION: Let $A=\{1,2,3\}$ and $R \subseteq A \times A$ be
$\{\langle 3,2\rangle,\langle 3,1\rangle,<2,1\rangle\}$, which is 'greater than' relation in A.
What is R^{\prime} ? What is R^{-1} ?

Types of Relations

- Reflexive: for all a in the domain, $<a, a>\in R$. e.g., being the same age as Nonreflexive: e.g., like Irreflexive: for all a in the domain, $<a, a>\notin R$. e.g., proper subset
- Symmetric: whenever $<a, b>\in R,<b, a>\in R$. e.g., being five miles from Nonsymmetric: e.g., being the sister of
Asymmetric: it is never the case that $<a, b>\in R$ and $<b, a>\in R$. e.g., being the mother of
- Transitive: whenever $<a, b>\in R$ and $<b, c>\in R,<a, c>\in R$. e.g., being older than
Nontransitive: e.g., like Intransitive: whenever $<a, b>\in R$ and $<b, c>\in R$, it is not the case that $<a, c\rangle \in R$. e.g., being the mother of
- Equivalence: reflexive, transitive and symmetric. e.g., being the same age as An equivalence relation PARTITIONS a set A into EQUIVALENCE CLASSES, which are DISJOINT and whose union is identical with A.

Functions

- A relation R from A to B is a FUNCTION from A to B if and only if:
a) Each element in the domain is paired with just one element in the range.
b) The domain of R is equal to A (except for PARTIAL FUNCTIONS).

QUESTION: Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$. Which of the following relations are functions?
a) $P=\{<a, 1>,<b, 2>,<c, 3>\}$
b) $Q=\{<a, 1>,<b, 2>\}$
c) $R=\{<a, 2>,<a, 3>,<b, 4>\}$
d) $S=\{<a, 3>,<b, 2>,<c, 2>\}$

- A function that is a subset of $A \times B$ is a function from A to B.

A function in $A \times A$ is a function in A.

- $F: A \rightarrow B$ is read as " F is function from A to B ".
- $F(a)=b$ is read as " F maps a to b ".
- Given $F(a)=b, a$ is an ARGUMENT and b is the value.

Functions (cont.)

- Functions from A to B are generally said to be into B.

Functions from A to B such that the range of the function equals B are called onto B.

- A function $F: A \rightarrow B$ is called a ONE-TO-ONE function just in case no member of B is assigned to more than one member of A. Otherwise, we will call them MANY-TO-ONE function.
- A function which is both one-to-one and onto is called a one-to-one CORRESPONDENCE.
If a function F is a one-to-one correspondence, F^{-1} is also a function.
- A function with k arguments is called a K-ARY FUNCTION, and k is called the ARITY of the function.

Unary function takes one argument. $F(a)$.
Binary function takes two arguments. $F(a, b)$.

- Infix notation: e.g., $a+b$.

Prefix notation: e.g., $+(a, b)$.

Functions (cont.)

- A predicate or property is a function whose range is \{True, False\}. even_number(2) = True, even_number(3) = False. take_ling324, male, freshman.
- The specification of a function from a domain D to $\{$ True, False $\}$ defines a unique subset of domain D, and the specification of a set defines a unique function.

For instance, let the domain D be a set of numbers. If we collect all the elements in D that are mapped to True by function even_number, we end up with a set of even numbers, which is a subset of D.

Also, if a number is an element of the set of even numbers, then it is mapped to True by function even_number, and if it is not an element of the set of even numbers, then it is mapped to False by function even_number.

- We call the unique function that is associated with set A, the characteristic function of A.

