Scope Ambiguity in Syntax and Semantics

Ling324
Reading: *Meaning and Grammar*, pg. 142-157
Is Scope Ambiguity Semantically Real?

(1) Everyone loves someone.
 a. Wide scope reading of universal quantifier:
 \(\forall x [\text{person}(x) \rightarrow \exists y [\text{person}(y) \land \text{love}(x, y)]] \)
 b. Wide scope reading of existential quantifier:
 \(\exists y [\text{person}(y) \land \forall x [\text{person}(x) \rightarrow \text{love}(x, y)]] \)
Could one semantic representation handle both the readings?

- \(\exists y \forall x \) reading entails \(\forall x \exists y \) reading.

\(\forall x \exists y \) describes a more general situation where everyone has someone who s/he loves, and \(\exists y \forall x \) describes a more specific situation where everyone loves the same person.

- Then, couldn’t we say that *Everyone loves someone* is associated with the semantic representation that describes the more general reading, and the more specific reading obtains under an appropriate context? That is, couldn’t we say that *Everyone loves someone* is not semantically ambiguous, and its only semantic representation is the following?

\[
\forall x [\text{person}(x) \rightarrow \exists y [\text{person}(y) \land \text{love}(x, y)]]
\]

- After all, this semantic representation reflects the syntax:

 In syntax, *everyone* c-commands *someone*.

 In semantics, *everyone* scopes over *someone*.
Arguments for Real Scope Ambiguity

• The semantic representation with the scope of quantifiers reflecting the order in which quantifiers occur in a sentence does not always represent the most general reading.

(2) a. There was a name tag near every plate.
 b. A guard is standing in front of every gate.
 c. A student guide took every visitor to two museums.

• Could we stipulate that when interpreting a sentence, no matter which order the quantifiers occur, always assign wide scope to every and narrow scope to some, two, etc.?
Arguments for Real Scope Ambiguity (cont.)

- But in a negative sentence, $\neg \forall x \exists y$ reading entails $\neg \exists y \forall x$ reading.

 (3) Everyone does not love someone.

 a. Wide scope reading of universal quantifier:
 $\neg \forall x [\text{person}(x) \rightarrow \exists y [\text{person}(y) \land \text{love}(x, y)]]$

 b. Wide scope reading of existential quantifier:
 $\neg \exists y [\text{person}(y) \land \forall x [\text{person}(x) \rightarrow \text{love}(x, y)]]$

 Thus, stipulating that every always scopes over other quantifiers won’t work.

- Intonation can disambiguate scopal interpretation possibilities.

 (4) a. Everyone loves SOMEone.

 b. EVERYone loves someone.

 Each intonational pattern may be a reflection of a certain scopal interpretation.

 ⇒ All these facts lead to the conclusion that scope ambiguity is real and that different scope interpretations need to map onto different semantic representations.
Representing Scope Ambiguity in Syntax

- In general, a sentence that is semantically ambiguous is also syntactically ambiguous.

 \[(5)\] a. John saw a man with a pair of binoculars.

 b. Competent women and men hold all the good jobs in the firm.

- What about sentences with scope ambiguity? Those sentences do not seem to be syntactically ambiguous.

 \[(6)\] a. Everyone loves someone.

 b. A professor talked to every student.
Representing Scope Ambiguity in Syntax (cont.)

- Model of the grammar

 Lexical Resources

 Syntactic derivation

 Surface Structure

 Syntactic derivation

 PF

 LF

 Semantics
Representing Scope Ambiguity in Syntax (cont.)

- Syntactic movement takes place at LF, as well as at S-structure. S-structure movement is overt, and LF movement is covert.

- In sentences with quantifiers, the quantified expressions move at LF. This movement is called Quantifier Raising (QR).

QR allows for sentences with scope ambiguity to have ambiguous syntactic structure at LF.

\[\forall x[\text{person}(x) \rightarrow \exists y[\text{person}(y) \land \text{love}(x, y)]] \quad \exists y[\text{person}(y) \land \forall x[\text{person}(x) \rightarrow \text{love}(x, y)]] \]