Generalized Quantifiers

Ling 406/802; Spring 2005 Meaning and Grammar, Ch 9.1 - 9.2

Semantic Value of every student

Semantic Value of every student (cont.)

• Think of [[every student]] as a set of sets to which all the students belong.

```
\label{eq:computer} \begin{split} & \begin{subarray}{l} \end{subarray} \end{subarray} = \{ \end{subarray} x \end{subarray}, \end{subarray
```

 $\llbracket every student \rrbracket = \{X : \llbracket student \rrbracket \subseteq X \}$, where $X \subseteq U$

• Then, [[every]] can be defined as:

 $\llbracket every \rrbracket = \{ < X, Y > : Y \subseteq X \}, \text{ where } X \subseteq U \text{ and } Y \subseteq U$

• And [[every student likes semantics]] can be defined as:

```
1 iff [[likes semantics]] \in [[every student]]
```

1 iff $\{x : x \text{ likes semantics}\} \in \{ \{x : x \text{ drinks}\}, \{x : x \text{ hates phonology}\}, \{x : x \text{ owns a computer}\}, \{x : x \text{ likes semantics}\}, ...\}$

Compositionals Semantics for *Every student likes semantics*

Semantic Value of some student

• [[some student]] as a set of sets to which at least one student belongs.

[[some student]] = { {x : x got an A in syntax}, {x : x failed phonology}, {x : x takes a bus}, {x : x likes semantics}, ...}

[[some student]] = { $X : [[student]] \cap X \neq \emptyset$ }, where $X \subseteq U$

• Then, [[some]] can be defined as:

 $\llbracket \text{some} \rrbracket = \{ \langle X, Y \rangle : Y \cap X \neq \emptyset \}$, where $X \subseteq U$ and $Y \subseteq U$

• How should we define [[Jeff praises some student]]?

Compositional Semantics of Jeff praises some student

Semantic Value of Other Generalized Quantifiers and Determiners

Generalized quantifiers refer to full NPs, like *every student*, *some student*, *no student*, *most students*, etc. Determiners refer to *every*, *some*, *no*, *the*, *most*, etc.

For every $X \subseteq U$ and $Y \subseteq U$:

•
$$[[no N]] = \{X : [[N]] \cap X = \emptyset\}$$

 $[[no]] = \{\langle X, Y \rangle : Y \cap X = \emptyset\}$

- $[\![\text{the N}]\!] = \{X : \text{ for some } u \in U, [\![N]\!] = \{u\} \text{ and } u \in X\}$ $[\![\text{the }]\!] = \{\langle X, Y \rangle : \text{ for some } u \in U, Y = \{u\} \text{ and } u \in X\}$
- $\llbracket \text{most N} \rrbracket = \{X : |X \cap \llbracket N \rrbracket | > |X^- \cap \llbracket N \rrbracket | \}$ $\llbracket \text{most} \rrbracket = \{ < X, Y > : |X \cap Y| > |X^- \cap Y| \}$
- $\llbracket \text{two N} \rrbracket = \{X : |X \cap \llbracket N \rrbracket | \ge 2\} \text{ or } \{X : |X \cap \llbracket N \rrbracket | = 2\}$ $\llbracket \text{two} \rrbracket = \{\langle X, Y \rangle : |X \cap Y| \ge 2\} \text{ or } \{X : |X \cap Y| = 2\}$

Two Generalized Quantifiers in a Sentence?

(2) Every student admires some professor.

 \llbracket

Two Generalized Quantifiers in a Sentence? (cont.)

Syntax of a Fragment of English (F4)

Syntax of F4 is essientially the same as F3, except a few minor differences.

• Addition of more determiners

Det \rightarrow the, a, every, some, no, most, two, ...

• Addition of more syntactic rules

 $NP \rightarrow N CP$ (to handle relative clauses)

 $\mathsf{VP} \to \mathsf{VP} \text{ Conj } \mathsf{VP}$

 $V \to V \text{ Conj } V$

• Rule for Quantifier Raising (QR):

Translating Syntax of F4 to Logical Representation

 Assuming that D is a determiner category, and GQ is a generalized quantifier category:

If α' is in D and β' is in 1-place predicate, $\alpha'(\beta')$ is in GQ.

If α' is in GQ and β' is in 1-place predicate, $\alpha'(\beta')$ is a well-formed formula.

Translating Syntax of F4 to Logical Representation (cont.)

Putting the Logical Representations Together

(3) Jeff praises every student.

Putting the Logical Representations Together (cont.)

(4) No student admires some professor.

Truth-conditional Interpretion of Logical Representations

Assume a model M with domain of universe U, and an arbitrary assignment g.

- 1. (a) If α' is a D and β' is a 1-place predicate, $\llbracket \alpha'(\beta') \rrbracket^{M,g} = \llbracket \alpha' \rrbracket^{M,g}(\llbracket \beta' \rrbracket^{M,g}).$
 - (b) If α' is a GQ and β' is a 1-place predicate, $[\![\alpha'(\beta')]\!]^{M,g} = 1$ iff $[\![\beta']\!]^{M,g} \in [\![\alpha']\!]^{M,g}$.
- 2. For every $X \subseteq U$ and $Y \subseteq U$,
 - (a) $[[\lambda Y \lambda X [every'[Y][X]]]]^{M,g} = \{ < X, Y > : Y \subseteq X \}$
 - (b) $[\lambda Y \lambda X[\text{some}'[Y][X]]]^{M,g} = \{ \langle X, Y \rangle : Y \cap X \neq \emptyset \}$
 - (c) $[\lambda Y \lambda X [no'[Y]]X]^{M,g} = \{ < X, Y > : Y \cap X = \emptyset \}$
 - (d) $[\lambda Y \lambda X [\text{the}'[Y][X]]]^{M,g} = \{ \langle X, Y \rangle : \exists u \in U, Y = \{u\} \text{ and } u \in X \}$
 - (e) $[\lambda Y \lambda X [most'[Y][X]]]^{M,g} = \{ \langle X, Y \rangle : |X \cap Y| > |X^- \cap Y| \}$
 - (f) $[[\lambda Y \lambda X [two'[Y][X]]]]^{M,g} = \{ < X, Y > : |X \cap Y| \ge 2 \}$ or $\{X : |X \cap Y| = 2 \}$
- 3. (a) $[[\lambda x[\phi']]]^{M,g} = \{d \in U : [[\phi']]^{M,g[d/x]} = 1\}$ (b) $[[\lambda y \lambda x[\phi']]]^{M,g} = \{\langle d_1, d_2 \rangle : [[\phi']]^{M,g[[d_2/y]d_1/x]]} = 1\}$

Interpreting Logical Representations Compositionally

Interpreting Logical Representations Compositionally (cont.)

(6) No student admires some professor.

Interpreting Logical Representations Compositionally (cont.)

$$\begin{aligned} & \text{1 iff } \{x:x \text{ professor }\} \cap \{x_1: \{x:x \text{ student }\} \cap \{x_2:x_2 \text{ admires } x_1\} = \emptyset\} \neq \emptyset \\ & \text{1 iff } \{x_1: \{x:x \text{ student }\} \cap \{x_2:x_2 \text{ admires } x_1\} = \emptyset\} \in \{X: \{x:x \text{ professor }\} \cap X \neq \emptyset\} \\ & \{x: \{x:x \text{ professor }\} \cap X \neq \emptyset\} \\ & \{x_1: \{x:x \text{ student }\} \cap \{x_2:x_2 \text{ admires } x_1\} = \emptyset\} \\ & \text{1 iff } \{x:x \text{ student }\} \cap \{x_2:x_2 \text{ admires } g(x_1)\} = \emptyset \\ & \{(X,Y):Y \cap X \neq \emptyset\} \mid \{x:x \text{ professor }\} \\ & \text{1 iff } \{x:x \text{ student }\} \cap \{x = \emptyset\} \\ & \{x: \{x:x \text{ student }\} \cap X = \emptyset\} \\ & \{X: \{x:x \text{ student }\} \cap X = \emptyset\} \\ & \{x:x \text{ student }\} \cap X = \emptyset\} \\ & \{x:x \text{ student }\} \cap X = \emptyset\} \\ & \text{1 iff } g(x_2) \in \{x:x \text{ admires } g(x_1)\} \\ & \text{1 iff } g(x_2) \in \{x:x \text{ admires } g(x_1)\} \end{aligned}$$