Denotation of Predicates

- Assume a world w_5 , where $D = \{Ann, Betty, Connor\}$, Betty and Connor are smokers, but Ann isn't.
- Set notation

 $\llbracket \mathsf{smoke} \rrbracket^{w_5} = \{\mathsf{Betty}, \mathsf{Connor}\} = \{x : x \mathsf{smokes in } w_5\}$

• Functional notation

$$\llbracket \mathsf{smoke} \rrbracket^{w_5} = \left[\begin{array}{c} \mathsf{Ann} \to \mathsf{0} \\ \mathsf{Betty} \to \mathsf{1} \\ \mathsf{Connor} \to \mathsf{1} \end{array} \right]$$

"the function f from individuals to truth values such that for all $d \in D$, f(d) = 1 iff d smokes in w_5 "

Function Application

• Definition

A semantic rule for interpreting a syntactic structure with two branches: one branch is interpreted as a function, and the other branch is interpreted as an argument of the function.

 $\begin{bmatrix} A \\ B \\ C \end{bmatrix}^{w} = \llbracket B \rrbracket^{w} (\llbracket C \rrbracket^{w})$

• Compositional interpretation of *Betty smokes* in w_5 ?

Syntax (LF)	Interpretation	Interpretation	
TP NP VP N V Potty ometree	b $\begin{bmatrix} Ann \rightarrow 0 \\ Betty \rightarrow 1 \end{bmatrix}$	1 iff b smokes in w_5 b the function <i>f</i> from individuals to truth values s.t. for all	
Betty smokes	$\begin{bmatrix} \text{Dony} & 1 \\ \text{Connor} \rightarrow 1 \end{bmatrix}$	$d \in D$, $f(d) = 1$ iff d smokes in w_5	

Syntax of λ -operator

- If ϕ is a well-formed formula and x a variable, $\lambda x[\phi]$ is a one-place predicate.
- Expressions like $\lambda x[\phi]$ are called ' λ -abstracts' or ' λ -expressions.'
- How to read λ -expressions (informally)

 $\lambda x[\phi]$: "the property of being an x such that ϕ "

 λx [smoke(x)]: "the property of being an x such that x smokes"

 $\lambda y[\text{snore}(y)]$: "the property of being a *y* such that *y* smokes"

 $\lambda x[\exists y[\mathsf{love}(y, x)]]$: "the property of being an x s.t. for some y, y loves x"

 $\lambda y[\exists x[\mathsf{love}(y, x)]]$: "the property of being a *y* s.t. for some *x*, *y* loves *x*"

 In λx[φ], x is a variable bound by λ, and φ is the scope of that occurrence of the λ-operator.

$$\lambda x [\mathsf{smoke}(x)]$$

$$\lambda x \quad \mathsf{smoke}(x)$$

λ -conversion

- We obtain a well-formed formula by applying a λ-expression to a term.
 λx[smoke(x)](j) = "J has the property of being x s.t. x smokes" = smoke(j)
 λy[∃x[love(y, x)]](m) = "M has the property of being y s.t. for some x, y
 loves x" = ∃x[love(m, x)]
- λ -conversion: $\lambda x[\phi](t) \leftrightarrow \phi[t/x]$
- Watch out! When applying λ -conversion, we must make sure that there is no variable clash.

 $\lambda y[\exists x[\mathsf{love}(y,x)]](x) \neq \exists x[\mathsf{love}(x,x)]$

 $\lambda y[\exists x[love(y, x)]](x) = "g(x)$ has the property of being y s.t. for some x, y loves x" = "He loves someone"

 $\exists x [love(x, x)] =$ "for some x, x loves x" = "Someone loves himself"

So, choose your variables carefully.

 $\lambda y[\exists x[\mathsf{love}(y,x)]](z) = \exists x[\mathsf{love}(z,x)]$

Exercise in λ **-conversion**

Exercise 1 in p. 394 from Meaning and Grammar.

- 1. $\lambda x[\exists z[\lambda y[K(x,y)](z) \land R(z,x)]](j)$
- 2. $\lambda y[\lambda x[K(x,y)](j)](m)$
- **3.** $\lambda z[\lambda x[[K(x,z) \land R(x,z)] \lor R(z,x)](j)](m)$
- 4. $\exists y [\lambda z [\lambda x [B(x) \rightarrow \exists w [R(x, w)]](j) \land \lambda x [B(x) \land Q(x)](z)](y)]$

Semantics of λ -operator

- $\llbracket \lambda x[\phi] \rrbracket^{w,g}$
 - = a function f from individuals to truth values such that for all $d \in D$, f(d) = 1 iff $\llbracket \phi \rrbracket^{w,g[d/x]} = 1$
 - $= \{ d \in D : [\![\phi]\!]^{w,g[d/x]} = 1 \}$
- $\llbracket \lambda x [\operatorname{smoke}(x)] \rrbracket^{w,g}$
 - = a function f from individuals to truth values such that for all $d \in D$, f(d) = 1 iff $[[smoke(x)]]^{w,g[d/x]} = 1$

=
$$\{d \in D : [[smoke(x)]]^{w,g[d/x]} = 1\}$$

Mapping Syntax to Logical Representation Compositionally

 With the introduction of λ-operator to IPC, we can map syntactic structures to IPC logical representations compositionally, which then can receive truth-conditional interpretation using model-theoretic/possible-worlds semantics.

Syntax (LF)	Logical Representation	Truth Conditional Interpretation w.r.t.		
		an arbitrary w		
TP		1 iff B smokes in w		
NP VP N V Betty smokes	$\lambda x [smoke'(x)](b)$ = smoke'(b) b $\lambda x [smoke'(x)]$	B the function f from individuals to truth values s.t. for all $d \in D, f(d) = 1$ iff d smokes in w		

Syntax of a Fragment of English (F3) Again

- 1. (a) TP \rightarrow NP T'
 - (b) $T' \rightarrow T VP$
 - (c) TP \rightarrow TP conj TP
 - (d) TP \rightarrow neg TP
 - (e) $T \rightarrow Past$, Pres, Fut
 - (f) $VP \rightarrow V_t NP$
 - (g) $VP \rightarrow V_i$
 - (h) $VP \rightarrow V_{dt} NP PP[to]$
 - (i) NP \rightarrow Det N_c
 - (j) $NP \rightarrow N_p$ (s) $Neg \rightarrow not$

- (k) $PP[to] \rightarrow to NP$
- (I) Det \rightarrow the, a, every
- (m) $N_p \rightarrow$ Frodo, Smeagol, Deagol, Sam, Aragorn, ... he_1 , ..., he_n , ...
- (n) $N_c \rightarrow book$, fish, man, hobbit, ...
- (o) $V_i \rightarrow$ be intelligent, be hungry, smoke, ...
- (p) $V_t \rightarrow$ destroy, kill, read, ...
- (q) $V_{dt} \rightarrow$ give, introduce, ...
 - (r) Conj \rightarrow and, or
- 2. Rule for Quantifier Raising (QR) $[_{TP} X NP Y] \Rightarrow [_{TP} NP_i [_{TP} X t_i Y]]$
- 3. Rule for Tense/Modal/Neg Raising (TR) $[_{TP} \text{ NP X VP}] \Rightarrow [_{TP} \text{ X } [_{TP} \text{ NP VP}]], \text{ where X = T or Neg}$

IPC Translation of F3

- 1. For any word or phrase α of F3, α' is its IPC translation.
- 2. Given a lexical item α ,

F ₃ category	IPC type	IPC translation	Examples
N_p	constants	α'	$Sam \Rightarrow Sam'$
	variables	x_n	$he_1 \Rightarrow x_1$
V_i	1-place predicate	$\lambda x[\alpha'(x)]$	$smoke \Rightarrow \lambda x[smoke'(x)]$
N _c	1-place predicate	$\lambda x[\alpha'(x)]$	$\operatorname{song} \Rightarrow \lambda x[\operatorname{song}'(x)]$
V_t	2-place predicate	??	$like \Rightarrow ??$

3. not' = \neg and' = \land or' = \lor Fut' = **F** Past' = **P** $t_n = x_n$, where t_n is a trace or a pronoun

Translating a Transitive Verb to a λ -expression

Exercise in Translating English to Logical Representation

- 1. Frodo respects Gandalf.
- 2. Bilbo must not kill Gollum.
- 3. Gandalf likes every hobbit.
- 4. Every hobbit knows a song.