
Denotation of Predicates

• Assume a world w, where D = {Ann, Betty, Connor}, Betty and Connor are
smokers, but Ann isn’t.

• Set notation

[[smoke]]w = {Betty, Connor} = {x : x smokes in w}

• Functional notation

[[smoke]]w =

Ann → 0
Betty → 1
Connor → 1

“the function f from individuals to truth values such that for all d ∈ D, f(d) =
1 iff d smokes in w”

2

Function Application

• Definition

A semantic rule for interpreting a syntactic structure with two branches: one
branch is interpreted as a function, and the other branch is interpreted as an
argument of the function.

[[A

B C

]]w = [[B]]w([[C]]w)

• Compositional interpretation of Betty smokes in w?

Syntax (LF) Interpretation Interpretation
TP

NP

N

Betty

VP

V

smokes

1

b

Ann → 0
Betty → 1
Connor → 1

1 iff b smokes in w5

b the function f from individuals
to truth values s.t. for all

d ∈ D, f(d) = 1 iff d smokes in w5

3

Syntax of λ-operator

• If φ is a well-formed formula and x a variable, λx[φ] is a one-place predicate.

• Expressions like λx[φ] are called ‘λ-abstracts’ or ‘λ-expressions.’

• How to read λ-expressions (informally)

λx[φ]: “the property of being an x such that φ”

λx[smoke(x)]: “the property of being an x such that x smokes”

λy[snore(y)]: “the property of being a y such that y smokes”

λx[∃y[love(y, x)]]: “the property of being an x s.t. for some y, y loves x”

λy[∃x[love(y, x)]]: “the property of being a y s.t. for some x, y loves x”

• In λx[φ], x is a variable bound by λ, and φ is the scope of that occurrence of
the λ-operator.

λx[smoke(x)]

λx smoke(x)

4

λ-conversion

• We obtain a well-formed formula by applying a λ-expression to a term.

λx[smoke(x)](j) = “J has the property of being x s.t. x smokes” = smoke(j)

λy[∃x[love(y, x)]](m) = “M has the property of being y s.t. for some x, y

loves x” = ∃x[love(m, x)]

• λ-conversion: λx[φ](t) ↔ φ[t/x]

• Watch out! When applying λ-conversion, we must make sure that there is no
variable clash.

λy[∃x[love(y, x)]](x) �= ∃x[love(x, x)]

λy[∃x[love(y, x)]](x) = “g(x) has the property of being y s.t. for some x, y

loves x” = “He loves someone”

∃x[love(x, x)] = “for some x, x loves x” = “Someone loves himself”

So, choose your variables carefully.

λy[∃x[love(y, x)]](z) = ∃x[love(z, x)]

5

Exercise in λ-conversion

Exercise 1 in p. 394 from Meaning and Grammar.

1. λx[∃z[λy[K(x, y)](z) ∧ R(z, x)]](j)

2. λy[λx[K(x, y)](j)](m)

3. λz[λx[[K(x, z) ∧ R(x, z)] ∨ R(z, x)](j)](m)

4. ∃y[λz[λx[B(x) → ∃w[R(x, w)]](j) ∧ λx[B(x) ∧ Q(x)](z)](y)]

6

Semantics of λ-operator

• [[λx[φ]]]w,g

= a function f from individuals to truth values such that for all d ∈ D,
f(d) = 1 iff [[φ]]w,g[d/x] = 1

= {d ∈ D : [[φ]]w,g[d/x] = 1}

• [[λx[smoke(x)]]]w,g

= a function f from individuals to truth values such that for all d ∈ D,
f(d) = 1 iff [[smoke(x)]]w,g[d/x] = 1

= {d ∈ D : [[smoke(x)]]w,g[d/x] = 1}

7

Mapping Syntax to Logical Representation Compositionally

• With the introduction of λ-operator to IPC, we can map syntactic structures to
IPC logical representations compositionally, which then can receive
truth-conditional interpretation using model-theoretic/possible-worlds
semantics.

Syntax (LF) Logical Representation Truth Conditional Interpretation w.r.t.
an arbitrary w

TP

NP

N

Betty

VP

V

smokes

λx[smoke′(x)](b)
= smoke′(b)

b λx[smoke′(x)]

1 iff B smokes in w

B the function f from individuals
to truth values s.t. for all

d ∈ D, f(d) = 1 iff d smokes in w

8

Syntax of a Fragment of English (F3) Again

1. (a) TP → NP T′

(b) T′ → T VP

(c) TP → TP conj TP

(d) TP → neg TP

(e) T → Past, Pres, Fut

(f) VP → Vt NP

(g) VP → Vi

(h) VP → Vdt NP PP[to]

(i) NP → Det Nc

(j) NP → Np

(k) PP[to] → to NP

(l) Det → the, a, every

(m) Np → Frodo, Smeagol, Deagol, Sam,
Aragorn, ... he1, ..., hen, ...

(n) Nc → book, fish, man, hobbit, ...

(o) Vi → be intelligent, be hungry, smoke, ...

(p) Vt → destroy, kill, read, ...

(q) Vdt → give, introduce, ...

(r) Conj → and, or

(s) Neg → not

2. Rule for Quantifier Raising (QR)
[TP X NP Y] ⇒ [TP NPi [TP X ti Y]]

3. Rule for Tense/Modal/Neg Raising (TR)
[TP NP X VP] ⇒ [TP X [TP NP VP]], where X = T or Neg

9

IPC Translation of F3

1. For any word or phrase α of F3, α′ is its IPC translation.

2. Given a lexical item α,

F3 category IPC type IPC translation Examples
Np constants α′ Sam ⇒ Sam′

variables xn he1 ⇒ x

Vi 1-place predicate λx[α′(x)] smoke ⇒ λx[smoke′(x)]
Nc 1-place predicate λx[α′(x)] song ⇒ λx[song′(x)]
Vt 2-place predicate ?? like ⇒ ??

3. not′ = ¬
and′ = ∧
or′ = ∨
Fut′ = F
Past′ = P
tn = xn, where tn is a trace or a pronoun

10

4. [A

B

]′ = B′ [NP

N

Sam

]′ = Sam′

5. [TP

NP T̄

]′ = T̄′(NP′) [TP

NP

Sam

T̄

smokes

] = smoke′(Sam′)

6. [TP

TP1 Conj TP2

]′ = TP1′ Conj′ TP2′

[TP

TP1

Sam smokes

Conj

and

TP2

Pippin drinks

]′ = smoke′(Sam′) ∧ drink′(Pippin′)

7. [VP

V

]′ = λx[V′(x)] [VP

V

smokes

]′ = λx[smoke′(x)]

8. [VP

V NP

]′ = λx[V′(x, NP′)] [VP

V

pities

NP

Smeagol

]′ = λx[pity′(x, Smeagol′)]

9. [TP

X TP

]′ = X′ TP′ [TP

Neg

not

TP

Sam smoke

]′ = ¬smoke′(Sam′)

10. (i) [TP

NPi

every β

TP

]′ = ∀xi[β
′(xi) → TP′]

[TP

NPi

every dog

TP

ti barks

]′ = ∀xi[dog′(xi) → bark′(xi)]

(ii) [TP

NPi

a β

TP

]′ = ∃xi[β
′(xi) ∧ TP′]

[TP

NPi

a dog

TP

ti barks

]′ = ∃xi[dog′(xi) ∧ bark′(xi)]

(iii) [TP

NPi

the β

TP

]′ = ∃xi[β
′(xi) ∧ ∀y[β′(y) → xi = y] ∧ TP′]

[TP

NP1

the dog

TP

t1 barks

]′ = ∃x[dog′(x)∧ ∀y[dog′(y) → x = y]∧ bark′(x)]

Translating a Transitive Verb to a λ-expression

TP

NP

N

Betty

VP

V

likes

NP

N

Connor

⇒ λx[like′(x, Connor′)](Betty′)
= like′(Betty′, Connor′)

Betty′ λx[like′(x, Connor′)]

λ Connor′

11

Exercise in Translating English to Logical Representation

1. Frodo respects Gandalf.

2. Bilbo must not kill Gollum.

3. Gandalf likes every hobbit.

4. Every hobbit knows a song.

12

