## Denotation of Predicates

- Assume a world $w_{5}$, where $D=\{$ Ann, Betty, Connor $\}$, Betty and Connor are smokers, but Ann isn't.
- Set notation
$\llbracket$ smoke $\rrbracket^{w_{5}}=\{$ Betty, Connor $\}=\left\{x: x\right.$ smokes in $\left.w_{5}\right\}$
- Functional notation
$\llbracket$ smoke $\rrbracket^{w_{5}}=\left[\begin{array}{l}\text { Ann } \rightarrow 0 \\ \text { Betty } \rightarrow 1 \\ \text { Connor } \rightarrow 1\end{array}\right]$
"the function $f$ from individuals to truth values such that for all $d \in D, f(d)=$ 1 iff $d$ smokes in $w_{5}$ "


## Function Application

- Definition

A semantic rule for interpreting a syntactic structure with two branches: one branch is interpreted as a function, and the other branch is interpreted as an argument of the function.
$\llbracket \quad \mathrm{A} \quad \rrbracket^{w}=\llbracket B \rrbracket^{w}\left(\llbracket C \rrbracket^{w}\right)$
B C

- Compositional interpretation of Betty smokes in $w_{5}$ ?

| Syntax (LF) | Interpretation | Interpretation |
| :---: | :---: | :---: |
|  |  | 1 iff b smokes in $w_{5}$ <br> b the function $f$ from individuals to truth values s.t. for all $d \in D, f(d)=1$ iff $d$ smokes in $w_{5}$ |

## Syntax of $\lambda$-operator

- If $\phi$ is a well-formed formula and $x$ a variable, $\lambda x[\phi]$ is a one-place predicate.
- Expressions like $\lambda x[\phi]$ are called ' $\lambda$-abstracts' or ' $\lambda$-expressions.'
- How to read $\lambda$-expressions (informally)
$\lambda x[\phi]$ : "the property of being an $x$ such that $\phi$ "
$\lambda x[$ smoke $(x)$ ]: "the property of being an $x$ such that $x$ smokes"
$\lambda y[$ snore $(y)]:$ "the property of being a $y$ such that $y$ smokes"
$\lambda x[\exists y[\operatorname{love}(y, x)]]:$ "the property of being an $x$ s.t. for some $y, y$ loves $x$ "
$\lambda y[\exists x[\operatorname{love}(y, x)]]$ : "the property of being a $y$ s.t. for some $x, y$ loves $x$ "
- In $\lambda x[\phi], x$ is a variable bound by $\lambda$, and $\phi$ is the scope of that occurrence of the $\lambda$-operator.

$$
\begin{aligned}
& \lambda x[\operatorname{smoke}(x)] \\
& \lambda x \operatorname{smoke}(x)
\end{aligned}
$$

## $\lambda$-conversion

- We obtain a well-formed formula by applying a $\lambda$-expression to a term.
$\lambda x[\operatorname{smoke}(x)](\mathrm{j})=$ "J has the property of being $x$ s.t. $x$ smokes" $=$ smoke $(\mathrm{j})$
$\lambda y[\exists x[\operatorname{love}(y, x)]](\mathrm{m})=$ " M has the property of being $y$ s.t. for some $x, y$ loves $x "=\exists x[\operatorname{love}(\mathrm{~m}, x)]$
- $\lambda$-conversion: $\lambda x[\phi](t) \leftrightarrow \phi[t / x]$
- Watch out! When applying $\lambda$-conversion, we must make sure that there is no variable clash.
$\lambda y[\exists x[\operatorname{love}(y, x)]](x) \neq \exists x[\operatorname{love}(x, x)]$
$\lambda y[\exists x[\operatorname{love}(y, x)]](x)=" g(x)$ has the property of being $y$ s.t. for some $x, y$ loves $x$ " = "He loves someone"
$\exists x[\operatorname{love}(x, x)]=$ "for some $\mathrm{x}, \mathrm{x}$ loves $\mathrm{x} "=$ "Someone loves himself"
So, choose your variables carefully.

$$
\lambda y[\exists x[\operatorname{love}(y, x)]](z)=\exists x[\operatorname{love}(z, x)]
$$

## Exercise in $\lambda$-conversion

Exercise 1 in p. 394 from Meaning and Grammar.

1. $\lambda x[\exists z[\lambda y[K(x, y)](z) \wedge R(z, x)]](j)$
2. $\lambda y[\lambda x[K(x, y)](j)](m)$
3. $\lambda z[\lambda x[[K(x, z) \wedge R(x, z)] \vee R(z, x)](j)](m)$
4. $\exists y[\lambda z[\lambda x[B(x) \rightarrow \exists w[R(x, w)]](j) \wedge \lambda x[B(x) \wedge Q(x)](z)](y)]$

## Semantics of $\lambda$-operator

- $\llbracket \lambda x[\phi] \rrbracket^{w, g}$
$=$ a function $f$ from individuals to truth values such that for all $d \in D$, $f(d)=1$ iff $\llbracket \phi \rrbracket^{w, g[d / x]}=1$
$=\left\{d \in D: \llbracket \phi \rrbracket^{w, g[d / x]}=1\right\}$
- $\llbracket \lambda x[\operatorname{smoke}(x)] \rrbracket^{w, g}$
$=$ a function $f$ from individuals to truth values such that for all $d \in D$, $f(d)=1$ iff $\llbracket \operatorname{smoke}(x) \rrbracket^{w, g[d / x]}=1$
$=\left\{d \in D: \llbracket \operatorname{smoke}(x) \rrbracket^{w, g[d / x]}=1\right\}$


## Mapping Syntax to Logical Representation Compositionally

- With the introduction of $\lambda$-operator to IPC, we can map syntactic structures to IPC logical representations compositionally, which then can receive truth-conditional interpretation using model-theoretic/possible-worlds semantics.

| Syntax (LF) | Logical Representation | Truth Conditional Interpretation w.r.t. an arbitrary $w$ |
| :---: | :---: | :---: |
|  | $\begin{aligned} & \lambda x\left[\operatorname{smoke}^{\prime}(x)\right](\mathrm{b}) \\ & =\operatorname{smoke}^{\prime}(\mathrm{b}) \\ & \text { b } \lambda x\left[\operatorname{smoke}^{\prime}(x)\right] \end{aligned}$ | 1 iff B smokes in $w$ <br> B the function $f$ from individuals to truth values s.t. for all $d \in D, f(d)=1$ iff $d$ smokes in $w$ |

## Syntax of a Fragment of English (F3) Again

1. (a) TP $\rightarrow \mathrm{NP} \mathrm{T}^{\prime}$
(b) $\mathrm{T}^{\prime} \rightarrow \mathrm{TVP}$
(c) $\mathrm{TP} \rightarrow$ TP conj TP
(d) TP $\rightarrow$ neg TP
(e) $\mathrm{T} \rightarrow$ Past, Pres, Fut
(f) $\mathrm{VP} \rightarrow \mathrm{V}_{t} \mathrm{NP}$
(g) $\mathrm{VP} \rightarrow \mathrm{V}_{i}$
(h) $\mathrm{VP} \rightarrow \mathrm{V}_{d t} \mathrm{NP}$ PP[to]
(i) $\mathrm{NP} \rightarrow \operatorname{Det} \mathrm{N}_{c}$
(j) $\mathrm{NP} \rightarrow \mathrm{N}_{p}$
(k) PP[to] $\rightarrow$ to NP
(I) Det $\rightarrow$ the, a, every
$(\mathrm{m}) \mathrm{N}_{p} \rightarrow$ Frodo, Smeagol, Deagol, Sam, Aragorn,.. he $_{1}, \ldots$, he $_{n}, \ldots$
(n) $\mathrm{N}_{c} \rightarrow$ book, fish, man, hobbit, $\ldots$
(o) $\mathrm{V}_{i} \rightarrow$ be intelligent, be hungry, smoke, ...
(p) $\mathrm{V}_{t} \rightarrow$ destroy, kill, read, $\ldots$
(q) $\mathrm{V}_{d t} \rightarrow$ give, introduce, ...
(r) Conj $\rightarrow$ and, or
(s) $\mathrm{Neg} \rightarrow$ not
2. Rule for Quantifier Raising (QR)
$\left.\left[{ }_{T P} \mathrm{XNP} \mathrm{Y}\right] \Rightarrow\left[{ }_{T P} \mathrm{NP}_{i}{ }_{[T P} \mathrm{X} \mathrm{t}_{i} \mathrm{Y}\right]\right]$
3. Rule for Tense/Modal/Neg Raising (TR)
$[T P$ NP X VP] $\Rightarrow[T P$ X [TP NP VP]], where $\mathrm{X}=\mathrm{T}$ or Neg

## IPC Translation of F3

1. For any word or phrase $\alpha$ of F3, $\alpha^{\prime}$ is its IPC translation.
2. Given a lexical item $\alpha$,

| $\mathrm{F}_{3}$ category | IPC type | IPC translation | Examples |
| :--- | :--- | :--- | :--- |
| $\mathrm{N}_{p}$ | constants <br> variables | $\alpha^{\prime}$ <br> $x_{n}$ | Sam $\Rightarrow \operatorname{Sam}^{\prime}$ <br> he $_{1} \Rightarrow x_{1}$ |
| $\mathrm{~V}_{i}$ | 1-place predicate | $\lambda x\left[\alpha^{\prime}(x)\right]$ | smoke $\Rightarrow \lambda x\left[\operatorname{smoke}^{\prime}(x)\right]$ |
| $\mathrm{N}_{c}$ | 1-place predicate | $\lambda x\left[\alpha^{\prime}(x)\right]$ | song $\Rightarrow \lambda x\left[\operatorname{song}^{\prime}(x)\right]$ |
| $\mathrm{V}_{t}$ | 2-place predicate | ?? | like $\Rightarrow$ ?? |

3. not $^{\prime}=\neg$
and $^{\prime}=\wedge$
or' $=\vee$
Fut' $=\mathbf{F}$
Past ${ }^{\prime}=\mathbf{P}$
$\mathrm{t}_{n}=x_{n}$, where $\mathrm{t}_{n}$ is a trace or a pronoun

4. [

5. [

$$
]^{\prime}=\text { TP1' Conj' TP2' }
$$

TP1 Conj TP2


8. [ VP$]^{\prime}=\lambda x\left[\mathrm{~V}^{\prime}\left(x, \mathrm{NP}^{\prime}\right)\right]$ pities $\left.]_{\text {Smeagol }}^{\mathrm{VP}}\right]^{\prime}=\lambda x\left[\mathrm{pity}^{\prime}\left(x\right.\right.$, Smeagol $\left.\left.^{\prime}\right)\right]$
9. $\left[\begin{array}{ll}\mathrm{TP} & ]^{\prime}=X^{\prime} \mathrm{TP}^{\prime}\end{array}\right.$ $\widehat{T P}$

10. (i)

(ii) $[\overbrace{\widehat{\mathrm{a} \mathrm{\beta}}}^{\mathrm{NP}} \mathrm{TP} \quad]^{\prime}=\exists x_{i}\left[\beta^{\prime}\left(x_{i}\right) \wedge \mathrm{TP}^{\prime}\right]$

(iii) $\quad$ TP
$]^{\prime}=\exists x_{i}\left[\beta^{\prime}\left(x_{i}\right) \wedge \forall y\left[\beta^{\prime}(y) \rightarrow x_{i}=y\right] \wedge T P^{\prime}\right]$
$\mathrm{NP}_{i} \mathrm{TP}$
$\widehat{\text { the } \beta}$


Translating a Transitive Verb to a $\lambda$-expression


## Exercise in Translating English to Logical Representation

1. Frodo respects Gandalf.
2. Bilbo must not kill Gollum.
3. Gandalf likes every hobbit.
4. Every hobbit knows a song.
