Denotation of Predicates

e Assume a world ws, where D = {Ann, Betty, Connor}, Betty and Connor are
smokers, but Ann isn't.

e Set notation

[smoke]|¥Ws = {Betty, Connor} = {z : x smokes in w
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e Functional notation

[ Ann — O
[smoke]]%“s = | Betty — 1
] Connor — 1 |

“the function f from individuals to truth values such that for all d € D, f(d) =
1 iff d smokes in wg”



Function Application

e Definition

A semantic rule for interpreting a syntactic structure with two branches: one
branch is interpreted as a function, and the other branch is interpreted as an
argument of the function.

I A 1" =IB1*cn™)

B C

e Compositional interpretation of Betty smokes in wg?

Syntax (LF) | Interpretation Interpretation
TP 1 iff b smokes in wsg

Py 1 /\

NP VP /\

N Vv b [Amn-—0 1P thetfupcttirc])n fl’ from itn(;lividﬁals

Betty — 1 o truth values s.t. for a

B k : .

elly  smokes Connor — 1 d € D, f(d) = 1iff d smokes in ws




Syntax of A-operator

e If ¢ is a well-formed formula and x a variable, Az [¢] is a one-place predicate.
e Expressions like Ax[¢] are called ‘\-abstracts’ or ‘\-expressions.’

e How to read A-expressions (informally)
Az [o]: “the property of being an x such that ¢”
Az [smoke(x)]: “the property of being an x such that x smokes”
Ay[shore(y)]: “the property of being a y such that y smokes”

Az [Jy[love(y, x)]]: “the property of being an x s.t. for some vy, y loves x”

Ay[Jz[love(y, x)]]: “the property of being a y s.t. for some z, y loves z”

e In \x[¢], x is a variable bound by X, and ¢ is the scope of that occurrence of
the \-operator.

Az [smoke(x)]

Axr  smoke(x)



A-conversion

e We obtain a well-formed formula by applying a A-expression to a term.
Az[smoke(x)](j) = “J has the property of being z s.t. x smokes” = smoke())

Ay[Jz[love(y, z)]](m) = “M has the property of being y s.t. for some z, y
loves z” = Jz[love(m, z)]

e \-conversion: \x[¢](t) < ¢[t/x]

e Watch out! When applying A-conversion, we must make sure that there is no
variable clash.

Ay[Iz[love(y, x)]](x) #= Jx[love(x, x)]

Ay[3z[love(y, x)]](x) = “g(x) has the property of being y s.t. for some z, y

loves 2" = “He loves someone”

Jx[love(x, x)] = “for some x, x loves x” = “Someone loves himself”

So, choose your variables carefully.

Ay[Iz[love(y, x)]](z) = Jx[love(z, x)]




Exercise In A\-conversion

Exercise 1 in p. 394 from Meaning and Grammar.

1 Az[3z[Ay[K (=, y)](2) A R(z,2)]](5)

2. Ay[Az[K(z,y)](5)](m)

3. Xz[Az[[K(x,2) AN R(x,2)] vV R(z,x2)](5)](m)

4. Jy[Az[Az[B(z) — Jw[R(z, w)]](7) A Az[B(z) A Q)] (2)](y)]



Semantics of A-operator

o [Axz[p]]*"9

= a function f from individuals to truth values such that for all d € D,
£(d) = 1 iff [e]w9ld/z] = 1

={deD: [p]w9ld/2] = 1}

o [Ax[smoke(x)]]¥-9

= a function f from individuals to truth values such that for all d € D,
£(d) = 1 iff [smoke(x)]w9ld/z] = 1

= {d € D : [[smoke(z)]w-9ld/=] = 1}



Mapping Syntax to Logical Representation Compositionally

e With the introduction of A-operator to IPC, we can map syntactic structures to
IPC logical representations compositionally, which then can receive
truth-conditional interpretation using model-theoretic/possible-worlds

semantics.

Syntax (LF)

Logical Representation

Truth Conditional Interpretation w.r.t.
an arbitrary w

TP

A
NP VP

| |
N Vv
| |

Betty smokes

Az [smoke’(2)](b)
= smoke’(b)

b Az[smoke'(z)]

1 iff B smokes in w

T

B  the function f from individuals
to truth values s.t. for all
de D, f(d) =1iff d smokes in w




Syntax of a Fragment of English (F3) Again

l@TP—-NPT (k) PP[to] — to NP
(b) " —TVP () Det — the, a, every
(c) TP — TP conj TP (m) N, — Frodo, Smeagol, Deagol, Sam,
(d) TP — neg TP Aragorn, ... heq, ..., hep, ...
(e) T — Past, Pres, Fut (n) N. — book, fish, man, hobbit, ...
(f) VP — V¢ NP (0) V; — be intelligent, be hungry, smoke, ...
(9) VP —V; (p) V+ — destroy, kill, read, ...
(hy VP — V4 NP PP[to]  (Q) Vg — give, introduce, ...
(i) NP — Det N, (r) Conj — and, or
(i) NP — Ny (s) Neg — not

2. Rule for Quantifier Raising (QR)
[rp XNP Y] = [rp NP; [7p X1; Y]]

3. Rule for Tense/Modal/Neg Raising (TR)
[7p NP XVP] = [rp X [7p NP VP]], where X =T or Neg



IPC Translation of F3

1. For any word or phrase « of F3, o/ is its IPC translation.

2. Given a lexical item «,

F3 category | IPC type IPC translation | Examples
N, constants o Sam = Sam’
variables Tn hey = x;
V; 1-place predicate | Az[a/(z)] smoke = Az[smoke’(z)]
Nc 1-place predicate | Az[a/(z)] song = Az[song’(x)]
V¢ 2-place predicate | ?7? like = ?7?
3. not’ = —
and’ = A
or =V
Fut = F
Past' = P

tn, = xn, where t,, IS a trace or a pronoun

10




4.

5. [

6. [

A

TP

NP T

TP

]/ — B/ [ NP ]/ = Sam/
N
|
Sam
I’ = T/(NP) [ TP ] = smoke’(Sam’)
NP T

I

TP1 Conj

TP1

Sam smokes

TP2
TP

Conj

and

Sam smokes

] = TP1’ Conj’ TP2’

' = smoke’(Sam’) A drink’(Pippin’)

TP2

Pippin drinks



7.0 VP Y =xz[V(2)] [ VP I' = Az [smoke’ ()]

| |
Vv Vv

smokes

8. [ VP 71=Xz[V(x,NP)] [ VP ' = Mz[pity’ (z, Smeagol’)]

N
V NP V NP
|
pites Smeagol
o[ TP I'=X"TP’ [ TP ' = =smoke’(Sam’)
T A
X TP Neg TP

not Sam smoke




10. (i) [ TP | = V[ (z;) — TP']

/\
NP, TP

every 3

[ TP | = Va;[dog’ (z;) — bark/(z;)]

T

NP; TP

every dog t; barks

(n [ TP I'=32[8 (z;) ATP']

[ TP | = 3z;[dog’ (z;) A bark'(z;)]

T

NP; TP

adog t; barks



(iif) [ TP I =326 () AVY[B'(y) — x; = y] ATP']
/\
NP, TP

T~

the 3

[ TP ] = 3z, [dog’(z1) A Vy[dog'(y) — z1 = y] A bark'(z,)]

T

NP4 TP

the dog tq barks



Translating a Transitive Verb to a A-expression

TP —  Az[like’(x, Connor’)](Betty’)
T = like’(Betty’, Connor’)
NP VP
| N
N v NP Betty’ Az [like’ (z, Connor’)]

| | |
Betty likes N
| A Connor’
Connor
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Exercise in Translating English to Logical Representation

1. Frodo respects Gandalf.

2. Bilbo must not kill Gollum.

3. Gandalf likes every hobbit.

4. Every hobbit knows a song.

12





