Lambda (λ) Abstraction

Ling 406/802; Spring 2005

Meaning and Grammar, Ch 7.1 - 7.2

Denotation of Predicates

• Assume a world w_5 , where $D = \{Ann, Betty, Connor\}$, Betty and Connor are smokers, but Ann isn't.

Set notation

$$[\![\mathsf{smoke}]\!]^{w_5} = \{\mathsf{Betty},\,\mathsf{Connor}\} = \{x \ : \ x \;\mathsf{smokes}\;\mathsf{in}\;w_5\}$$

Functional notation

$$\llbracket \mathsf{smoke}
rbracket^w_5 = \left[egin{array}{c} \mathsf{Ann}
ightarrow 0 \ \mathsf{Betty}
ightarrow 1 \ \mathsf{Connor}
ightarrow 1 \end{array}
ight]$$

"the function f from individuals to truth values such that for all $d \in D$, f(d) = 1 iff d smokes in w_5 "

Function Application

Definition

A semantic rule for interpreting a syntactic structure with two branches: one branch is interpreted as a function, and the other branch is interpreted as an argument of the function.

$$\begin{bmatrix} A & \end{bmatrix}^w = \begin{bmatrix} B \end{bmatrix}^w (\begin{bmatrix} C \end{bmatrix}^w)$$

ullet Compositional interpretation of *Betty smokes* in w_5 ?

Syntax (LF)	Interpretation	Interpretation	
TP		1 iff b smokes in w_5	
NP VP	$\begin{array}{ c c }\hline 1\\ \hline b & Ann \rightarrow 0\\ Betty \rightarrow 1\\ Connor \rightarrow 1\\ \hline\end{array}$	b the function f from individuals to truth values s.t. for all $d \in D$, $f(d) = 1$ iff d smokes in w_5	

Syntax of λ -operator

- If ϕ is a well-formed formula and x a variable, $\lambda x[\phi]$ is a one-place predicate.
- Expressions like $\lambda x[\phi]$ are called ' λ -abstracts' or ' λ -expressions.'
- How to read λ -expressions (informally)

 $\lambda x[\phi]$: "the property of being an x such that ϕ "

 $\lambda x[\operatorname{smoke}(x)]$: "the property of being an x such that x smokes"

 $\lambda y[\mathsf{snore}(y)]$: "the property of being a y such that y smokes"

 $\lambda x[\exists y[\mathsf{love}(y,x)]]$: "the property of being an x s.t. for some y, y loves x"

 $\lambda y[\exists x[\mathsf{love}(y,x)]]$: "the property of being a y s.t. for some x, y loves x"

• In $\lambda x[\phi]$, x is a variable bound by λ , and ϕ is the scope of that occurrence of the λ -operator.

$$\lambda x[\operatorname{smoke}(x)]$$
 $\lambda x \operatorname{smoke}(x)$

λ -conversion

• We obtain a well-formed formula by applying a λ -expression to a term.

 $\lambda x[\text{smoke}(x)](j) = \text{``J has the property of being } x \text{ s.t. } x \text{ smokes''} = \text{smoke}(j)$

 $\lambda y[\exists x[\mathsf{love}(y,x)]](\mathsf{m}) = \text{``M has the property of being } y \text{ s.t. for some } x,y \text{ loves } x" = \exists x[\mathsf{love}(\mathsf{m},x)]$

- λ -conversion: $\lambda x[\phi](t) \leftrightarrow \phi[t/x]$
- Watch out! When applying λ -conversion, we must make sure that there is no variable clash.

$$\lambda y[\exists x[\mathsf{love}(y,x)]](x) \neq \exists x[\mathsf{love}(x,x)]$$

 $\lambda y[\exists x[\mathsf{love}(y,x)]](x) = "g(x)"$ has the property of being y s.t. for some x,y loves x" = "He loves someone"

 $\exists x[\mathsf{love}(x,x)] = \text{"for some x, x loves x"} = \text{"Someone loves himself"}$

So, choose your variables carefully.

$$\lambda y[\exists x[\mathsf{love}(y,x)]](z) = \exists x[\mathsf{love}(z,x)]$$

Exercise in λ -conversion

Exercise 1 in p. 394 from *Meaning and Grammar*.

1.
$$\lambda x[\exists z[\lambda y[K(x,y)](z) \land R(z,x)]](j)$$

2.
$$\lambda y[\lambda x[K(x,y)](j)](m)$$

3.
$$\lambda z[\lambda x[[K(x,z) \wedge R(x,z)] \vee R(z,x)](j)](m)$$

4.
$$\exists y [\lambda x [B(x) \rightarrow \exists w [R(x,w)]](j) \land \lambda x [B(x) \land Q(x)](z)](y)]$$

Semantics of λ -operator

- $[\![\lambda x[\phi]]\!]^{w,g}$
 - = a function f from individuals to truth values such that for all $d \in D$, f(d) = 1 iff $[\![\phi]\!]^{w,g[d/x]} = 1$
 - $= \{ d \in D : [\![\phi]\!]^{w,g[d/x]} = 1 \}$
- $[\lambda x[smoke(x)]]^{w,g}$
 - = a function f from individuals to truth values such that for all $d \in D$, f(d) = 1 iff $[smoke(x)]^{w,g[d/x]} = 1$
 - = $\{d \in D : [[smoke(x)]]^{w,g[d/x]} = 1\}$

Mapping Syntax to Logical Representation Compositionally

• With the introduction of λ -operator to IPC, we can map syntactic structures to IPC logical representations compositionally, which then can receive truth-conditional interpretation using model-theoretic/possible-worlds semantics.

Syntax (LF)	Logical Representation	Truth Conditional Interpretation w.r.t.		
		an arbitrary w		
TP		1 iff B smokes in \boldsymbol{w}		
NP VP	$\lambda x[\operatorname{smoke}'(x)](b)$ $= \operatorname{smoke}'(b)$ $b \lambda x[\operatorname{smoke}'(x)]$	B the function f from individuals to truth values s.t. for all $d \in D$, $f(d) = 1$ iff d smokes in w		

Syntax of a Fragment of English (F3) Again

1. (a) TP \rightarrow NP T'

(b) $T' \rightarrow T VP$

(c) $TP \rightarrow TP conj TP$

(d) $TP \rightarrow neg TP$

(e) $T \rightarrow Past$, Pres, Fut

(f) $VP \rightarrow V_t NP$

(g) $VP \rightarrow V_i$

(h) $VP \rightarrow V_{dt} NP PP[to]$

(i) NP \rightarrow Det N_c

(j) NP $\rightarrow N_p$

(k) $PP[to] \rightarrow to NP$

(I) Det \rightarrow the, a, every

(m) $N_p \rightarrow Frodo$, Smeagol, Deagol, Sam, Aragorn, ... he_1 , ..., he_n , ...

(n) $N_c \rightarrow book$, fish, man, hobbit, ...

(o) $V_i \rightarrow$ be intelligent, be hungry, smoke, ...

(p) $V_t \rightarrow$ destroy, kill, read, ...

(q) $V_{dt} \rightarrow$ give, introduce, ...

(r) Conj \rightarrow and, or

(s) Neg \rightarrow not

2. Rule for Quantifier Raising (QR) $[_{TP} \times NP \times Y] \Rightarrow [_{TP} \times NP_i \times Y]$

3. Rule for Tense/Modal/Neg Raising (TR) $[_{TP} \text{ NP X VP}] \Rightarrow [_{TP} \text{ X } [_{TP} \text{ NP VP}]], \text{ where X = T or Neg}$

IPC Translation of F3

- 1. For any word or phrase α of F3, α' is its IPC translation.
- 2. Given a lexical item α ,

F ₃ category	IPC type	IPC translation	Examples
N_p	constants	α'	Sam ⇒ Sam′
	variables	$\mid x_n \mid$	$he_1 \Rightarrow x_1$
V_i	1-place predicate	$\lambda x[\alpha'(x)]$	$smoke \Rightarrow \lambda x[smoke'(x)]$
N_c	1-place predicate	$\lambda x[\alpha'(x)]$	$song \Rightarrow \lambda x[song'(x)]$
V_t	2-place predicate	??	like \Rightarrow ??

3.
$$not' = -$$

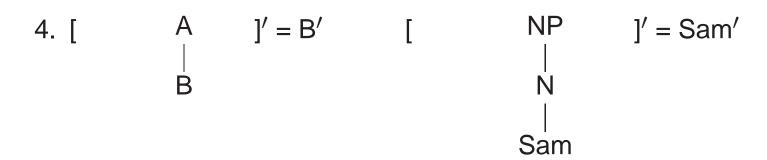
and' =
$$\wedge$$

$$or' = \vee$$

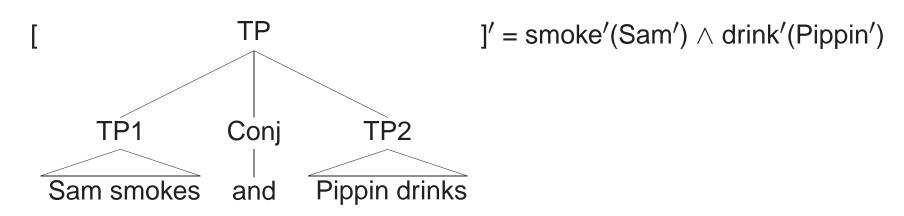
$$Fut' = \mathbf{F}$$

$$Past' = P$$

 $t_n = x_n$, where t_n is a trace or a pronoun



6. [TP]' =
$$\overline{T}$$
'(NP') [TP] = smoke'(Sam')
 \overline{NP} \overline{T} \overline{Sam} \overline{smokes}



8. [
$$VP$$
]' = $\lambda x[V'(x)]$ [VP]' = $\lambda x[smoke'(x)]$ V | Smokes

9. [VP]' =
$$\lambda x$$
[V'(x, NP')] [VP]' = λx [pity'(x, Smeagol')]
V NP | V NP | λx [pities Smeagol

10. [
$$VP$$
]' = $\lambda x[V'(x, NP', PP')]$

11. [TP]' = X' TP' [TP]' =
$$\neg$$
smoke'(Sam') Neg TP not Sam smoke

$$[\qquad \qquad]' = \forall x_i [\operatorname{dog}'(x_i) \to \operatorname{bark}'(x_i)]$$

$$\qquad \qquad \qquad \\ \overbrace{\operatorname{every dog}} \qquad \widehat{\mathsf{t}_i \text{ barks}}$$

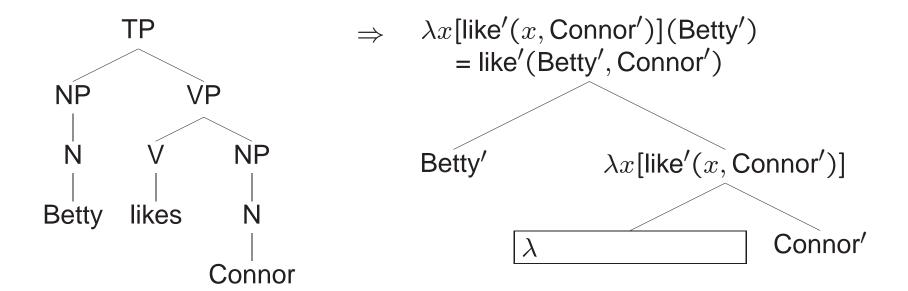
(ii) [TP]' =
$$\exists x_i [\beta'(x_i) \land \mathsf{TP'}]$$
 $\widehat{\mathsf{A}}\widehat{\beta}$

(iii) [TP]' =
$$\exists x_i [\beta'(x_i) \land \forall y [\beta'(y) \to x_i = y] \land \mathsf{TP'}]$$

$$\widehat{\mathsf{TP}}$$

$$\widehat{\mathsf{The}} \beta$$

Translating a Transitive Verb to a λ -expression



Exercise in Translating English to Logical Representation

- 1. Frodo respects Gandalf.
- 2. Bilbo must not kill Gollum.
- 3. Gandalf likes every hobbit.
- 4. Every hobbit knows a song.